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Abstract

We reconcile rough volatility models and jump models using a class of reversionary Heston models with
fast mean reversions and large vol-of-vols. Starting from hyper-rough Heston models with a Hurst index
H ∈ (−1/2, 1/2), we derive a Markovian approximating class of one dimensional reversionary Heston-
type models. Such proxies encode a trade-off between an exploding vol-of-vol and a fast mean-reversion
speed controlled by a reversionary time-scale ϵ > 0 and an unconstrained parameter H ∈ R. Sending ϵ
to 0 yields convergence of the reversionary Heston model towards different explicit asymptotic regimes
based on the value of the parameter H. In particular, for H ≤ −1/2, the reversionary Heston model
converges to a class of Lévy jump processes of Normal Inverse Gaussian type. Numerical illustrations
show that the reversionary Heston model is capable of generating at-the-money skews similar to the ones
generated by rough, hyper-rough and jump models.
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Introduction

Since the 1987 financial crash, financial option markets have exhibited a notable implied volatility skew, es-
pecially for short-term maturities. This skew reflects the market’s expectation of significant price movements
on very short time scales in the underlying asset, which poses a challenge to traditional continuous models
based on standard Brownian motion. To address this issue, the literature has developed several classes of
models that capture the skewness in implied volatilities. Three prominent approaches are:

• conventional one-factor stochastic volatility models boosted with large mean-reversion speed and vol-
of-vol. This class of models have been justified by several empirical studies that have identified the
presence of very fast mean-reversion in the S&P volatility time series [10, 17, 27, 28] and by the fact
that they are able to correct conventional models to reproduce the behavior of the at-the-money skew
for short maturities [39];

• jump diffusion models, especially the class of affine jump-diffusions for which valuation problems be-
come (semi-)explicit using Fourier inversion techniques, see [20]. Such class of models incorporates
occasional and large jumps to explain the skew observed implicitly on option markets, see [19], and
[12] for an empirical analysis of the impact of adding jumps to stochastic volatility diffusion on the
implied volatility surface;

• rough volatility models, where the volatility process is driven by variants of the Riemann-Liouville
fractional Brownian motion

WH
t =

1

Γ (H + 1/2)

∫ t

0

(t− s)
H−1/2

dWs, t ≥ 0, (0.1)

with W a standard Brownian motion and H ∈ (0, 1/2) the Hurst index. Such models are able to
reproduce the roughness of the spot variance’s trajectories measured empirically [32, 15] together with
explosive behaviors of the at-the-money skew [11, 14, 21, 29, 3].

So far, in the mathematical finance community, jump diffusion models and rough volatility models have often
been treated as distinct approaches, and, in some cases, they have even been opposed to each other, see for
instance [14, Section 5.3.1]. However, on the one side, connections between rough volatility models and fast
mean-reverting factors have been established in [1, 4, 5]. On the other side, jump models have been related
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to fast regimes stochastic volatility models in [39, 38]. In parallel, from the empirical point of view, it can
be very challenging for the human eye and for statistical estimators to distinguish between roughness, fast
mean-reversions and jump-like behavior, as shown in [5, 18, 30].

The above suggests that rough volatility and jump models may not be that different after all. Our main
motivation is to establish for the first time in the literature a connection between rough volatility and jump
models through conventional volatility models with fast mean-reverting regimes.

We aim to reconcile these two classes of models through the use of the celebrated conventional Heston model
[34] but with a parametric specification which encodes a trade-off between a fast mean-reversion and a large
vol-of-vol. We define the reversionary Heston models as follow:

dSϵt = Sϵt
√
V ϵt

(
ρdWt +

√
1− ρ2dW⊥

t

)
, Sϵ0 = S0, (0.2)

dV ϵt =
(
ϵH− 1

2 θ − ϵ−1 (V ϵt − V0)
)
dt+ ϵH− 1

2 ξ
√
V ϵt dWt, V ϵ0 = V0, (0.3)

where
(
W,W⊥) is a two-dimensional Brownian motion, θ ≥ 0, S0, ξ, V0 > 0, ρ ∈ [−1, 1]. The two crucial

parameters here are the reversionary time-scale ϵ > 0 and H ∈ R. Such parametrizations nest as special
cases the fast regimes extensively studied by Fouque et al. [27], Feng et al. [23], see also [26, Section 3.6],
which correspond to the case H = 0; and also the regimes studied in [39, 38] for the case H = −1/2. Letting
the parameter H ∈ R free in (0.3) introduces more flexibility in practice and leads to better fits with stable
calibrated parameters across time as recently shown in [7, 8]. In theory, it allows for a better understanding
of the impact of the scaling in H on the limiting behavior of the model as ϵ→ 0 as highlighted in this paper.

In a nutshell, we show that:

(i) for H > −1/2, the reversionary Heston model can be constructed as a proxy of rough and hyper-rough
Heston models where H ∈ (−1/2, 1/2] plays a similar role to that of the Hurst index,

(ii) for H ≤ −1/2, as ϵ → 0, the reversionary Heston model converges towards Lévy jump processes of
Normal Inverse Gaussian type with distinct regimes for H = −1/2 and H < −1/2 respectively,

(iii) the reversionary Heston model is capable of generating implied volatility surfaces and at-the-money
skews similar to the ones generated by rough, hyper-rough and jump models, and comes arbitrarily
close to the at-the-money skew scaling as τ−0.5 for small τ , contrary to widespread understanding.

Our results allow for a reconciliation between rough and jump models as they suggest that jump models and
(hyper-)rough volatility models are complementary, and do not overlap. For H > −1/2, the reversionary
Heston model can be interpreted as an engineering proxy of rough and hyper-rough volatility models, while
for H ≤ −1/2, it corresponds to an approximation of jump models for small enough ϵ. Asymptotically, jump
models actually start at H = −1/2 (and below) in the Reversionary Heston model, the very first value of
the Hurst index for which hyper-rough volatility models can no-longer be defined.

More precisely, our argument is structured as follows. First, in Section 1, we show how the reversionary
Heston model (0.2)-(0.3) can be obtained as a Markovian and semimartingale proxy of rough and hyper-
rough Heston models [21, 36] with Hurst index H ∈ (−1/2, 1/2). This is achieved using the resolvent of the
first kind of the shifted fractional kernel.
Second, in Section 2, we derive the joint conditional characteristic functional of the log-price logSϵ and
the integrated variance V̄ ϵ :=

∫ ·
0
V ϵs ds in the model (0.2)–(0.3) in terms of a solution to a system of time-

dependent Riccati ordinary differential equations; see Theorem 2.1. Compared to the literature, we provide
a novel and concise proof for the existence and uniqueness of a global solution to such Riccati equations
using the variation of constant formulas.
Finally, in Section 3, we establish the convergence of the log-price and the integrated variance (logSϵ, V̄ ϵ) in
the reversionary Heston model (0.2)-(0.3) towards a Lévy jump process (X,Y ), as ϵ goes to 0. More precisely,
we show that the limit (X,Y ) belongs to the class of Normal Inverse Gaussian - Inverse Gaussian (NIG-IG)
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processes which we construct from its Lévy exponent and we connect such class to first hitting-time represen-
tations in the same spirit of Barndorff-Nielsen [13]. Our main Theorem 3.4 provides the convergence of the
finite-dimensional distributions of the joint process (logSϵ, V̄ ϵ) through the study of the limiting behavior
of the Riccati equations and hence the characteristic functional given in Theorem 2.1. Interestingly, the
limiting behavior disentangles three different asymptotic regimes based on the values of H. The convergence
of the integrated variance process is even strengthened to a functional weak convergence on the Skorokhod
space of càdlàg paths on [0, T ] endowed with the M1 topology. We stress that the usual J1 topology is not
useful here, since jump processes cannot be obtained as limits of continuous processes in the J1 topology.

Related Literature. Convergence of the reversionary Heston models towards jump processes: our results
clarify and extend the results of [39, 38], derived for the case H = −1/2, that establish and make clear the
precise limiting connection between the Heston log-price process and the normal inverse-Gaussian (NIG)
process of [13]. Connections between the long time behavior of the Heston log-price process and NIG distri-
bution were first exposed in [25, 37] and were the main motivations behind the work of Mechkov [39].
Relevance of fast regimes in practice: the pricing of options near maturity is challenging because of the very
steep slope of smiles observed on the market and Fouque et al. [27] showed that stochastic volatility should
embed both a fast regime Ornstein-Uhlenbeck factor (see Remark 1.3 below) from which approximations of
option prices can be derived using a singular perturbation expansion, and a slowly varying factor to be able
to match options with long maturities. On the other hand, Feng et al. [23] considers a Heston model with
a fast mean-reverting volatility and uses large deviation theory techniques to derive an approximation price
for out-of-the-money vanilla options when the maturity is small, but large compared to the characteristic
time-scale of the stochastic volatility factor. More recently an Ornstein-Uhlenbeck process with the same
parametrization as in (0.3) has been used to construct the Quintic stochastic volatility model [8] to achieve
remarkable joint fits of SPX and VIX implied volatilities, outperforming its rough and path-dependent coun-
terparts as shown empirically in [7].

Notations. For p ≥ 1, we denote by Lploc the space of measurable functions f : R+ → R such that∫ T
0
|f(s)|pds < ∞, for all T > 0. We will denote by

√
x the principal square root of x ∈ C, i.e. its argument

lies within (−π/2, π/2].

1 From rough Heston to reversionary Heston

In this section, we show how reversionary Heston models (0.2)-(0.3) can be seen as proxies of rough and
hyper-rough Heston models whenever H > −1/2.

1.1 Rough and hyper-rough Heston

Let
(
W,W⊥) be a two-dimensional Brownian motion defined on a filtered probability space

(
Ω,F , (Ft)t≥0 ,Q

)
which satisfies the usual conditions, where Q is the risk-neutral probability. Set B := ρW +

√
1− ρ2W⊥

with ρ ∈ [−1, 1]. We take as a starting point a stochastic volatility model for an underlying asset P in terms
of a time-changed Brownian motion:

dPt = PtdBŪt
, P0 > 0, (1.1)

for some non-decreasing continuous process Ū . If Ūt =
∫ t
0
Usds, then U would correspond to the spot variance

and Ū plays the role of the integrated variance. The hyper-rough Volterra Heston model introduced in [36]
and studied further in [2, Section 7] assumes that the dynamics of the integrated variance is of the form

Ūt = Ḡ0(t) + ξ

∫ t

0

KH(t− s)WŪs
ds, (1.2)

for a suitable continuous function Ḡ0, and ξ > 0, and KH is the fractional kernel

KH(t) = tH−1/2, t > 0, (1.3)
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for H ∈ (−1/2, 1/2]. The lower bound H > −1/2 ensures the L1
loc integrability of the kernel KH so that the

stochastic convolution appearing in (1.2) is well-defined. Furthermore if the kernel happens to be in L2
loc,

the following lemma ensures the existence of a spot variance process.

Lemma 1.1 (Existence of spot variance). Let K ∈ L2
loc and g0 ∈ L1

loc. Assume there exists a non-decreasing
adapted process Ū and a Brownian motion W such that

Ūt =

∫ t

0

g0(s)ds+

∫ t

0

K(t− s)WŪs
ds, (1.4)

with supt≤T E
[∣∣Ūt∣∣] < ∞, for all T > 0. Then, Ūt =

∫ t
0
Usds, where U is a non-negative weak solution to

the following stochastic Volterra equation

Ut = g0(t) +

∫ t

0

K(t− s)
√
UsdWs, Q ⊗ dt− a.e. (1.5)

Conversely, assume there exists a non-negative weak solution U to the stochastic Volterra equation (1.5) such
that supt≤T E

[
U2
t

]
<∞, for all T > 0, then Ū solves (1.4).

Proof. This is obtained by an application of stochastic Fubini’s theorem, see [2, Lemma 2.1].

