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Abstract

We reconcile rough volatility models and jump models using a class of reversionary Heston models with
fast mean reversions and large vol-of-vols. Starting from hyper-rough Heston models with a Hurst index
H € (—1/2,1/2), we derive a Markovian approximating class of one dimensional reversionary Heston-
type models. Such proxies encode a trade-off between an exploding vol-of-vol and a fast mean-reversion
speed controlled by a reversionary time-scale ¢ > 0 and an unconstrained parameter H € R. Sending €
to 0 yields convergence of the reversionary Heston model towards different explicit asymptotic regimes
based on the value of the parameter H. In particular, for H < —1/2, the reversionary Heston model
converges to a class of Lévy jump processes of Normal Inverse Gaussian type. Numerical illustrations
show that the reversionary Heston model is capable of generating at-the-money skews similar to the ones
generated by rough, hyper-rough and jump models.
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Introduction

Since the 1987 financial crash, financial option markets have exhibited a notable implied volatility skew, es-
pecially for short-term maturities. This skew reflects the market’s expectation of significant price movements
on very short time scales in the underlying asset, which poses a challenge to traditional continuous models
based on standard Brownian motion. To address this issue, the literature has developed several classes of
models that capture the skewness in implied volatilities. Three prominent approaches are:

e conventional one-factor stochastic volatility models boosted with large mean-reversion and vol-of-vol.
This class of models have been justified by several empirical studies that have identified the presence
of very fast mean-reversion in the S&P volatility time series [10, 16, 26, 27] and by the fact that they
are able to correct conventional models to reproduce the behavior of the at-the-money (ATM) skew
for short maturities [38];

e jump diffusion models, especially the class of affine jump-diffusions for which valuation problems be-
come (semi-)explicit using Fourier inversion techniques, see [19]. Such class of models incorporates
occasional and large jumps to explain the skew observed implicitly on option markets, see [18], and
[12] for an empirical analysis of the impact of adding jumps to stochastic volatility diffusion on the
implied volatility surface;

e rough volatility models, where the volatility process is driven by variants of the Riemann-Liouville
fractional Brownian motion

1 ¢ -
WtH = ) /O (t - S)H 1/2 dWSa t Z Oa (01)

I'(H+1/2
with W a standard Brownian motion and H € (0,1/2) the Hurst index. Such models are able to

reproduce the roughness of the spot variance’s trajectories measured empirically [31, 15] together with
the explosive behavior of the ATM-skew [11, 14, 20, 28, 3].

So far, in the mathematical finance community, jump diffusion models and rough volatility models have often
been treated as distinct approaches, and, in some cases, they have even been opposed to each other, see for
instance [14, Section 5.3.1]. However, on the one side, connections between rough volatility models and fast
mean-reverting factors have been established in [1, 4, 5]. On the other side, jump models have been related



to fast regimes stochastic volatility models in [38, 37]. In parallel, from the empirical point of view, it can
be very challenging for the human eye and for statistical estimators to distinguish between roughness, fast
mean-reversions and jump-like behavior, as shown in [5, 17, 29].

The above suggests that rough volatility and jump models may not be that different after all. Our main
motivation is to establish for the fist time in the literature a connection between rough volatility and jump
models through conventional volatility models with fast mean-reverting regimes.

We aim to reconcile these two classes of models through the use of the celebrated conventional Heston model
[33] but with a parametric specification which encodes a trade-off between a fast mean-reversion and a large
vol-of-vol. We define the reversionary Heston model as follows:

487 = SiV/VE (pdW + V1 — AW, S5= 50, (0.2)
AV = (eH—%e e (Ve - VO)) dt + =3¢\ /VEAW,, VS =V, (0.3)

where (VV7 Wl) is a two-dimensional Brownian motion, § > 0, Sy, &, Vy > 0, p € [—1,1]. The two crucial
parameters here are the reversionary time-scale € > 0 and H € R. Such parametrizations nest as special
cases the fast regimes extensively studied by Fouque et al. [26], Feng et al. [22], see also [25, Section 3.6],
which correspond to the case H = 0; and also the regimes studied in [38, 37] for the case H = —1/2. Letting
the parameter H € (00, 1/2] free in (0.3) introduces more flexibility in practice and leads to better fits with
stable calibrated parameters across time as recently shown in [7]. In theory, it allows for a better under-
standing of the impact of the scaling in H on the limiting behavior of the model as ¢ — 0 as highlighted in
this paper.

In a nutshell, we show that:

(i) for H > —1/2, the reversionary Heston model can be constructed as a proxy of rough and hyper-rough
Heston models where H € (—1/2,1/2] plays the role of the Hurst index,

(ii) for H < —1/2, as € — 0, the reversionary Heston model converges towards Lévy jump processes of
Normal Inverse Gaussian type with distinct regimes for H = —1/2 and H < —1/2 respectively,

(iii) the reversionary Heston model is capable of generating implied volatility surfaces and at-the-money
(ATM) skews similar to the ones generated by rough, hyper-rough and jump models, and comes
arbitrarily close to the ATM skew scaling as 79 for small 7 that characterizes the market, contrary
to widespread understanding.

Our results allow for a reconciliation between rough and jump models as they suggest that jump models and
(hyper-)rough volatility models are complementary, and do not overlap. For H > —1/2, the reversionary
Heston model can be interpreted as a proxy of rough and hyper-rough volatility models, while for H < —1/2,
it can be interpreted as a proxy of jump models. Jump models actually start at H = —1/2 (and below), the
first value for which hyper-rough volatility models can no-longer be defined.

More precisely, our argument is structured as follows. First, in Section 1, we show how the reversionary
Heston model (0.2)-(0.3) can be obtained as a Markovian and semimartingale proxy of rough and hyper-
rough Heston models [20, 35] with Hurst index H € (—1/2,1/2). This is achieved using the resolvent of the
first kind of the shifted fractional kernel.

Second, in Section 2, we derive the joint conditional characteristic functional of the log-price log S¢ and
the integrated variance V¢ := fo Veds in the model (0.2)—(0.3) in terms of a solution to a system of time-
dependent Riccati ordinary differential equations; see Theorem 2.1. Compared to the literature, we provide
a novel and concise proof for the existence and uniqueness of a global solution to such Riccati equations
using the variation of constant formulas.

Finally, in Section 3, we establish the convergence of the log-price and the integrated variance (log S¢,V¢) in
the reversionary Heston model (0.2)-(0.3) towards a Lévy jump process (X,Y), as € goes to 0. More precisely,



we show that the limit (X,Y") belongs to the class of Normal Inverse Gaussian - Inverse Gaussian (NIG-IG)
processes which we construct from its Lévy exponent and we connect such class to first hitting-time represen-
tations in the same spirit of Barndorff-Nielsen [13]. Our main Theorem 3.4 provides the convergence of the
finite-dimensional distributions of the joint process (log S€,V¢) through the study of the limiting behavior
of the Riccati equations and hence the characteristic functional given in Theorem 2.1. Interestingly, the
limiting behavior disentangles three different asymptotic regimes based on the values of H. The convergence
of the integrated variance process is even strengthened to a functional weak convergence on the Skorokhod
space of cadlag paths on [0, T] endowed with the M; topology. We stress that the usual J; topology is not
useful here, since jump processes cannot be obtained as limits of continuous processes in the J; topology.

Related Literature. Convergence of the reversionary Heston models towards jump processes: our results
clarify and extend the results of [38, 37], derived for the case H = —1/2, that establish and make clear the
precise limiting connection between the Heston log-price process and the normal inverse-Gaussian (NIG)
process of [13]. Connections between the long time behavior of the Heston log-price process and NIG distri-
bution were first exposed in [24, 36] and were the main motivations behind the work of Mechkov [38].
Relevance of fast regimes in practice: the pricing of options near maturity is challenging because of the very
steep slope of smiles observed on the market and Fouque et al. [26] showed that stochastic volatility should
embed both a fast regime Ornstein-Uhlenbeck factor (see Remark 1.3 below) from which approximations of
option prices can be derived using a singular perturbation expansion, and a slowly varying factor to be able
to match options with long maturities. On the other hand, Feng et al. [22] considers a Heston model with
a fast mean-reverting volatility and uses large deviation theory techniques to derive an approximation price
for out-of-the-money vanilla options when the maturity is small, but large compared to the characteristic
time-scale of the stochastic volatility factor. More recently an Ornstein-Uhlenbeck process with the same
parametrization as in (0.3) has been used to construct the Quintic stochastic volatility model [8] to achieve
remarkable joint fits of SPX and VIX implied volatilities, outperforming its rough and path-dependent coun-
terparts as shown empirically in [7].

p
loc

Notations. For p > 1, we denote by L

fOT\f(s)|pds < o0, for all T'> 0. We will denote by y/x the principal square root of x € C, i.e. its argument
lies within (—m/2,7/2].

the space of measurable functions f : Ry — R such that

1 From rough Heston to reversionary Heston

In this section, we show how reversionary Heston models (0.2)-(0.3) can be seen as proxies of rough and
hyper-rough Heston models whenever H > —1/2.