Going back to the fractional case, if we restrict H in (0, 1/2], then we have KH ∈ L2
loc. For Ḡ0(t) :=∫ t

0
g0(s)ds, a direct application of Lemma 1.1 yields that the model (1.1)-(1.2) is equivalent to the rough

Heston model of El Euch and Rosenbaum [21] written in spot-variance form

dPt = Pt
√
UtdBt,

Ut = g0(t) +

∫ t

0

KH(t− s)ξ
√
UsdWs,

for some initial input curve g0 : R+ → R ensuring the non-negativity of V . Two notable specifications of
such admissible input curves are given by [4, Example 2.2] and read

g0 continuous and non-decreasing with g0 ≥ 0,

or

g0(t) = U0 + θ
∫ t
0
KH(s)ds, for some U0, θ ≥ 0.

Moreover, for H ∈ (0, 1/2] the sample paths of the spot variance U are locally Hölder continuous of any
order strictly less than H, and consequently rougher than those of the standard Brownian motion, which
corresponds to the case H = 1/2, justifying the denomination ‘rough model’. The hyper-rough appellation
corresponds to the case H ∈ (−1/2, 0] for which the process Ū is continuous but no longer absolutely con-
tinuous. Indeed, in this case, one can show that the trajectories of U are nowhere differentiable, see [36,
Proposition 4.6].

A key advantage of rough and hyper-rough Heston models is the semi-explicit knowledge of the characteristic
function of the log-price modulo a deterministic Riccati Volterra convolution equation, as they belong to the
class of Affine Volterra processes [6, 2]. More precisely, for any u = (u1, u2) ∈ C2 satisfying

ℜ(u1) = 0, ℜ(u2) ≤ 0,

the joint Fourier–Laplace transform of (logP, Ū) is given by

E
[
exp

(
u1 logPT + u2ŪT

)]
= exp

(
u1 logP0 +

∫ T

0

R(ψH(T − s))dḠ0(s)

)
,
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for all T ≥ 0, where ψH is the continuous solution to the following fractional Riccati–Volterra equation

ψH(t) =

∫ t

0

KH(t− s)R(ψH(s))ds, t ≥ 0,

R(x) =
1

2
(u21 − u1) + u2 + ρξu1x+

ν2

2
x2, (1.6)

see [2, Section 7]. This allows for fast pricing and calibration via Fourier inversion techniques. Compared
to the conventional Heston model where the characteristic function is explicit, the solution to the Riccati
Volterra equation is not explicitly known and must be approximated numerically. Several numerical schemes
have been proposed including the Adams scheme in [21], the multi-factorial approximation of rough volatility
models in [5] or the hybrid scheme based on fractional power series expansion in [16].

1.2 Deriving reversionary Heston as a proxy: ϵ-shifting the singularity

In both regimes, rough and hyper-rough, with the exception of H = 1
2 , the model is non-Markovian, non-

semimartingale with singular kernels. From a practitioner standpoint, it is therefore natural to look for
Markovian approximations by suitable smoothing of the singularity of the fractional kernel (1.3) sitting at
the origin. In this section, we show how we can build a Markovian semi-martingale proxy of hyper-rough
models. This is achieved using a two-step procedure.

First step: recover semimartingality by smoothing out the singularity of the fractional kernel KH .
We fix ϵ > 0, and we consider the shifted fractional kernel

KH,ϵ(t) := (t+ ϵ)
H− 1

2 , t > 0,

and the corresponding ‘integrated variance’ Ū ϵ given by

Ū ϵt =

∫ t

0

gϵ0(s)ds+ ξ

∫ t

0

KH,ϵ(t− s)WŪϵ
s
ds,

with

gϵ0(t) = U0 + θ

∫ t

0

KH,ϵ(s)ds.

Note that nowKH,ϵ is in L
2
loc for any value ofH, so that an application of Lemma 1.1 yields that Ū ϵ =

∫ ·
0
U ϵsds

where the spot variance U ϵ solves the equation

dP ϵt = P ϵt
√
U ϵt dBt

U ϵt = U0 +

∫ t

0

KH,ϵ(t− s)θds+

∫ t

0

KH,ϵ(t− s)ξ
√
U ϵsdWs.

Moreover, since KH,ϵ is continuously differentiable on [0, T ], denoting by K ′
H,ϵ its derivative, we get that U ϵ

is a semimartingale with the following dynamics

dU ϵt =

(
KH,ϵ(0)θ +

∫ t

0

K ′
H,ϵ(t− s)dZϵs

)
dt+KH,ϵ(0)ξ

√
U ϵt dWt, (1.7)

with

dZϵt = θdt+ ξ
√
U ϵt dWt.

Second step: recover a Markovian proxy thanks to the resolvent of the first kind. The only
non-Markovian term in (1.7) is the term

∫ t
0
K ′
H,ϵ(t− s)dZϵs appearing in the drift. Using the resolvent of the

first kind of KH,ϵ we will re-express this term in terms of a functional of the past of the process U ϵ. For a
kernel K, a resolvent of the first kind is a measure L on R+ of locally bounded variation such that∫

[0,t]

K(t− s)L(ds) = 1, t ≥ 0,
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see [33, Definition 5.5.1]. A resolvent of the first kind does not always exist. We will make use of the

notations (f ∗ g)(t) =
∫ t
0
f(t− s)g(s)ds and (f ∗ L)(t) =

∫
[0,t]

f(t− s)L(ds).

Lemma 1.2. Fix ϵ > 0 and H ∈ (−1/2, 1/2). The kernel KH,ϵ admits a resolvent of the first kind Lϵ of the
form

Lϵ(dt) =
δ0(dt)

KH,ϵ(0)
+ ℓϵ(t)dt, (1.8)

with ℓϵ a locally integrable function. Moreover, the function (K ′
H,ϵ ∗ Lϵ) is continuously differentiable and it

holds, for all t ≥ 0, that∫ t

0

K ′
H,ϵ(t− s)dZϵs = −

(
1

2
−H

)
ϵ−1 (U ϵt − U0) +

∫ t

0

(
K ′
H,ϵ ∗ Lϵ

)′
(t− s) (U ϵs − U0) ds. (1.9)

Proof. First, the existence of the resolvent is justified as follows. Given H ∈ (− 1
2 ,

1
2 ), KH,ϵ is a positive

completely monotone kernel1 on [0, T ] so that an application of [33, Theorem 5.5.4] yields the existence of a
resolvent of the first kind in the form (1.8) with ℓϵ a completely monotone function. Convolving (1.8) with
K ′
H,ϵ one obtains that

(K ′
H,ϵ ∗ Lϵ)(t) =

K ′
H,ϵ(0)

KH,ϵ(0)
+ (K ′

H,ϵ ∗ ℓϵ)(t).

Since KH,ϵ is twice continuously differentiable on [0, T ] and ℓϵ is integrable, it follows that (K ′
H,ϵ ∗ ℓϵ) is

continuously differentiable and so is (K ′
H,ϵ ∗ Lϵ). Noting that (1 ∗ f)(.) :=

∫ .
0
f(s)ds and applying the

fundamental theorem of calculus on the function (K ′
H,ϵ ∗ Lϵ) yields(

K ′
H,ϵ ∗ Lϵ

)
=
(
K ′
H,ϵ ∗ Lϵ

)
(0) + 1 ∗

(
K ′
H,ϵ ∗ Lϵ

)′
,

convolving on the right-hand side by KH,ϵ combined with the associativity of the convolution operation and
the fact that (Lϵ ∗KH,ϵ) = 1 yields:

K ′
H,ϵ ∗ 1 = K ′

H,ϵ ∗ (Lϵ ∗KH,ϵ) = (K ′
H,ϵ ∗ Lϵ) ∗KH,ϵ =

(
K ′
H,ϵ ∗ Lϵ

)
(0)(1 ∗KH,ϵ) + 1 ∗

(
K ′
H,ϵ ∗ Lϵ

)′ ∗KH,ϵ.

And thus, we obtain almost everywhere with regards to the Lebesgue measure that:

K ′
H,ϵ =

(
K ′
H,ϵ ∗ Lϵ

)
(0)KH,ϵ + (K ′

H,ϵ ∗ Lϵ)′ ∗KH,ϵ.

In addition, using (1.8), we notice that

(
K ′
H,ϵ ∗ Lϵ

)
(0) =

K ′
H,ϵ(0)

KH,ϵ(0)
=

(
H − 1

2

)
ϵ−1.

Combining the above, we obtain that∫ t

0

K ′
H,ϵ(t− s)dZϵs =

(
H − 1

2

)
ϵ−1

∫ t

0

KH,ϵ(t− s)dZϵs +
(
(K ′

H,ϵ ∗ Lϵ)′ ∗ (KH,ϵ ∗ dZϵt )
)
t
,

which yields (1.9), after recalling that U ϵ − U0 =
∫ ·
0
KH,ϵ(· − s)dZϵs.

With the help of the resolvent of the first kind, we were able to recover in the first term of (1.9) the first
order mean-reversion scale of the fractional kernel. The second term in (1.9) depends on the whole past
trajectory of U ϵ.

1Recall that a function f is completely monotone if it is infinitely differentiable on (0,∞) such that (−1)nf (n) ≥ 0, for all
n ≥ 0.
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We can now derive our Markovian proxy of the hyper-rough Heston model as follows: plugging the ex-
pression (1.9) in the drift of (1.7), recalling that KH,ϵ(0) = ϵH−1/2 and dropping the non-Markovian term((
K ′
H,ϵ ∗ Lϵ

)′
.
∗ (U ϵ· − U ϵ0)

)
t
, we arrive to the Markovian process:

dṼ ϵt =

(
ϵH− 1

2 θ −
(
1

2
−H

)
ϵ−1

(
Ṽ ϵt − U0

))
dt+ ϵH− 1

2 ξ

√
Ṽ ϵt dWt, Ṽ0 = U0.

Finally, re-scaling the mean-reversion speed from
(
1
2 −H

)
ϵ−1 to ϵ−1 leads to our reversionary Heston model

(0.2)–(0.3) where the parameter H becomes unconstrained. In the following section, we illustrate numerically
the fact that such reversionary Heston model can be seen as a proxy of rough and hyper-rough Heston models.

Remark 1.3. Such proxy approximation can directly be applied to the Riemann-Liouville fractional Brownian
motion defined in (0.1) to get the proxy:

dWH,ϵ
t = −

(
1

2
−H

)
ϵ−1WH,ϵ

t dt+ ϵH− 1
2 dWt, WH,ϵ

0 = 0,

whose solution is explicitly given by

WH,ϵ
t = ϵH− 1

2

∫ t

0

e−(
1
2−H)ϵ

−1(t−s)dWs,

which is a mean-reverting Ornstein-Uhlenbeck process as long as H < 1
2 , while the value H = 1

2 yields back
the standard Brownian motion.
First, such Ornstein-Uhlenbeck process has been recently used to construct the Quintic stochastic volatility
model [8] to achieve remarkable joint fits of SPX and VIX implied volatilies, outperforming even its rough
and path-dependent counterparts as shown empirically in [7].
Furthermore, notice that the case H = 0 degenerates into the fast scale volatility factor from Fouque et al.
[27], with m = 0, ν = 1 and their time-scale is twice the reversionary time-scale ϵ, and whose auto-correlation
under the invariant distribution is given by

E
[
W 0,ϵ
t W 0,ϵ

s

]
= e−

|t−s|
2ϵ .

Consequently, the reversionary time-scale ϵ sets the speed of decay of the auto-correlation function of WH,ϵ.

1.3 Numerical illustration

In Section 1.2, we derived the Reversionary Heston model (0.2)–(0.3) as a semi-martingale and Markovian
proxy of rough and hyper-rough Heston models such that the parameter H, stemming naturally from the
Hurst index, is unconstrained. We now illustrate numerically its ability to reproduce similar shapes of im-
plied volatility surfaces and at-the-money skews for different values of the Hurst parameter, when calibrating
both the parameter H and the reversionary time-scale ϵ.

For this, we first generate implied volatility surfaces of the hyper-rough and rough Heston model via the
Fourier-Cosine series expansion technique from [22], where we used the fractional Adams scheme described
in [21] on the fractional Riccati equation (1.6) to compute the characteristic function of the (hyper-)rough
Heston models. Three target smiles are generated with a (hyper-)rough Heston having parameters

ρ = −0.7, θ = 0.02, ξ = 0.3, U0 = 0.02, (1.10)

for H ∈ {0.1, 0,−0.05}, where we used the parametrization Ḡ0(t) :=
∫ t
0
g0(s)ds, with g0(t) = U0 +

θ
∫ t
0
KH(s)ds.

For each of these smiles, we calibrate the parameters
(
ϵ̂, Ĥ

)
of the reversionary Heston model (0.2)-(0.3),

while fixing the other parameters equal to those of the hyper-rough Heston’s, by minimizing a weighted loss∑
i,j

wi,j

(
Chyper-rough Heston(Ti, kj)− C ϵ̂,Ĥreversionary Heston(Ti, kj)

)2
,
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where, for an initial underlying value S0 = 1, at given maturity T and strike K, we define the log-moneyness

k := log
(
K
S0

)
, while Chyper-rough Heston(T, k) and C

ϵ̂,Ĥ
reversionary Heston(T, k) denote respectively the call prices

computed in the hyper-rough Heston model for different values of the Hurst index and parameters (1.10)

and in the reversionary Heston model with parameters
(
ϵ̂, Ĥ

)
and (1.10). The reversionary Heston prices

are also obtained by Fourier-Cosine expansion of the characteristic function. In contrast to the rough Heston
models, the characteristic function is known explicitly, see Corollary 2.2 below. After calibration, we obtain
the following parameters

Target (hyper-)rough Heston Calibrated reversionary Heston

H ϵ̂ Ĥ
0.1 0.10183756 -0.29183935
0 0.06258637 -0.33057822

-0.05 0.05932449 -0.38692275

Table 1: Calibrated values of
(
ϵ̂, Ĥ

)
of the reversionary Heston model to the hyper-rough Heston volatility

surfaces. The other parameters are fixed as in (1.10).

The resulting at-the-money skews between 1 week and 1 year are shown on Figure 2. The implied volatility
surfaces for the case H = 0.1 is illustrated on Figure 1. The fit of the smiles for H = 0 and H = −0.05 are
deferred to Appendix B, see Figures 6 and 7. The graphs show that the reversionary Heston model seems
to be able to generate similar shapes of the implied volatility surfaces of rough and hyper-rough models and
very steep skews even in the hyper rough regimes H ≤ 0.
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Figure 1: Smiles comparison between target rough Heston with parameters (1.10), with H = 0.1, and
reversionary Heston with calibrated parameters from the first row of Table (1.3) for different maturities from
one week to one year.
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Figure 2: Resulting at-the-money skew
{
|∂kσimplicit (k, T )|k=0

}
T
comparison between target rough Heston

with parameters (1.10) and reversionary Heston with calibrated parameters given in Table (1.3) for different
maturities from one week to one year.

The whole section emphasizes how the reversionary Heston model (0.2)–(0.3) can be seen as an engineering
proxy of the hyper-rough Heston model: it is obtained as a semi-martingale and Markovian proxy model
such that for specific values of the couple (ϵ,H), it is able to mimic the skew behavior of hyper-rough Heston.

Remark 1.4 (An engineering proxy of rough models). For a fixed ϵ > 0, we can bound the error between call
prices given by the reversionary Heston and the hyper-rough Heston in the same spirit of [5, Proposition 4.3]:
there exists a constant c > 0 independent of ϵ such that∣∣∣CHhyper-rough Heston(T, k)− CĤ,ϵreversionary Heston(T, k)

∣∣∣ ≤ c

∫ T

0

∣∣∣KH(s)− K̂Ĥ,ϵ(s)
∣∣∣ ds,

where KH is the fractional kernel given in (1.3) and K̂H̃,ϵ(t) := ϵĤ−1/2e−
t
ϵ . Note that for fixed H, as

ϵ → 0, K̂H,ϵ does not converge to KH in L1. In this sense, we cannot expect the reversionary model to
converge towards the rough model as ϵ → 0, which can alternatively be seen as the impact of dropping the
non-Markovian term in (1.9). More precisely, we will explore in Section 3 what neglecting the non-Markovian
term in (1.9) entails asymptotically for the reversionary Heston with H ∈ (−1/2, 1/2]: it will converge to
Black-Scholes, see Corollary 3.6 and Figure 5 (upper plots). Having said that, one would like to calibrate
(Ĥ, ϵ) as done in Table 1.3 above, or alternatively by mimizing the L1-norm between the kernels KH and
K̂Ĥ,ϵ, in order to make the reversionary model the closest possible to the rough model.

2 The joint characteristic functional of reversionary Heston

The following theorem provides the joint conditional characteristic functional of the log-price logSϵ and
the integrated variance V̄ ϵ :=

∫ ·
0
V ϵs ds in the model (0.2)–(0.3) in terms of a solution to a system of time-

dependent Riccati ordinary differential equations.

Theorem 2.1 (Joint characteristic functional). Let f, g : [0, T ] → C be measurable and bounded functions
such that

ℜg + 1

2

(
(ℜf)2 −ℜf

)
≤ 0. (2.1)

Then, the joint conditional characteristic functional of (logSϵ, V̄ ϵ) is given by

E

[
exp

(∫ T

t

f(T − s)d logSϵs +

∫ T

t

g(T − s)dV̄ ϵs

)∣∣∣∣∣Ft

]
= exp

(
ϕϵ (T − t) + ϵ

1
2−Hψϵ (T − t)V ϵt

)
, t ≤ T,

(2.2)
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where (ϕϵ, ψϵ) is the solution to the following system of time-dependent Riccati equations

ϕ′ϵ(t) =
(
θ + ϵ−H− 1

2V0

)
ψϵ(t), ϕϵ(0) = 0, (2.3)

ψ′
ϵ(t) = ϵH− 1

2
ξ2

2
ψ2
ϵ (t) +

(
ρξϵH− 1

2 f(t)− ϵ−1
)
ψϵ(t)

+ ϵH− 1
2

(
g(t) +

f2(t)− f(t)

2

)
, ψϵ(0) = 0. (2.4)

Proof. The proof is given in Section 2.2 below.

Before proving the result, we note that in the case f and g are constant, one recovers the usual formula for
the characteristic function of the Heston [34] model, where the solution (ϕϵ, ψε) of (2.3)-(2.4) is explicit as
stated in the following corollary.

Corollary 2.2 (Explicit marginals). Let u, v ∈ R and set f(t) = iu and g(t) = iv, for all t ∈ [0, T ]. Then,
the solution (ϕϵ, ψϵ) to the Riccati equations (2.3)-(2.4) is explicitly given by

ϕϵ(t) =
(
ϵ−

1
2−Hθ + ϵ−1−2HV0

)
ξ−2

((
1− iρϵH+ 1

2 ξu− d
)
t− 2ϵ ln

(
1− ge−ϵ

−1td

1− g

))
,

ψϵ(t) = ϵ−H− 1
2 ξ−2

(
1− iρϵH+ 1

2 ξu− d
) 1− e−ϵ

−1td

1− ge−ϵ−1td
,

with

g :=
1− iρϵH+ 1

2 ξu− d

1− iρϵH+ 1
2 ξu+ d

, d :=

√(
1− iρϵH+ 1

2 ξu
)2

− 2
(
ϵH+ 1

2 ξ
)2(

iv − u2 + iu

2

)
, ℜd > 0.

Consequently, the conditional joint characteristic function of (logSϵT ,
∫ T
t
V ϵs ds) is given by

E

[
exp

(
iu logSϵT + iv

∫ T

t

V ϵs ds

)∣∣∣∣∣Ft

]
= exp

(
iu logSϵt + ϕϵ (T − t) + ϵ

1
2−Hψϵ (T − t)V ϵt

)
, t ≤ T. (2.5)

Proof. For the explicit derivation of the formulas, see for example [31, Chapter 2]. An application of Theo-
rem 2.1 yields the result.

Remark 2.3. Such formulas for ϕϵ avoid branching issues as described in [9].

The rest of the section if dedicated to the proof of Theorem 2.1. We first study the existence of a solution
to time-dependent Riccati ODEs for which equation (2.4) is a particular case, and provide some of their
properties in Section 2.1. We complete the proof of Theorem 2.1 in Section 2.2.

2.1 Time-dependent Riccati ODEs: existence and uniqueness

In this section, we consider a generic class of time-dependent Riccati equations that encompass equation
(2.4), in the form

ψ′(t) = a(t)ψ2(t) + b(t)ψ(t) + c(t), ψ(0) = u0, t ≤ T, (2.6)

with u0 ∈ C and a, b, c : [0, T ] → C three measurable and bounded functions. We say that ψ : [0, t∗] → C for
some t∗ ∈ (0, T ] is a local extended solution to (2.6) with some initial condition ψ(0) = u0 ∈ C if, almost
everywhere on [0, t∗], it is continuously differentiable and satisfies the relations in (2.6). The extended solu-
tion is global if t∗ = T .

The presence of the squared non-linearity in (2.6) precludes the application of the celebrated Cauchy-Lipschitz
theorem and can lead to explosive solutions in finite time. Compared to the related literature on similar
Riccati equations [24, Lemma 2.3 and Section B], we provide a concise and simplified proof for the existence
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and uniqueness of a global extended solution to the Riccati equation (2.6) using a variation of constant
formula under the following assumption on the coefficients (a, b, c) and the initial condition u0:

ℑ(a(t)) = 0, a(t) > 0, ℜ (c(t)) +
ℑ (b(t))

2

4a(t)
≤ 0, ℜ(u0) ≤ 0, t ≤ T. (2.7)

The following theorem gives the existence and uniqueness of a solution to the Riccati equation (2.6).

Theorem 2.4 (Existence and uniqueness for the Riccati). Let u0 ∈ C with ℜ(u0) ≤ 0 and a, b, c : [0, T ] → C
be measurable and bounded functions satisfying (2.7). Then, there exists a unique extended solution ψ :
[0, T ] → C to the Riccati equation (2.6) such that

ℜ(ψ(t)) ≤ 0, t ≤ T, (2.8)

and

sup
t≤T

|ψ(t)|<∞. (2.9)

Proof. For the existence part, we proceed in two steps. First, we start by arguing the existence of a local
solution using Carathéodory’s theorem. For this we rely on [33, Chapter 12, Section 2], using the notations
therein (see equation (1.7) for example), we consider the integral equation

ψ(t) = ψ(0) +

∫ t

0

g (t, s, ψ(s)) ds, t ≥ 0, (2.10)

where the operator g is defined by

g(t, s, ψ(s)) := a(s)ψ(s)2 + b(s)ψ(s) + c(s).

Let D be an open, connected subset of R+×C that contains (0, ψ(0)), and C (D,C) be the set of continuous
applications valued from D to C. Define

T∞ := sup
{
t ∈ R+|Cψ(0),D ([0, T ),C) ̸= ∅

}
,

where
Cψ(0),D ([0, T ),C) := {ϕ ∈ C (D,C) |ϕ(0) = ψ(0) and (t, ϕ(t)) ∈ D for t ∈ [0, T )} .