1.1 Rough and hyper-rough Heston

Let (W, WJ-) be a two-dimensional Brownian motion and set B := pW + /1 — p2W+ with p € [-1,1]. We
take as starting point a stochastic volatility model for an underlying asset P in terms of a time-changed
Brownian motion:

dP; = P,dBy,, Py >0, (1.1)

for some non-decreasing continuous process U.IfU, = fg Usds, then U would correspond to the spot variance
and U plays the role of the integrated variance. The hyper-rough Volterra Heston model introduced in [35]
and studied further in [2, Section 7] assumes that the dynamics of the integrated variance is of the form
~ - t
Ug=Go(t) +& | Ku(t—s)Wg. ds, (1.2)
0

for a suitable continuous function G, and & > 0, and K is the fractional kernel

Kuyt)=t1=12 ¢>0, (1.3)



for H € (—=1/2,1/2]. The lower bound H > —1/2 ensures the L} . integrability of the kernel K so that the
stochastic convolution appearing in (1.2) is well-defined.

Any kernel K only in L}, can be considered for the specification of the integrated variance in (1.2), and if
furthermore the kernel happens to be in leoc, the following lemma ensures the existence of a spot variance
process.

Lemma 1.1 (Existence of spot variance). Let K € L}

adapted process U and a Brownian motion W such that

and go € L},.. Assume there exists a non-decreasing

U, 2/0 go(s)ds—i—/o K(t —s)Wg, ds, (1.4)

with sup,<p B HUtH < 00, for all T > 0. Then, U, = fot Usds, where U is a non-negative weak solution to
the following stochastic Volterra equation

t
Ue=golt) + [ K(t=s)V/TaW., Qudt - ac (1.5)
0

Conversely, assume there exists a non-negative weak solution U to the stochastic Volterra equation (1.5) such
that sup, ¢ E [UZ] < oo, for all T > 0, then U solves (1.4).

Proof. This is obtained by an application of stochastic Fubini’s theorem, see [2, Lemma 2.1]. O

Going back to the fractional case, if we restrict H in (0,1/2], then we have Ky € L2 .. For Go(t) :=

fot go(s)ds, a direct application of Lemma 1.1 yields that the model (1.1)-(1.2) is equivalent to the rough
Heston model of El Euch and Rosenbaum [20] written in spot-variance form

dP; = P;\/UdBy,

t
Uy = golt) + / Kt — $)6/UndW,,
0

for some initial input curve go : R+ — R ensuring the non-negativity of V. Two notable specifications of
such admissible input curves are given by [4, Example 2.2] and read

go continuous and non-decreasing with gg > 0,
or

go(t) = U + Qf(f Ky (s)ds, for some Uy, 6 > 0.

Moreover, for H € (0,1/2] the sample paths of the spot variance U are locally Hélder continuous of any
order strictly less than H, and consequently rougher than those of the standard Brownian motion, which
corresponds to the case H = 1/2, justifying the denomination ‘rough model’. The hyper-rough appellation
corresponds to the case H € (—1/2,0] for which the process U is continuous but no longer absolutely con-
tinuous. Indeed, in this case, one can show that the trajectories of U are nowhere differentiable, see [35,
Proposition 4.6].

A key advantage of rough and hyper-rough Heston models is the semi-explicit knowledge of the characteristic
function of the log-price modulo a deterministic Riccati Volterra convolution equation, as they belong the
class of Affine Volterra processes [6, 2]. More precisely, for any u = (uy,us) € C? satisfying

%(ul) = O7 %(’UQ) < 0,

the joint Fourier-Laplace transform of (log P, U) is given by

T
E [exp (uy log Pr + usUr)] = exp <u1 log Py +/0 R(yu(T — 5))dG0(s)> ,



for all T' > 0, where vy is the continuous solution to the following fractional Riccati—Volterra equation

t
= / Ky(t—s)R(Yu(s))ds, t>0,

0
1,5 V2 9
§(u1 —u1) + ug + prujz + 5 (1.6)
see [2, Section 7]. This allows fast pricing and calibration via Fourier inversion techniques. Compared to the
conventional Heston model where the characteristic function is known explicitly, the solution to the Riccati
Volterra equation is not explicitly known.