An application of [33, Theorem 2.6] yields the existence of a unique non-continuable solution to (2.10) which
means that (t, ψ(t)) ∈ D on the interval [0, T∞) and that either T∞ = T or lim

t→T∞
|ψ(t)|= ∞. Indeed, the

assumptions (i) to (v) of [33, Theorem 2.6] are readily satisfied by boundedness and integrability of a, b and
c and the fact that g does not depend on t and satisfies the Carathéodory conditions.
Second, we argue that

sup
t≤T∞

|ψ(t)|<∞, (2.11)

which would then yield T∞ = T and the existence of a global solution ψ. Let t < T∞. We start by showing
that ℜ(ψ(t)) ≤ 0. Indeed, taking real parts in (2.6), ψr := ℜ (ψ) satisfies the following equation on [0, T∞):

ψ′
r(s) = {a(s)ℜ (ψ(s)) + ℜ (b(s))}ψr(s) + d(s),

where d(s) = −a(s)
(
ℑ (ψ(s)) + ℑ(b(s))

2a(s)

)2
+ℜ (c(s))+ℑ2(b(s))

4a(s) ≤ 0 thanks to condition (2.7), after a completion

of squares. The variation of constant for ψr then yields

ψr(t) = e
∫ t
0
(a(u)ℜ(ψ(u))+ℜ(b(u)))duℜ(u0) +

∫ t

0

d(s)e
∫ t
s
(a(u)ℜ(ψ(u))+ℜ(b(u)))duds ≤ 0,
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since the exponential is positive and d(s) ≤ 0, and ℜ(u0) ≤ 0 by assumption. This shows that ℜ(ψ) ≤ 0, on
[0, T∞). Finally, an application of a similar variation of constants formula on equation (2.6) leads to

ψ(t) = e
∫ t
0
(a(u)(ψ(u))+ℜ(b(u)))duu0 +

∫ t

0

e
∫ t
s
(a(u)(ψ(u))+(b(u)))duc(s)ds,

so that taking the module together with the triangle inequality and the fact that ℜ(ψ) ≤ 0 on [0, T∞), yields

|ψ(t)| ≤
∣∣∣e∫ t

0
(a(u)ψ(u)+(b(u)))du

∣∣∣ |u0|+ ∫ t

0

∣∣∣e∫ t
s
(a(u)ψ(u)+(b(u)))du

∣∣∣ |c(s)|ds
= e

∫ t
0
(a(u)ℜ(ψ(u))+ℜ(b(u)))du|u0|+

∫ t

0

e
∫ t
s
(a(u)ℜ(ψ(u))+ℜ(b(u)))du|c(s)|ds

≤ e
∫ t
0
ℜ(b(u))du|u0|+

∫ T

0

e
∫ t
s
ℜ(b(u))du|c(s)|ds

≤ C

(
|u0|+

∫ T

0

|c(s)|ds

)
,

where C = sups,s′∈[0,T ]2 e
∫ s′
s

ℜ(b(u))du does not depend on t and is finite by boundedness of b. This shows
(2.11) as needed. Combining the above we obtain the existence of a solution ψ on [0, T ] satisfying (2.8) and
(2.9).
To argue uniqueness, assume there are two such extended solutions ψ1 and ψ2 that satisfy (2.6). Then,

(ψ2 − ψ1)
′
(t) = (a(t) (ψ2 + ψ1) (t) + b(t)) (ψ2 − ψ1) (t), (ψ2 − ψ1) (0) = 0, t ≤ T,

which yields

|ψ2 − ψ1| (t) ≤
∫ t

0

|a(s) (ψ2 + ψ1) (s) + b(s)| |ψ2 − ψ1| (s)ds ≤ c

∫ t

0

|ψ2 − ψ1| (s)ds, t ≤ T,

for some c > 0 by boundedeness of (ψ1, ψ2, a, b) using (2.11), so that the uniqueness is obtained from
Gronwall’s lemma.

2.2 Proof of Theorem 2.1

We first argue the existence of a solution to the system of Riccati equations (2.3)-(2.4). Let us rewrite the
Riccati ODE from (2.4) as

ψ′
ϵ(t) = aϵψ

2
ϵ (t) + bϵ(t)ψϵ(t) + cϵ(t), ψϵ(0) = 0, t ≤ T, (2.12)

where we defined 
aϵ := ϵH− 1

2
ξ2

2

bϵ(t) := ϵH− 1
2 ρξf(t)− ϵ−1

cϵ(t) := ϵH− 1
2

[
g(t) + f2(t)−f(t)

2

]
.

(2.13)

Since condition (2.1) ensures

ℜ (cϵ) +
ℑ (bϵ)

2

4aϵ
= ϵH−1/2

(
ℜg + 1

2

(
(ℜf)2 −ℜf

)
+
(
ρ2 − 1

)
(ℑf)2

)
≤ 0,

then conditions (2.7) are readily satisfied and consequently Theorem 2.4 yields the existence and uniqueness
of a solution ψϵ : [0, T ] → C to the Riccati ODE (2.4) such that

ℜ(ψϵ(t)) ≤ 0, t ≤ T.
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The function ϕϵ defined in integral form as

ϕϵ(t) =
(
θ + ϵ−H− 1

2V0

)∫ t

0

ψϵ(s)ds, t ≤ T,

solves (2.3).
We now prove the expression for the charateristic functional (2.2). Define the following process M :

Mt = exp(Ut),

Ut = ϕϵ (T − t) + ϵ
1
2−Hψϵ (T − t)V ϵt +

∫ t

0

f(T − s)d logSϵs +

∫ t

0

g(T − s)dV̄ ϵs .

In order to obtain (2.2), it suffices to show that M is a martingale. Indeed, if this is the case, and after
observing that the terminal value of M is given by

MT = exp

(∫ T

0

f(T − s)d logSϵs +

∫ T

0

g(T − s)dV̄ ϵs

)
,

recall that ϕϵ(0) = ψϵ(0) = 0, we obtain

E

[
exp

(∫ T

0

f(T − s)d logSϵs +

∫ T

0

g(T − s)dV̄ ϵs

)∣∣∣∣Ft

]
= E [MT |Ft] =Mt = exp (Ut) ,

which yields (2.2). We now argue that M is a martingale. We first show that M is a local martingale using
Itô formula. The dynamics of M read

dMt =Mt

(
dUt +

1

2
d⟨U⟩t

)
,

with

dUt =

{
−ϕ′ϵ(T − t)+

(
θ + ϵ−

1
2−HV0

)
ψϵ(T − t) +

(
−ϵ 1

2−Hψ′
ϵ(T − t)− ϵ−

1
2−Hψϵ(T − t) + g(T − t)− f(T − t)

2

)
V ϵt

}
dt

+ (ξψϵ(T − t) + ρf(T − t))
√
V ϵt dWt +

√
1− ρ2f(T − t)

√
V ϵt dW

⊥
t .

This yields that the drift in dMt/Mt is given by

−ϕ′ϵ(T − t)+
(
θ + ϵ−

1
2−HV0

)
ψϵ(T − t)

+

(
−ϵ 1

2−Hψ′
ϵ(T − t) +

ξ2

2
(ψϵ(T − t))

2
+
(
ρξf(T − t)− ϵ−

1
2−H

)
ψϵ(T − t) + g(T − t) +

f2(T − t)− f(T − t)

2

)
V ϵt

which is equal to 0 from the Riccati equations (2.3) and (2.4). This shows that M is a local martingale. To
argue that M is a true martingale, we note that ℜ(ψϵ) ≤ 0 which implies ℜ(ϕϵ) ≤ 0, so that

ℜ(Ut) ≤
∫ t

0

ℜ(f(T − s))d logSϵs +

∫ t

0

ℜ(g(T − s))dV̄ ϵs

=

∫ t

0

(
ℜ(g(T − s))− 1

2
ℜ(f(T − s))

)
V ϵs ds+

∫ t

0

ℜ(f(T − s))
√
V ϵs dBs

≤ −1

2

∫ t

0

ℜ(f(T − s))2V ϵs ds+

∫ t

0

ℜ(f(T − s))
√
V ϵs dBs =: Ũt,

where the last inequality follows from (2.1). It follows that

|Mt|= exp(ℜ(Ut)) ≤ exp(Ũt),

where the process exp(Ũ) is a true martingale, see [6, Lemma 7.3]. This shows that M is a true martingale,
being a local martingale bounded by a true martingale, see [35, Lemma 1.4], which concludes the proof.
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3 From reversionary Heston to jump processes

In this section, we establish the convergence of the log-price and the integrated variance (logSϵ, V̄ ϵ) in the
reversionary Heston model (0.2)-(0.3) towards a Lévy jump process (X,Y ), as ϵ goes to 0. More precisely,
the limit (X,Y ) belongs to the class of Normal Inverse Gaussian - Inverse Gaussian (NIG-IG) processes
defined as follows.

Definition 3.1 (NIG-IG process). Fix α ≥ |β|≥ 0, δ, λ > 0 and µ ∈ R. We say that (Xt, Yt)t≥0 is a
Normal Inverse Gaussian - Inverse Gaussian (NIG-IG) process with parameters (α, β, δ, µ, λ) if it is a two-
dimensional homogeneous Lévy process with càdlàg sample paths, starting from (X0, Y0) = (0, 0) almost
surely, with Lévy exponent η defined by

η(u, v) :=

[
iµu+ δ

(√
α2 − β2 −

√
α2 − 2iλv − (β + iu)

2

)]
, u, v ∈ R, (3.1)

i.e. the joint characteristic function is given by

E [exp (iuXt + ivYt)] = exp (η(u, v)t) , u, v ∈ R, t ≤ T. (3.2)

In order to justify the existence of such a class of Lévy processes, one needs to justify that η given in (3.1)
is indeed the logarithm of a characteristic function associated to an infinitely divisible distribution, see [42,
Corollary 11.6]. This is the object of the following lemma, which also provides the link with first-hitting
times and subordinated processes.

Lemma 3.2 (Representation using subordination). Let α ≥ |β|≥ 0, δ, λ > 0, µ ∈ R and (W̃ , W̃⊥) be a two
dimensional Brownian motion. Let (Λt)t∈[0,T ] be the first hitting-time process defined as

Λt := inf
{
s ≥ 0 :

√
α2 − β2s+ W̃s ≥ δt

}
, t ∈ [0, T ] , (3.3)

and define Z as the following shifted subordinated process

Zt = µt+ βΛt + W̃⊥
Λt
, t ∈ [0, T ] . (3.4)

Then,

E [exp (iuZt + ivλΛt)] = exp(η(u, v)t), u, v ∈ R, t ∈ [0, T ] .

In particular, η given by (3.1) is the logarithm of the characteristic function of the joint random variable
(Z1, λΛ1) which is infinitely divisible.

Proof. Fix t ∈ [0, T ]. By construction, it is well-known that Λt has an Inverse Gaussian distribution if

α > |β| with parameters IG

(
δt√
α2−β2

, δ2t

)
, and in the drift-free case α = |β|, Λt follows a Lévy distribution

with parameters Lévy
(
0, δ2t

)
(see [13] and Definition A.3 in the Appendix). Now conditional on Λt, Zt is

Gaussian with parameters N (µt+ βΛt,Λt) and using the tower property of conditional expectation, we get
for the first case that

E [exp (iuZt + ivλΛt)] = E [E [ exp (iuZt)|Λt] exp (ivλΛt)]

= E

[
exp

(
iu (µt+ βΛt)−

Λtu
2

2
+ ivλΛt

)]
= exp (iuµt)E

[
exp

((
iuβ − u2

2
+ ivλ

)
Λt

)]
= exp

(
iuµt+ δt

√
α2 − β2

(
1−

√
1− 2

α2 − β2

(
iuβ − u2

2
+ ivλ

)))

i.e. E [exp (iuZt + ivλΛt)] = exp

(
iuµt+ δt

(√
α2 − β2 −

√
α2 − 2iλv − (β + iu)

2

))
= exp(η(u, v)t), u, v ∈ R,
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where we used Definition A.3 to get the fourth equality, noting that ℜ
(
i (uβ + vλ)− u2

2

)
≤ 0. Simi-

lar computations yield the result for the case α = |β|. Furthermore, we will say that that the random
variable (Z1, λΛ1) follows a NIG-IG distribution with parameters (α, β, µ, δ, λ) (see Definition A.3 in the
Appendix). Such distribution is infinitely divisible because if (X1, Y1) , · · · , (Xm, Ym) are independent NIG-
IG random variables with common parameters (α, β, λ) and individual (µi, δi), for i = 1, · · · ,m, then
(X,Y ) := (

∑m
i=1Xi,

∑m
i=1 Yi) is again NIG-IG-distributed with parameters (α, β,

∑m
i=1 µi,

∑m
i=1 δi, λ).

The appellation NIG-IG for the couple (X,Y ) in Definition 3.1 is justified as follows:

• Y is an Inverse Gaussian process first derived by Schrödinger [43] which can be checked either by

recovering the Inverse Gaussian distribution with parameters IG

(
λδ√
α2−β2

, λδ2
)

after setting u = 0

in (3.2); or by using the representation as a first passage-time in (3.3). It is worth pointing that, for
α = |β|, one recovers the well-known Lévy distribution for the first-passage of a Brownian motion with
parameters Lévy

(
0, λδ2

)
. The Lévy distribution can be seen as a special case of the Inverse Gaussian

distribution.

• X is the celebrated Normal Inverse Gaussian process of Barndorff-Nielsen [13], with parameters
NIG (α, β, µ, δ), which can be checked by setting v = 0 in (3.2) or by using the representation as
subordinated Brownian motion with an Inverse Gaussian subordinator as in (3.4).

In addition, we allow in Definition 3.1 the parameter α to be equal to ∞ in the following sense:

Remark 3.3 (Normal process). Considering the set of parameters

(α, β, δ, µ, λ) =
(
α, 0, σ2α, µ, 1

)
,

a second order Taylor expansion, as α→ ∞, of the square root yields

E [exp (iuXt + ivYt)] = exp

([
iµu− σ2

(
u2

2
+ iv

)]
t

)
, u, v ∈ R, t ≤ T,

which is equivalent to the normal-deterministic process defined by

(Xt, Yt)t∈[0,T ] =
(
µt+ σW̃t, σ

2t
)
t∈[0,T ]

d
=
(
µt+ W̃σ2t, σ

2t
)
t∈[0,T ]

,

where W̃ is an F -adapted Brownian motion. We will consider that such (degenerate) process is a particular
case of Definition 3.1 with parameters denoted by(

α, 0, σ2α, µ, 1
)∣∣
α→∞ .

We are now in place to state our main convergence theorem. Theorem 3.4 provides the convergence of the
finite-dimensional distributions of the joint process (logSϵ, V̄ ϵ) through the study of the limiting behavior
of the characteristic functional given in Theorem 2.1. Interestingly, the limiting behavior disentangles three
different asymptotic regimes based on the values of H that can be seen intuitively on the level of the Riccati
equation (2.4) as follows. Applying the variation of constants on ψϵ from equations (2.12) and (2.13), we
get:

ψϵ(t) = ϵH+1/2

∫ t

0

Kϵ(t− s)F (s, ψϵ(s))ds, t ≤ T, (3.5)

F (s, u) :=
ξ2

2
u2 + ρξf(s)u+ g(s) +

f2(s)− f(s)

2
, (3.6)

with Kϵ the kernel defined by

Kϵ(t) = ϵ−1e−ϵ
−1t, t ≥ 0.
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Assuming that ψϵ converges to some ψ0 and observing that Kϵ plays the role of the Dirac delta as ϵ→ 0, one
expects

∫ t
0
Kϵ(t− s)F (s, ψϵ(s))ds → F (t, ψ0(t)) in (3.5), the pre-factor ϵH+1/2 suggests then three different

limiting regimes with respect to H that can be characterized through the functions F and ψ0:
ψ0(t) = 0, if H > −1/2,

ψ0(t) = F (t, ψ0(t)), ℜ(ψ0(t)) ≤ 0, if H = −1/2,

0 = F (t, ψ0(t)), ℜ(ψ0(t)) ≤ 0, if H < −1/2.

(3.7)

The function ψ0 in (3.7) is even explicitly given by

ψ0(t) =


0, if H > −1/2,

ξ−2

(
1− ρξf(t)−

√
(1− ρξf(t))

2 − 2ξ2
(
g(t) + f2(t)−f(t)

2

))
, if H = −1/2,

−ξ−1
(
ρf(t) +

√
f(t) (1− (1− ρ2) f(t))− 2g(t)

)
, if H < −1/2,

(3.8)

see Lemma A.1 below. Furthermore, the convergence of the integrated variance process is strengthened
to a functional weak convergence on the Skorokhod space D of real-valued càdlàg paths on [0, T ] endowed
with the strong M1 topology, see Section 3.3.1 below. Such topology is weaker and less restrictive than the
commonly used uniform or J1 topologies which share the property that a jump in a limiting process can
only be approximated by jumps of comparable size at the same time or, respectively, at nearby times. On
the contrary, the M1 topology of Skorokhod [44] captures approximations of unmatched jumps, which in our
case, will allow us to prove the convergence of the stochastic process V̄ ϵ with continuous sample trajectories
towards a Lévy process with càdlàg sample trajectories. The statement is now made rigorous in the following
theorem.

Theorem 3.4 (Convergence towards NIG-IG processes). Let f, g : [0, T ] → C be bounded and measurable
such that ℜf = ℜg = 0 and such that ψ0 defined in (3.8) has bounded variations. Then, based on the value
of H, we obtain different explicit asymptotic formulas for the characteristic functional given in Theorem 2.1:

lim
ϵ→0

E

[
exp

(∫ T

0

f(T − s)d logSϵs +

∫ T

0

g(T − s)dV̄ ϵs

)]
= exp (ϕ0(T )) , (3.9)

with

ϕ0(T ) :=


V0
∫ T
0
h(s)ds, if H > −1/2,

(θ + V0) ξ
−2

(
T −

∫ T
0

(
ρξf(s) +

√
(1− ρξf(s))

2 − 2ξ2h(s)

)
ds

)
, if H = −1/2,

−θξ−1
∫ T
0

(
ρf(s) +

√
ρ2f2(s)− 2h(s)

)
ds, if H < −1/2,

(3.10)

where h(s) := g(s) + f2(s)−f(s)
2 . In particular for ρ ∈ (−1, 1), as ϵ → 0, the finite-dimensional distributions

of the joint process (log Sϵ

S0
, V̄ ϵ) converge to the finite-dimensional distributions of a NIG-IG process (X,Y )

in the sense of Definition 3.1 with the following parameters depending on the value of H:

(α, β, δ, µ, λ) :=


(
α, 0, V0α,−V0

2 , 1
)∣∣
α→∞ , if H > −1/2,(

1
2

√
(ξ−2ρ)2+4(1−ρ2)

ξ(1−ρ2) ,− 1
2

ξ−2ρ
ξ(1−ρ2) ,

√
1− ρ2(θ + V0)ξ

−1,−ρ (θ + V0) ξ
−1, 1

1−ρ2

)
, if H = −1/2,(

1
2(1−ρ2) ,−

1
2(1−ρ2) ,

√
1− ρ2θξ−1,−ρθξ−1, 1

1−ρ2

)
, if H < −1/2,

(3.11)
where θ, S0, ξ and V0 are the same from (0.2)-(0.3). Furthermore, the process V̄ ϵ converges weakly towards
Y on the space (D,SM1), as ϵ→ 0.

Proof. The convergence of the characteristic functional in (3.9) is established in Section 3.1 (Lemmas 3.7
and 3.8). This implies the convergence of the finite-dimensional distributions of (logSϵ, V̄ ϵ) as detailed in
Section 3.2. Finally, the weak convergence of V̄ ϵ on (D,SM1) is proved in Section 3.3.
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Remark 3.5 (An interesting interpretation). The interpretation of the convergence results becomes even
more interesting when combined with Section 1. In Section 1, for H > −1/2, the reversionary Heston model
(logSϵ, V̄ ϵ) is constructed as a proxy of rough and hyper-rough Heston models. Theorem 3.4 shows that the
limiting regime for H > −1/2 is a (degenerate) Black-Scholes regime, cf.Remark 3.3, whereas, for H ≤ −1/2
one obtains the convergence of the reversionary regimes towards (non-degenerate) jump processes with distinct
regimes between H = −1/2 and H < −1/2, see Corollary 3.6 below. This suggests that jump models and
(hyper-)rough volatility models are complementary, and do not overlap. For H > −1/2 the reversionary model
can be interpreted as an engineering proxy of rough and hyper-rough volatility models, while for H ≤ −1/2
it can be interpreted as an approximation of jump models for small enough ϵ. Asymptotically, jump models
actually start at H = −1/2 (and below) in the Reversionary Heston model, the very first value of the Hurst
index for which hyper-rough volatility models can no-longer be defined.

In Figures 3 and 4, we plot respectively the convergence of the smiles and the skew of the reversionary Heston
model (logSϵ, V̄ ϵ) for the case H = −1/2 towards the Normal Inverse Gaussian model. The volatility surface
is obtained by applying Fourier inversion formulas on the corresponding characteristic functions. Similar to
Figures 1 and 2, the graphs show that the fast parametrizations introduced in the Heston model are able to
reproduce very steep skews for the implied volatility surface.

0.15 0.10 0.05 0.00 0.05 0.10
log-moneyness

0.3

0.4

0.5

0.6

0.7

0.8

0.9

im
pl

ie
d 

vo
l

1w
=100d
=21d
=5d
=1d

NIG

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
log-moneyness

0.3

0.4

0.5

0.6

0.7

0.8

0.9
im

pl
ie

d 
vo

l

2w
=100d
=21d
=5d
=1d

NIG

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
log-moneyness

0.4

0.5

0.6

0.7

0.8

im
pl

ie
d 

vo
l

1m
=100d
=21d
=5d
=1d

NIG

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2
log-moneyness

0.4

0.5

0.6

0.7

0.8

0.9

im
pl

ie
d 

vo
l

3m
=100d
=21d
=5d
=1d

NIG

0.6 0.4 0.2 0.0 0.2
log-moneyness

0.5

0.6

0.7

0.8

0.9

im
pl

ie
d 

vo
l

6m
=100d
=21d
=5d
=1d

NIG

0.8 0.6 0.4 0.2 0.0 0.2
log-moneyness

0.55

0.60

0.65

0.70

0.75

0.80

0.85

im
pl

ie
d 

vo
l

1y
=100d
=21d
=5d
=1d

NIG

Figure 3: Smiles of reversionary Heston and its asymptotic NIG law in the regime H = −0.5 for different
maturities from one week to one year. Parameters are: S0 = 100, ρ = −0.7, θ = 0.3, ξ = 0.8, V0 = 0.3, and
the reversionary time-scale is varied from one hundred days to one day.
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Figure 4: At-the-money skew of reversionary Heston and its asymptotic NIG law in the regime H = −0.5.
Parameters are: S0 = 100, ρ = −0.7, θ = 0.3, ξ = 0.8, V0 = 0.3 and the reversionary time-scale is varied
from one hundred days to one day.

In the case (f, g) = (iu, iv), with u, v ∈ R, the asymptotic marginals of reversionary Heston expressed in
Corollary 3.6 below are obtained as a direct consequence of the convergence Theorem 3.4.

Corollary 3.6 (Explicit asymptotic marginals). Based on the value of H ∈ R, the pair of normalized log

price and integrated variance
(
log

Sϵ
T

S0
, V̄ ϵT

)
has distinct asymptotic marginals as the reversionary time-scale

ϵ goes to zero given by:

1. H > −1/2, i.e. Black Scholes-type asymptotic regime (BS regime)

E

[
iu log

SϵT
S0

+ ivV̄ ϵT

]
−→
ϵ→0

exp

{
−V0

2

(
u2 − 2i

(
v − u

2

))
T

}
. (3.12)

2. H = −1/2, i.e. Normal Inverse Gaussian-type asymptotic regime (NIG regime)

E

[
iu log

SϵT
S0

+ ivV̄ ϵT

]
−→
ϵ→0

exp

{
(θ + V0) ξ

−2

(
1− iρξu−

√
(1− iρξu)

2 − 2ξ2
(
iv − u2 + iu

2

))
T

}
.