R(z) =

1.2 Deriving reversionary Heston as a proxy: e-shifting the singularity

In both regimes, rough and hyper-rough, with the exception of H = 2, the model is non-Markovian, non-
semimartingale with singular kernels. From a practitioner standpoint, it is therefore natural to look for
Markovian approximations by suitable smoothing of the singularity of the fractional kernel (1.3) sitting at
the origin. In this section, we show how we can build a Markovian semi-martingale proxy of hyper-rough
models. This is achieved using a two-step procedure.

First step: recover semimartingality by smoothing out the singularity of the fractional kernel Kp.
We fix € > 0, and we consider the shifted fractional kernel

[N

Kut):=@t+e"2, t>0,

and the corresponding ‘integrated variance’ U¢ given by

t t
Us :/ gg(s)ds—i-f/ KH’E(t—s)ngds,
0 0
with .
g6(t) =Uo + 9/ Ky (s)ds.
0

Note that now Kp . is in L? _ for any value of H, so that an application of Lemma 1.1 yields that Ue= fo Usds
where the spot variance U€ solves the equation

AP = PJ/USdB,
t t
Uf = U +/ K o(t— s)0ds +/ Kot — 8)6/UcdW,.
0 0

Moreover, since Kp ¢ is continuously differentiable on [0, 77, denoting by Kj;  its derivative, we get that U*
is a semimartingale with the following dynamics

t

Ut = <KH,E(0)9 + | Kt - s)dzg) dt + K (0)6\/Us dWs, (1.7)

0
with

dZ = 0dt + £\/UEdW,.

Second step: recover a Markovian proxy thanks to the resolvent of the first kind. The only
non-Markovian term in (1.7) is the term fot Ky (t — s)dZg appearing in the drift. Using the resolvent of the
first kind of K . we will re-express this term in terms of a functional of the past of the process U¢. For a
kernel K, a resolvent of the first kind is a measure L on R of locally bounded variation such that

K(t—s)L(ds)=1, t>0,
[0,¢]

see [32, Deﬁnition 5.5. 1] A resolvent of the ﬁl“bt kind does not always exist. We will make use of the
notations ( fo f(t—s)g(s)ds and ( f[Ot YL(ds).



Lemma 1.2. Fize >0 and H € (—1/2,1/2). The kernel Ky admits a resolvent of the first kind L. of the

form
do(dt)
Le(dt) = + £ (t)dt, 1.8
(dt) Kn(0) (t) (1.8)
with ¢c a locally integrable function. Moreover, the function (K}j[6 « L) is continuously differentiable and it
holds, for allt > 0, that

t 1 t
/ K}Lg(t —8)dZS = — (2 — H) e (UF — Up) —l—/ (K}{,e % Le)/ (t —s) (US — Uy) ds. (1.9)
0 0

Proof. First, the existence of the resolvent is justified as follows. Given H € (—%, %), Ky is a positive
completely monotone kernel' on [0, T] so that an application of [32, Theorem 5.5.4] yields the existence of a
resolvent of the first kind in the form (1.8) with ¢, a completely monotone function. Convolving (1.8) with

K}y . one obtains that
Ky,(0)
- Ky (0)

Since K e is twice continuously differentiable on [0, 7] and £, is integrable, it follows that (K7  * £c) is
continuously differentiable and so is (K7 * Le). Writing

(K, * Le)(1) + (K e+ L) (1)

(KjexLe) = (Kjpo% Le) (0) + 1% (K} % L),

convolving on the left hand side by by Ky . combined with the associativity of the convolution operation
and the fact that (L. * Kp ) =1 yields:

Ky ox1=Kp +(Lex Kp) = (K * L) * Kpe = (Ko % Le) (0)(1% Kpre) + 1% (Kpy % L) * K.
And thus, we obtain almost everywhere with regards to the Lebesgue measure that:
Kye=(Kyex L) (0Kpe+ (Kpy % L) % K e

In addition, using (1.8), we notice that

K/
(1) 0) = sl = (1= 1)

Combining the above, we obtain that

t 1 t
/ K}{,e(t_s)dzg = (H_ 2) 6_1/ KH,S(t_S)dZ§+ ((K/PA’,&*LG)/*(KH,ﬁ*dZtE))t7
0 0
which yields (1.9), after recalling that U¢ — Uy = [, Kpg,e(- — s)dZ¢. O

With the help of the resolvent of the first kind, we were able to recover in the first term of (1.9), the first
order mean-reversion scale of the fractional kernel, the second term depends on the whole past trajectory of
Ue.

We can now derive our Markovian proxy of the hyper-rough Heston model as follows: plugging the ex-
pression (1.9) in the drift of (1.7), recalling that Ky .(0) = ¢~'/2 and dropping the non-Markovian term

((K}{ kL)) = (U — Ug)) , we arrive to the Markovian process:
: _ .

~ 1 1 - i — -
vy = (EH_W - (2 B H) (v - Uo))) dt + " =Ee\JVeEdWy, Vo = Up.
1

Finally, re-scaling the mean-reversion speed from (5 - H ) e~ ! to e ! leads to our reversionary Heston model

(0.2)—(0.3) where the parameter H becomes unconstrained. In the following section, we illustrate numerically
the fact that such reversionary Heston model can be seen as a proxy of rough and hyper-rough Heston models.

IRecall that a function f is completely monotone if it is infinitely differentiable on (0, 00) such that (—1)"f("> > 0, for all
n > 0.



Remark 1.3. Such proxy approzimation can directly be applied to the Riemann-Liouville fractional Brownian
motion defined in (0.1) to get the prozy:

t
Oy
0

which is a mean-reverting Ornstein- Uhlenbeck process as long as H < %, while the value H = % yields back
the standard Brownian motion.

First, such Ornstein-Uhlenbeck process has been recently used to construct the Quintic stochastic volatility
model [8] to achieve remarkable joint fits of SPX and VIX implied volatilies, outperforming even its rough
and path-dependent counterparts as shown empirically in [7].

Furthermore, notice that the case H = 0 degenerates into the fast scale volatility factor from Fouque et al.
[26], withm = 0, v = 1 and their time-scale is twice the reversionary time-scale €, and whose auto-correlation
under the invariant distribution is given by

S

E (W) we] = e
Consequently, the reversionary time-scale € sets the speed of decay of the auto-correlation function of W<,

1.3 Numerical illustration

We now illustrate numerically that the reversionary Heston model (0.2)-(0.3) is able to reproduce shapes
of implied volatility surfaces and at-the-money skew that are similar to the ones generated by rough and
hyper-rough Heston models.

For this, we first generate implied volatility surfaces of the hyper-rough and rough Heston model via the
Fourier-Cosine series expansion technique from [21], where we used the fractional Adams scheme described
in [20] on the fractional Riccati equation (1.6) to compute the characteristic function of the (hyper-)rough
Heston models. Three target smiles are generated with a (hyper-)rough Heston having parameters

p=-07, 0=0.02 ¢=03, Uy=D0.02, (1.10)

for H € {0.1,0, —0.05}.
For each of these smiles, we calibrate the parameters (€, H ) of the reversionary Heston model (0.2)-(0.3),

while fixing the other parameters equal to those of the hyper-rough Heston’s, by minimizing a weighted loss
eH 2
Z Wi, 5 (C“’“gh HEStO“«(Ev KJ) - Créuersionary Heston(cri? KJ)) .
0,J

The reversionary Heston prices are also obtained by Fourier-Cosine expansion of the characteristic function.
In contrast to the rough Heston models, the characteristic function is known explicitly, see Corollary 2.2
below. After calibration, we obtain the following parameters

Target (hyper-)rough Heston | Calibrated reversionary Heston
H é H
0.1 0.10183756 -0.29183935
0 0.06258637 -0.33057822
-0.05 0.05932449 -0.38692275

Table 1: Calibrated values of (&, H ) of the reversionary Heston model to the hyper-rough Heston volatility

surfaces. The other parameters are fixed as in (1.10).