(3.13)

3. H < −1/2, i.e. Normal Lévy-type asymptotic regime (NL regime)

E

[
iu log

SϵT
S0

+ ivV̄ ϵT

]
−→
ϵ→0

exp

{
−θξ−1

(
iρu+

√
(1− ρ2)u2 − 2i

(
v − u

2

))
T

}
. (3.14)

In Figure 5, we illustrate numerically the convergence of the characteristic function in all three regimes.
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Figure 5: Convergence of reversionary Heston’s joint characteristic function (2.5) in all three regimes whose
asymptotic joint characteristic functions are given respectively in (3.12) for the Black-Scholes regime, in
(3.13) for the Normal Inverse Gaussian regime and in (3.14) for the Normal-Lévy regime. v is fixed at 100
and model parameters are ρ = −0.7, θ = 0.3, ξ = 0.8, V0 = 0.3 and the reversionary time-scale is varied
from one 21 days to 1e− 5 day.

The rest of the section is dedicated to the proof of Theorem 3.4.

3.1 Convergence of the joint characteristic functional

In this section we prove the convergence of the characteristic functional of (log Sϵ

S0
, V̄ ϵ) as ϵ goes to 0 stated

in Theorem 3.4. For this, we fix f, g : [0, T ] → C bounded and measurable such that ℜf = ℜg = 0. We note
that (2.1) is trivially satisfied so that an application of Theorem 2.1, with t = 0, yields that

E

[
exp

(∫ T

0

f(T − s)d logSϵs +

∫ T

0

g(T − s)dV̄ ϵs

)]
= exp

(
ϕϵ(T ) + ϵ

1
2−Hψϵ(T )V0

)
,

where (ϕϵ, ψϵ) solve (2.3)-(2.4). We start by showing that the second term in the exponential ϵ1/2−Hψϵ goes
to 0 for any value of H ∈ R in the following lemma.

Lemma 3.7. For ϵ > 0, let ψϵ be a solution the time-dependent Riccati ODE (2.4) such that ℜ(ψϵ) ≤ 0 with
f, g : [0, T ] → C bounded and measurable functions such that ℜf = ℜg = 0. Then,

|ψϵ(t)| ≤ CϵH+ 1
2

(
1− e−ϵ

−1t
)
, t ≤ T,

for some constant C independent of ϵ. In particular, we have the uniform convergence

lim
ϵ→0

sup
t≤T

ϵ1/2−H |ψϵ(t)|= 0, H ∈ R.
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Proof. The variation of constants applied to the differential equation (2.12) yields:

ψϵ(t) =

∫ t

0

cϵ(s)e
∫ t
s
(aϵψϵ(u)+bϵ(u))duds,

with aϵ, bϵ, cϵ defined as in (2.13). Given that f and g are both bounded on [0, T ], we fix C ≥ 0 such that

|cϵ(u)| ≤ CϵH− 1
2 , u ≤ T . Note that ℜbϵ = −ϵ−1, having also ℜ (ψϵ) ≤ 0 and aϵ > 0, we get consequently by

linearity when taking the real part

|ψϵ(t)| ≤ CϵH− 1
2

∫ t

0

eaϵ
∫ t
s
ℜ(ψϵ(u))dueℜbϵ(t−s)ds

≤ CϵH− 1
2

∫ t

0

e−ϵ
−1(t−s)ds

which yields the desired upper bound on the solution when integrating explicitly the exponential. The
convergence result follows immediately.

The first term ϕϵ, however, yields different limits based on the value of H. Consequently, we will study in
Lemma 3.8 the convergence of the following quantity

ϕϵ(t) =

∫ t

0

(
θ + ϵ−H− 1

2V0

)
ψϵ(s)ds,

for different regimes of H.

Lemma 3.8. We have the convergence

lim
ϵ→0

ϕϵ(T ) = ϕ0(T ),

where ϕ0(T ) is given by (3.10).

Proof. Case H > −1/2. In this case, the solution ψϵ converges uniformly to zero from the upper bound
given in Lemma 3.7 which, combined with the expression of F in (3.6), yields

lim
ϵ→0

F (s, ψϵ(s)) = F (s, 0) = g(s) +
f2(s)− f(s)

2
, s ≤ T.

Furthermore, integrating the variation of constants expression (3.5) leads to∫ t

0

ϵ−H−1/2ψϵ(u)du =

∫ t

0

{∫ u

0

Kϵ(u− s)F (s, ψϵ(s))ds

}
du

=

∫ t

0

{∫ t

s

Kϵ(u− s)du

}
F (s, ψϵ(s))ds

=

∫ t

0

(
1− e−ϵ

−1(t−s)
)
F (s, ψϵ(s))ds,

where we used Fubini for the second equality as the integrated quantity is bounded and measurable. Now,

given the function s 7→
(
1− e−ϵ

−1(t−s)
)
F (s, ψϵ(s)) is uniformly bounded in ϵ by a constant on [0, T ],

and that it converges pointwise to s 7→ F (0, s), then an application of Lebesgue’s Dominated Convergence
Theorem yields ∫ t

0

ϵ−H−1/2ψϵ(u)du −→
ϵ→0

∫ t

0

(
g(s) +

f2(s)− f(s)

2

)
ds,

hence the resulting convergence

ϕϵ(t) −→
ϵ→0

V0

∫ t

0

(
g(s) +

f2(s)− f(s)

2

)
ds.
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Case H = −1/2. Now fix ϵ > 0 and using the second equation in (3.7), i.e. −F (t, ψ0(t))+ψ0(t) = 0, observe
that

ψ′
ϵ(t) = −ϵ−1ψϵ(t) + ϵ−1 (F (t, ψϵ(t))− F (t, ψ0(t)) + ψ0(t))

= −ϵ−1 (ψϵ(t)− ψ0(t)) + ϵ−1βϵ(t) (ψϵ(t)− ψ0(t)) , (3.15)

with βϵ(t) :=
ξ2

2
(ψϵ(t) + ψ0(t)) + ρξf(T − t). (3.16)

Since ψ0 has bounded variations by assumption, the complex-valued Riemann-Stieltjes integral on continuous
functions h against ψ0 is well-defined, see Theorem A.1 from [40]. Define ∆ϵ(t) := (ψϵ(t)−ψ0(t))e

t/ϵ. Then,
it follows that

d∆ϵ(t) = (ψ′
ϵ(t)dt− dψ0(t))e

t/ϵ + ϵ−1(ψϵ(t)− ψ0(t))e
t/ϵdt

= ϵ−1βϵ(t)∆ϵ(t)− et/ϵdψ0(t),

where we used (3.15) to get the second equality, and applying the variation of constants formula leads to

∆ϵ(t) = eϵ
−1

∫ t
0
βϵ(r)dr∆ϵ(0)−

∫ t

0

eϵ
−1

∫ t
s
βϵ(r)dreϵ

−1sdψ0(s),

so that, recalling that ψϵ(0) = 0,

ψϵ(t)− ψ0(t) = −eϵ
−1

∫ t
0
βϵ(r)dre−ϵ

−1tψ0(0)−
∫ t

0

eϵ
−1

∫ t
s
βϵ(r)dre−ϵ

−1(t−s)dψ0(s)

=: Iϵ(t) + IIϵ(t).

We now prove successively that |
∫ T
0
Iϵ(t)dt|→ 0 and |

∫ T
0
IIϵ(t)dt|→ 0.

• Given that ℜβϵ ≤ 0, then∣∣∣eϵH−1/2
∫ t
0
βϵ(r)dre−ϵ

−1tψ0(0)
∣∣∣ ≤ e−ϵ

−1t |ψ0(0)| → 0, t ∈ (0, T ),

so that Iϵ(t) converges pointwise to 0 on (0, T ) and is dominated by an integrable function, hence

|
∫ T
0
Iϵ(t)dt|→ 0 by Lebesgue’s dominated convergence theorem.

• Regarding the second term, we have∣∣∣∣∣
∫ T

0

∫ t

0

eϵ
H−1/2

∫ t
s
βϵ(r)dre−ϵ

−1(t−s)dψ0(s)dt

∣∣∣∣∣ ≤
∫ T

0

∫ t

0

e−ϵ
−1(t−s) |dψ0(s)| dt

=

∫ T

0

∫ T

s

e−ϵ
−1(t−s)dt |dψ0(s)|

=

∫ T

0

ϵ
(
1− e−ϵ

−1(T−s)
)
|dψ0(s)|

where the inequality comes from the positivity of the first integration, an application of Theorem A.42

from [40] and using again that ℜβϵ ≤ 0, with the positive measure on the right-hand side being the

2Suppose that g has bounded variation, and put g∗(x) := sup
σN ([0,x])

∑N
i=1 |g(xn)− g(xn−1)|, with σN ([0, x]) a N -points

subdivision of [0, x]. Then for h continuous, we have∣∣∣∣∫ T

0
h(x)dg(x)

∣∣∣∣ ≤ ∫ T

0
|h(x)| |dg(x)| ,

provided that both integrals exist, and where we used the notation |dg(.)| := dg∗(.).
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total variation measure defined as in Theorem 6.2 from [41], and we used Fubini-Lebesgue to get the

first equality. Noting the point-wise convergence of the function fϵ : s 7→ ϵ
(
1− e−ϵ

−1(T−s)
)
to zero

and its uniform boundedness in ϵ by a constant on [0, T ], the dominated convergence theorem applied
to the total variation measure proves the result.

Thus, we obtained ∫ T

0

ψϵ(t)dt−→
ϵ→0

∫ T

0

ψ0(t)dt,

where ψ0 satisfies the second equation in (3.7), hence we get

ϕϵ(T )−→
ϵ→0

(θ + V0)

∫ T

0

ψ0(s)ds,

which is the desired convergence.

Case H < −1/2. Define ψ0 as the root with non-positive real part from the third equation in (3.7), recall
Lemma A.1. Fixing again ϵ > 0, we have

ψ′
ϵ(t) = −ϵ−1ψϵ(t) + ϵH−1/2 (F (t, ψϵ(t))− F (t, ψ0(t)))

= −ϵ−1ψϵ(t) + ϵH−1/2βϵ(t) (ψϵ(t)− ψ0(t)) ,

with βϵ given by (3.16). Similarly the case H < −1/2, computing the differential of ∆ϵ(t) := (ψϵ(t) −
ψ0(t))e

t/ϵ and applying the variation of constants formula leads to

∆ϵ(t) = eϵ
H−1/2

∫ t
0
βϵ(r)dr∆ϵ(0)−

∫ t

0

eϵ
H−1/2

∫ t
s
βϵ(r)dres/ϵ

(
dψ0(s) + ϵ−1ψ0(s)ds

)
,

so that

ψϵ(t)− ψ0(t) = −eϵ
H−1/2

∫ t
0
βϵ(r)dre−ϵ

−1tψ0(0)−
∫ t

0

eϵ
H−1/2

∫ t
s
βϵ(r)dre−ϵ

−1(t−s) (dψ0(s) + ϵ−1ψ0(s)ds
)

= −eϵ
H−1/2

∫ t
0
βϵ(r)dre−ϵ

−1tψ0(0)−
∫ t

0

eϵ
H−1/2

∫ t
s
βϵ(r)dre−ϵ

−1(t−s)dψ0(s)

−
∫ t

0

eϵ
H−1/2

∫ t
s
βϵ(r)dre−ϵ

−1(t−s)ϵ−1ψ0(s)ds

=: Iϵ(t) + IIϵ(t) + IIIϵ(t).