The resulting At-The-Money (ATM) skews between 1 week and 1 year are shown on Figure 2. The implied
volatility surfaces for the case H = 0.1 is illustrated on Figure 1. The fit of the smiles for H = 0 and



H = —0.05 are deferred to Appendix B, see Figures 6 and 7. The graphs show that the reversionary Heston
model seems to be able to generate similar shapes of the implied volatility surfaces of rough and hyper-rough

models and very steep skews even in the hyper rough regimes H < 0.
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Figure 1: Smiles comparison between target rough Heston with parameters (1.10), with H = 0.1, and
reversionary Heston with calibrated parameters from the first row of Table (1.3) for different maturities from
one week to one year.



Rough Heston H=0.1 Rough Heston H=0 Rough Heston H= - 0.05

2254 O Target rough Heston (H =0.1) 3.04 O Target rough Heston (H = 0) O Target rough Heston (H= —0.05)
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Figure 2: Resulting ATM skew {\8koimphcit(k7T)| k:O}T comparison between target rough Heston with
parameters (1.10) and reversionary Heston with calibrated parameters given in Table (1.3) for different
maturities from one week to one year.

2 The joint characteristic functional of reversionary Heston

The following theorem provides the joint conditional characteristic functional of the log-price log 5S¢ and
the integrated variance V¢ := fo Veds in the model (0.2)—(0.3) in terms of a solution to a system of time-
dependent Riccati ordinary differential equations.

Theorem 2.1 (Joint characteristic functional). Let f,g : [0,7] — C be measurable and bounded functions
such that

Ry + 5 ((RF)? ~Rf) <0. (2.1)

Then, the joint conditional characteristic functional of (log S¢,V¢) is given by

T T )
E [exp ( / F(T — s)dlog 55 + / 9T — s)dv;> ‘ 4 =exp (6 (T—t) + S My (T -1 Vi), t<T,
t t

where (pe,Ve) is the solution to the following system of time-dependent Riccati equations 22
o) = (0+ 1) pult), 6:(0) =0, (2:3)
v1(t) = M 020 + (pee 1) — ) )

+ell-2 (g(t) + W) . 4 (0)=0. (2.4)

Proof. The proof is given in Section 2.2 below. O

Before proving the result, we note that in the case f and g are constant, one recovers the usual formula for
the characteristic function of the Heston [33] model, where the solution (¢, 1) of (2.3)-(2.4) is explicit as
stated in the following corollary.

Corollary 2.2 (Explicit marginals). Let u,v € R and set f(t) = iu and g(t) = v, for all t € [0,T]. Then,
the solution (¢, ) to the Riccati equations (2.3)-(2.4) is explicitly given by
1 L 1— ge—e’ltd
b (t) = (6_5_H9 + e_l_QHVO> £2 (1 —ipeftiey — d) t=2em ()]
—1
CH_1,._ . 1 1—ec
Ye(t) = MR (L ip T Egu —d) T,
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with

1—ipeftheu—d L \? L \? 24
g Loipe Ebuzd (1—ipeligu) —2 (3¢) (m;u FZU), Rd > 0.
1 —ipefltagu+d 2

Consequently, the conditional joint characteristic function of (log S5, ftT Veds) is given by

T
E lexp <zu log ST + iv/ Vfds) | 3@] = exp (iulog S+ o (T—1t)+ ez Hy, (T —1) Vf) , t<T. (25)
¢

Proof. For the explicit derivation of the formulas, see for example [30, Chapter 2]. An application of Theo-
rem 2.1 yields the result. O

Remark 2.3. Such formulas for ¢. avoid branching issues as described in [9].

The rest of the section if dedicated to the proof of Theorem 2.1. We first study the existence of a solution
to time-dependent Riccati ODEs for which equation (2.4) is a particular case, and provide some of their
properties in Section 2.1. We complete the proof of Theorem 2.1 in Section 2.2.

2.1 Time-dependent Riccati ODEs: existence and uniqueness

In this section, we consider a generic class of time-dependent Ricatti equations that encompass equation
(2.4), in the form

Y (t) = a(t)p?(t) + b(O)e(t) +c(t), »(0) =uo, t<T, (2.6)
with ug € C and a,b,c: [0,7] — C three measurable and bounded functions. We say that ¢ : [0,¢*] — C for
some t* € (0,7 is a local extended solution to (2.6) with some initial condition ¥ (0) = ug € C if, almost
everywhere on [0, ¢*], it is continuously differentiable and satisfies the relations in (2.6). The extended solu-
tion is global if ¢t* = T.