We already have from the previous case H = −1/2 that, as ϵ → 0, both integrals
∫ T
0
Iϵ(t)dt,

∫ T
0
IIϵ(t)dt

converge to 0, all that remains to show consequently is that
∫ T
0
IIIϵ(t)dt converges to 0 too.

• A finer upper bound on ℜβϵ is required to deal with this third term. We already know from Theorem
2.4 that ℜψϵ ≤ 0, and by definition of ψ0, we get the following bound

ℜβϵ =
ξ2

2
(ℜψϵ + ℜψ0) ≤

ξ2

2
ℜψ0 ≤ 0.

Set
E := {s ∈ [0, T ], (f(s), g(s)) ̸= (0, 0)} ,

and from (3.8), we know that ψ0 = 0 on [0, T ]\E while lemma A.2 yields ℜψ0 ̸= 0 on E so that we
can bound IIIϵ as follows

|IIIϵ(t)| ≤
∫
[0,t]∩E

ϵ−1|ψ0(s)|eϵ
H−1/2

∫ t
s
ℜβϵ(r)dre−ϵ

−1(t−s)ds

≤
∫
[0,t]∩E

ϵ−1 |ψ0(s)|
−ϵH−1/2 ξ

2

2 ℜψ0(s)

(
−ϵH−1/2 ξ

2

2
ℜψ0(s)e

∫ t
s
ϵH−1/2 ξ2

2 ℜψ0(r)dr

)
ds

≤
∫
[0,t]∩E

ϵ−H−1/22ξ−2 |ψ0|
−ℜψ0

(
−ϵH−1/2 ξ

2

2
ℜψ0(s)e

∫ t
s
ϵH−1/2 ξ2

2 ℜψ0(r)dr

)
ds,

24



and an application of lemma A.2 yields the existence of a finite positive constant C > 0 such that

|ψ0|
−ℜψ0

≤ C, ∀s ∈ E,

so that

|IIIϵ(t)| ≤ Cϵ−H−1/2

∫
[0,t]∩E

(
−ϵH−1/2 ξ

2

2
ℜψ0(s)e

∫ t
s
ϵH−1/2 ξ2

2 ℜψ0(r)dr

)
ds

≤ Cϵ−H−1/2

(
1− e

∫ t
0
ϵH−1/2 ξ2

2 ℜψ0(r)dr

)
−→
ϵ→0

0,

since −H − 1/2 > 0 so that ϵ−H−1/2 → 0 as ϵ → 0. Thus IIIϵ is dominated by a finite constant C
independent of ϵ (which is integrable on [0, T ]) and Lebesgue’s dominated convergence theorem yields

that
∫ T
0
IIIϵ(t)dt converges to 0.

Consequently, we obtained ∫ T

0

ψϵ(t)dt−→
ϵ→0

∫ T

0

ψ0(t)dt,

which then yields

ϵ−H−1/2

∫ T

0

ψϵ(t)dt−→
ϵ→0

0,

and finally we get

ϕϵ(T )−→
ϵ→0

θ

∫ T

0

ψ0(s)ds.

3.2 Convergence of the finite-dimensional distributions towards NIG-IG

In this section, we prove the second part of Theorem 3.4, that is the convergence of the finite-dimensional

distributions of
(
log Sϵ

S0
, V̄ ϵ

)
towards those of a NIG-IG process (X,Y ) in the sense of Definition 3.1 with

parameters (α, β, µ, δ, λ) as in (3.11) depending on the regime of H. Let d ∈ N∗ and take 0 =: t0 < t1 <

· · · < td ≤ T to be d distinct times of the time interval [0, T ] and (uk, vk)k∈{1,...,d} ∈
(
R2
)d
. We will prove

that

E

[
exp

(
i

d∑
k=1

uk log
Sϵtk
S0

+ i
d∑
k=1

vkV̄
ϵ
tk

)]
−→
ϵ→0

E

[
exp

(
i
d∑
k=1

ukXtk + i
d∑
k=1

vkYtk

)]
. (3.17)

First, we recover the finite-dimensional distributions of
(
log

Sϵ
T

S0
, V̄ ϵT

)
from (3.9) by setting the bounded and

measurable functions f and g to be equal to

f(s) := i

d∑
k=1

1[tk−1,tk)(T − s)

d∑
k=j

uj and g(s) := i

d∑
k=1

1[tk−1,tk)(T − s)

d∑
k=j

vj .

Notice indeed that

i

d∑
k=1

uk log
Sϵtk
S0

+ i

d∑
k=1

vkV̄
ϵ
tk

= i

d∑
k=1

(
log

Sϵtk
S0

− log
Sϵtk−1

S0

) d∑
j=k

uj + i

d∑
k=1

(
V̄ ϵtk − V̄ ϵtk−1

) d∑
j=k

vj

=

∫ T

0

f(T − s)d logSϵs +

∫ T

0

g(T − s)dV̄ ϵs ,
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and that the corresponding ψ0 defined in (3.7) has bounded variations (being piece-wise constant for this
choice of f and g), so that an application of the convergence of the characteristic functional in (3.9) yields

E

[
exp

(
i

d∑
k=1

uk log
Sϵtk
S0

+ i

d∑
k=1

vkV̄
ϵ
tk

)]
−→ exp (ϕ0(T )) ,

with

ϕ0(T ) =


V0
∑d
k=1(tk − tk−1)(iv̄k − ū2

k+iūk

2 ), if H > −1/2,

(θ + V0) ξ
−2
∑d
k=1(tk − tk−1)

(
1− ρξiūk +

√
(1− ρξiūk)

2 − 2ξ2(iv̄k −
ū2
k+iūk

2 )

)
, if H = −1/2,

−θξ−1
∑d
k=1(tk − tk−1)

(
ρiūk +

√
−ρ2ū2k − 2(iv̄k −

ū2
k+iūk

2 )

)
, if H < −1/2,

where we defined ūk :=
∑d
j=k uj , v̄k :=

∑d
j=k vj .

Second, we identify such ϕ0(T ) with the corresponding finite-dimensional distributions of the NIG-IG process
(X,Y ) with parameters (α, β, µ, δ, λ) as in (3.11) depending on the regime of H. We denote by η its Lévy
exponent, recall (3.1), and we write

E

[
exp

(
i

d∑
k=1

ukXtk + i

d∑
k=1

vkYtk

)]
= E

exp
i d∑

k=1

(
Xtk −Xtk−1

) d∑
j=k

uj + i

d∑
k=1

(
Ytk − Ytk−1

) d∑
j=k

vj


=

d∏
k=1

E

exp
(Xtk −Xtk−1

)
i

d∑
j=k

uj +
(
Ytk − Ytk−1

)
i

d∑
j=k

vj


=

d∏
k=1

E

exp
Xtk−tk−1

i

d∑
j=k

uj + Ytk−tk−1
i

d∑
j=k

vj


= exp

(
d∑
k=1

(tk − tk−1) η (ūk, v̄k)

)

using respectively telescopic summation, the independence of increments, the fact that (Xt2 , Yt2)−(Xt1 , Yt1)
law
=

(Xt2−t1 , Yt2−t1) and the definition of the characteristic function of
(
Xtk−tk−1

, Ytk−tk−1

)
for all k ∈ 1, . . . , d

to get the successive equalities. Using the parameters (α, β, µ, δ, λ) as in (3.11) it is immediate to see that

d∑
k=1

(tk − tk−1) η (ūk, v̄k) = ϕ0(T ),

hence the desired convergence (3.17).

3.3 Weak-convergence of the integrated variance process for the M1 topology

In this section, we prove the weak convergence stated in Theorem 3.4 of the integrated variance process V̄ ϵ

with sample paths in C ([0, T ],R+) to the Lévy process V̄ 0 whose Lévy exponent is given by v 7→ η(0, v)
with η defined in (3.1) and with sample paths in the real-valued càdlàg functional space D endowed with
Skorokhod’s Strong M1 (SM1) topology. There will be two subsections: first, in Section 3.3.1 we recall
briefly the definition of the Strong M1 (SM1) topology as well as some associated convergence results, and
then we prove the tightness of the integrated variance in Section 3.3.2.
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3.3.1 Reminder on the SM1 topology and conditions for convergence

We recall succinctly key definitions and convergence theorems for the strong M1 topology, denoted SM1.
We refer the reader to the key reference book Whitt [45, Chapter 12] for more details. For x ∈ D, we define
the thin graph of x as

Γx :=
{
(z, t) ∈ R × [0, T ] : z ∈

[
x(t−), x(t)

]}
,

where, for t ∈ [0, T ], [x(t−), x(t)] denotes the standard segment {αx(t−) + (1− α)x(t), 0 ≤ α ≤ 1}, which is
different from a singleton at discontinuity points of the càdlàg sample trajectory x. We denote Disc(x) the
set of such instants. Define on Γx the strong order relation as follows: (z1, t1) ≤ (z2, t2) if either t1 < t2
or t1 = t2 and

∣∣x(t−1 )− z1
∣∣ ≤ ∣∣x(t−1 )− z2

∣∣. Furthermore define a strong parametric representations of x
as a continuous non-decreasing (with respect to the previous order relation) function (x̂, r̂) mapping [0, 1]
into Γx such that (x̂(0), r̂(0)) = (x(0), 0) and (x̂(T ), r̂(T )) = (x(T ), T ). We say the component r̂ scales the
time interval [0, T ] to [0, 1] while x̂ time-scales x, and we denote by Πs(x) the set of all strong parametric
representations of x. Finally, the SM1 topology is the one induced by the metric ds defined as

ds (x1, x2) := inf
(x̂i,r̂i)∈Πs(xj),j=1,2

{∣∣x̂1 − x̂2
∣∣ ∨ ∣∣r̂1 − r̂2

∣∣} .
Below we mention briefly five theorems in a row that eventually yields criteria to prove the desired conver-
gence.

Theorem 3.9. D endowed with the SM1 topology is Polish, i.e. metrizable as a complete separable metric
space.

Theorem 3.10 (Prohorov’s theorem). Let (S,m) be a metric space. If a subset A in P(S) is tight, then
it’s relatively compact. On the other hand, if the subset A is relatively compact and the topological space is
Polish, then A is tight.

The first two theorems ensure that, since (D,SM1) is Polish, proving relative compactness of any family
of probability measures on such space is sufficient to ensure the existence of a convergent sub-sequence.
Finally the convergence of finite-dimensional laws allows to uniquely determine its limit as formulated in the
following theorem.

Theorem 3.11 (Criteria for convergence in distribution in (D,SM1)). Let ((Xn)n∈N, X) be random func-
tions defined on a common filtered probability space (Ω, (Ft)t ,P). Then, Xn ⇒ X in D for the SM1 topology
if the following conditions hold:

• (Xn)n∈N is tight with regards to the SM1 topology.

• The finite dimensional distributions of (Xn) converge to those of X on TX , where:

TX := {t > 0,P (t ∈ Disc(X)) = 0} ∪ {T}.

To conclude this section, we recall a characterization of tightness for a sequence of probability measures.

Theorem 3.12 (Characterization of tightness). The sequence of probability measures {Pn}n≥1 on (D,SM1)
is tight if and only if:

(i) ∀ε̄ > 0,∃c <∞,∀n ≥ 1,Pn ({x ∈ D : ||x||> c}) < ε̄

(ii) ∀ε̄ > 0,∀η > 0,∃δ > 0,∀n ≥ 1,Pn ({x ∈ D : w′(x, δ) ≥ η}) < ε̄

Where we defined for x ∈ D, t ∈ [0, T ] and δ > 0:

||x|| := sup
t∈[0,T ]

|xt|,

w′(x, δ) := w(x, δ) ∨ v̄(x, 0, δ) ∨ v̄(x, T, δ),
w(x, δ) := sup

t∈[0,T ]

wS(x, t, δ),

wS(x, t, δ) := sup
0∨t−δ≤t1<t2<t3≤(t+δ)∧T

|x(t2)− [x(t1), x(t3)]| ,

v̄(x, t, δ) := sup
0∨t−δ≤t1≤t2≤(t+δ)∧T

|x(t1)− x(t2)| .
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3.3.2 Convergence of the integrated variance process

We already proved in Section 3.2 the convergence of finite dimensional distributions as ϵ goes to zero of
V̄ ϵ toward those of either the deterministic linear, or the Inverse Gaussian, or the Lévy process denoted
Y depending respectively on the value of the parameter H with Lévy exponent η(0, ·) from (3.1) with the
respective parameters given in Theorem 3.4. Consequently, all that remains to prove is the tightness of the
family of processes

(
V̄ ϵ
)
ϵ>0

for the SM1 topology to get the desired convergence result as a direct conse-
quence of Theorem 3.11. We will apply the characterization Theorem 3.12 of tightness in SM1 to conclude,
and more precisely, we will see that the criteria of tightness within the SM1 topology simplifies greatly for
almost surely non-decreasing and continuous stochastic processes in general.

Fix ε̄ > 0. Since, for all ϵ > 0, V̄ ϵ is almost surely non-decreasing and non-negative, we have that, for all
ω ∈ Ω

||V̄ ϵ(ω)|| = V̄ ϵT (ω),

w′(V̄ ϵ(ω), δ) = 0 ∨ V̄ ϵδ (ω) ∨
(
V̄ ϵT (ω)− V̄ ϵT−δ(ω)

)
, δ > 0.

This yields that, for a threshold c > 0 big enough, the probability in condition (i) on the measures Pϵ :=
P(V̄ ϵ

. )
−1 reduces to

Pϵ ({x ∈ D, ||x||> c}) = P
({
ω : ||V̄ ϵ. (ω)||> c

})
= P

(
V̄ ϵT > c

)
≤ sup

ϵ>0
P
(
V̄ ϵT > c

)
< ε̄,

where the last inequality is satisfied by tightness of the family
(
V̄ ϵT
)
ϵ>0

of random variables in R which

is obtained as a direct consequence of Lévy’s continuity theorem, recall that
(
V̄ ϵT
)
ϵ>0

has been shown to

converge in Section 3.1. This yields (i). In addition, regarding the second condition (ii), set an arbitrary
η > 0, and take δ small enough such that

Pϵ ({x ∈ D : w′(x, δ) ≥ η}) = P
(
0 ∨

∣∣V̄ ϵδ ∣∣ ∨ ∣∣V̄ ϵT − V̄ ϵT−δ
∣∣ ≥ η

)
≤ sup

ϵ>0
P
(
0 ∨

∣∣V̄ ϵδ ∣∣ ∨ ∣∣V̄ ϵT − V̄ ϵT−δ
∣∣ ≥ η

)
< ε̄,

where the last but one inequality holds by tightness of the family
(
V̄ ϵδ , V̄

ϵ
T−δ

)
ϵ>0

while the last one is justified

by stochastic continuity of V̄ ϵ for any ϵ > 0 and of its limit Y .

Remark 3.13. Since logSϵ = − 1
2 V̄

ϵ+ρWV̄ ϵ +
√
1− ρ2W⊥

V̄ ϵ , and composition is not continuous in (D,M1)
(see [38, Section 3.5]), we cannot expect the tightness of the log price within SM1.

A Some lemmas

Lemma A.1. (Uniqueness of the complex root with a non-positive real part) Take ξ > 0. For all f , g
bounded and measurable with ℜf = ℜg = 0, t ∈ [0, T ] and ρ ∈ [−1, 1], both polynomials

P (X) :=
ξ2

2
X2 − (1− ρξf(t))X + g(t) +

f2(t)− f(t)

2

Q(X) :=
ξ2

2
X2 + ρξf(t)X + g(t) +

f2(t)− f(t)

2

admit exactly two roots with respective real parts of strict opposite signs if (f(t), g(t)) ̸= (0, 0), and if
(f(t), g(t)) = (0, 0), then the polynomial P has roots 0 and 2

ξ2 , while Q has 0 as a double root.

Proof. Let us detail the proof for P , similar arguments will apply to Q. By d’Alembert-Gauss theorem, the
polynomial P admits exactly two roots expressed as:{

ξ−2

(
1− ρξf(t)±

√
(1− ρξf(t))

2 − 2ξ2
(
g(t) +

f2(t)− f(t)

2

))}
,
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where we take the principal square root in the expression above, i.e.with non-negative real-part. Conse-
quently, the roots have real parts{

ξ−2

(
1±ℜ

(√
(1− ρξf(t))

2 − 2ξ2
(
g(t) +

f2(t)− f(t)

2

)))}
,

so that it remains to show

∣∣∣∣ℜ(√(1− ρξf(t))
2 − 2ξ2

(
g(t) + f2(t)−f(t)

2

))∣∣∣∣ > 1.

Denote δ = a+ ib, a, b ∈ R such that δ2 = (1− ρξf(t))
2 − 2ξ2

(
g(t) + f2(t)−f(t)

2

)
, then it follows that a and

b satisfy {
a2 − b2 = 1 +

(
1− ρ2

)
(ξℑf(t))2 ,

ab = −
(
ρξℑf(t) + ξ2

(
ℑg(t)− ℑf(t)

2

))
.

(A.1)

If ρ ̸= ±1, then the result is immediate from the first inequality in (A.1), while if ρ = ±1, then |a|=
√
1 + b2

and b cannot be zero, otherwise δ2 = a2 = 1− 2i
(
ρξℑf(t) + ξ2

(
ℑg(t)− ℑf(t)

2

))
which cannot be the case,

since a ∈ R and (ℑf(t),ℑg(t)) ̸= (0, 0).

Lemma A.2. Let f and g be bounded measurable functions such that ℜf = ℜg = 0. Then there exists a
finite positive constant C such that the ratio

γ(s) :=
|ψ0(s)|
−ℜψ0(s)

≤ C, ∀s ∈ E,

where the set E is given by
E := {s ∈ [0, T ], (f(s), g(s)) ̸= (0, 0)} ,

and ψ0 is given in (3.8) in the case H < −1/2.

Proof. We start by explicitly computing the real and imaginary parts of ψ0 in the case H < −1/2, whose
expression is given anew by

ψ0(s) = −ξ−1
(
ρf(s) +

√
f(s) (1− (1− ρ2) f(s))− 2g(s)

)
, s ∈ [0, T ].

Set the real functions a and b such that, for any s ∈ [0, T ]

a(s) + ib(s) =
√
f(s) (1− (1− ρ2) f(s))− 2g(s),

square the above equality, identify the real and imaginary parts, find a unambiguously on E (which imposes
a ̸= 0) as a root to a fourth-degree polynomial knowing the square roots in (3.7) are principal (i.e. with
positive real parts), then deduce the associated b, such that

a =

√
1

2

(
(1− ρ2) (ℑf)2 +

√
(1− ρ2)

2
(ℑf)4 + (ℑf − 2ℑg)2

)
,

b =
1
2ℑf −ℑg

a
.

Consequently, we get explicitly on E
ψ0 = ℜψ0 + iℑψ0,

with

ℜψ0 = −ξ−1a,

ℑψ0 = −ξ−1

(
ρℑf +

1
2ℑf −ℑg

a

)
.
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Rewrite γ as

γ =
√

1 + γ̃2, γ̃ :=
ℑψ0

ℜψ0
,

and we can readily discard the case ρ = 0 and ℑf − 2ℑg = 0, since ℑψ0 = 0 in that case and the ratio
simplifies into 1 which yields the result. Assume from now on that ρ ̸= 0 or ℑf − 2ℑg ̸= 0. We can write

γ̃ = A (ℑf,ℑg) +B (ℑf,ℑg) ,

with

A (ℑf,ℑg) := ρℑf√
1
2

(
(1− ρ2) (ℑf)2 +

√
(1− ρ2)

2
(ℑf)4 + (ℑf − 2ℑg)2

) ,

B (ℑf,ℑg) :=
1
2ℑf −ℑg

1
2

(
(1− ρ2) (ℑf)2 +

√
(1− ρ2)

2
(ℑf)4 + (ℑf − 2ℑg)2

) ,
so that there are three remaining cases for which it is sufficient to show that both A (ℑf,ℑg) and B (ℑf,ℑg)
are bounded to conclude the proof.

• Case ρ ̸= 0 and ℑf − 2ℑg = 0, then

A (ℑf,ℑg) = ρ√
1− ρ2

,

B (ℑf,ℑg) = 0,

are both bounded, recall ρ ∈ (−1, 1).

• Case ρ = 0 and ℑf − 2ℑg ̸= 0, then

A (ℑf,ℑg) = 0,

B (ℑf,ℑg) =
1
2ℑf −ℑg

1
2

(
(ℑf)2 +

√
(ℑf)4 + (ℑf − 2ℑg)2

) ,
and B (ℑf,ℑg) is bounded since (x, y) 7→ B (x, y) is continuous on any compact set of R2\{(0, 0)}
(recall both ℑf and ℑg are bounded) and has a finite limit at (0, 0), valued 1, indeed

B (x, y) =
1

(1− ρ2) x2

x−2y +
√
(1− ρ2)

2 x4

(x−2y)2
+ 1

−→
(x,y)→(0,0)

x−2y ̸=0

1.

• Case ρ ̸= 0 and ℑf − 2ℑg ̸= 0, then

A (ℑf,ℑg) = ρℑf√
1
2

(
(1− ρ2) (ℑf)2 +

√
(1− ρ2)

2
(ℑf)4 + (ℑf − 2ℑg)2

) ,

B (ℑf,ℑg) =
1
2ℑf −ℑg

1
2

(
(1− ρ2) (ℑf)2 +

√
(1− ρ2)

2
(ℑf)4 + (ℑf − 2ℑg)2

) ,
are both bounded by continuity of (x, y) 7→ A (x, y) and (x, y) 7→ B (x, y) on any compact set of
R2\{(0, 0)} (recall both ℑf and ℑg are bounded) and both functions have a finite limit at (0, 0),
valued 0 and 1 respectively, obtained with similar arguments as in the previous case.
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Definition A.3. (Inverse Gaussian, Lévy and NIG-IG distributions)

• We say X follows a Normal Inverse distribution, denoted X ↪→ IG (µ, λ) if its probability density writes

f(x) =

√
λ

2πx3
exp

(
−λ (x− µ)

2

2µ2x

)
,

where µ ∈ R, λ > 0, or equivalently if the following equality holds true

E [exp (wX)] = exp

(
λ

µ

(
1−

√
1− 2µ2w

λ

))
, w ∈ C, ℜw ≤ 0.

• We say τ follows a Lévy distribution, denoted τ ↪→ Lévy (µ, c), if its probability density writes√
c

2π

e−
c

2(x−µ)

(x− µ)
3/2

,

where µ ∈ R, c > 0, or equivalently if the following equality holds true

E [exp (wτ)] = exp
(
µw −

√
−2cw

)
, w ∈ C, ℜw ≤ 0.

• We say (X,Y ) follows a Normal Inverse Gaussian - Inverse Gaussian distribution, denoted (X,Y ) ↪→
NIG-IG (α, β, µ, δ, λ), if its characteristic function writes

E [exp (iuX + ivY )] = exp

[
iµu+ δ

(√
α2 − β2 −

√
α2 − 2iλv − (β + iu)

2

)]
, u, v ∈ R,
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B Additional plots
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Figure 6: Smiles comparison between target rough Heston with parameters (1.10), with H = 0, and rever-
sionary Heston with calibrated parameters from the second row of Table (1.3) for different maturities from
one week to one year.
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Figure 7: Smiles comparison between target rough Heston with parameters (1.10), with H = −0.05, and
reversionary Heston with calibrated parameters from the third row of Table (1.3) for different maturities
from one week to one year.
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