The presence of the squared non-linearity in (2.6) precludes the application of the celebrated Cauchy-Lipschitz
theorem and can lead to explosive solutions in finite time. Compared to the related literature on similar
Riceati equations [23, Lemma 2.3 and Section B], we provide a concise and simplified proof for the existence
and uniqueness of a global extended solution to the Riccati equation (2.6) using a variation of constant
formula under the following assumption on the coefficients (a, b, ¢) and the initial condition ug:

R(ug) <0, t<T. (2.7)

The following theorem gives the existence and uniqueness of a solution to the Riccati equation (2.6).

Theorem 2.4 (Existence and uniqueness for the Riccati). Let ug € C with R(ug) <0 and a,b,c:[0,T] — C
be measurable and bounded functions satisfying (2.7). Then, there exists a unique extended solution 1 :
[0,T] — C to the Ricatti equation (2.6) such that

R(p(t) <0, t<T, (2.8)
and

sup|i(t)|< oo. (2.9)
t<T

Proof. For the existence part, we proceed in two steps. First, we start by arguing the existence of a local
solution using Carathéodory’s theorem. For this we rely on [32, Chapter 12, Section 2], using the notations
therein (see equation (1.7) for example), we consider the integral equation

b(t) = $(0) + / o (ts,0(s))ds, 120, (2.10)

11



where the operator g is defined by

9(t,s,9(s)) := a(s)z(s)? + b(s)x(s) + c(s).
Let D be an open, connected subset of RT x C that contains (0,(0)). Define
T, = sup {t € [R+|C',/,(0)7D ([0,T7),C) # @} ,
where
Cy0),p ([0,T),C) :={¢ € C(D,C) |¢(0) = ¢(0) and (t,¢(t)) € D fort € [0,T)}.
An application of [32, Theorem 2.6] yields the existence of a unique non-continuable solution to (2.10) that

satisfies (¢,v(t)) € D on the interval [0,T) such that either Too = T or tlir%l |(t)|= oo. Indeed, the
—Too

assumptions (i) to (v) of [32, Theorem 2.6] are readily satisfied by boundedness and integrability of a, b and
c and the fact that g does not depend on t and satisfies the Carathéodory conditions.
Second, we argue that

sup [ (t)[< oo, (2.11)
t<Two

which would then yield T,c = T and the existence of a global solution . Let t < T,,. We start by showing
that R(¢(t)) < 0. Indeed, taking real parts in (2.6), 1, := R (¢)) satisfies the following equation on [0, Tw):

Ur(s) = {a(s)R (1(s)) + R (b(s))} e (s) + d(s),

< 2 I
where d(s) = —a(s) (% ((s)) + J(b(s))> +R (c(s))+ S ((s) < () thanks to condition (2.7), after a completion

2a(s) 4a(s)
of squares. The variation of constant for 1, then yields

t
i(t) = eds (EIREE)TRO@))dug 4y ) 4 / d(s)ed: (ARG TRO@))du gy <
0

since the exponential is positive and d(s) < 0, and R(up) < 0 by assumption. This shows that $(¢) < 0, on
[0,T). Finally, an application of a similar variation of constants formula on equation (2.6) leads to

)

t
b(t) = edo (@@ @ @) +R(b))duy, 4 / ef;(a(u)(w(u))+(b(u)))duc(5)ds

0
so that taking the module together with the triangle inequality and the fact that R(¢)) < 0 on [0, T ), yields

t
lWh(t)] < efJ(a(u)l/J(u)+(b(u)))du \u0|+/ ‘ef,j(a(u)w(uwr(b(u)))du |e(s)|ds
0

t
— J5 @R ) FRO@))du |y 14 / o2 (@R @) HRGE) | o 6)| g
0

T
< eJo %(b(u))du|u0|+/ et én(b(u))dulc(s)|d8
0

<c <|uo|+ / c<s>|ds> 7

where C' = sup, ycjo,7)2 el RO does not depend on t and is finite by boundedness of b. This shows
(2.11) as needed. Combining the above we obtain the existence of a solution ¢ on [0,T] satisfying (2.8) and
(2.9).

To argue uniqueness, assume there are two such extended solutions v and 9 that satisfy (2.6). Then,

(b2 — 1)’ (t) = (a(t) (2 + 1) () + b(t)) (Y2 — 1) (£), (2 —1b1)(0) =0, t<T,
which yields

i — ] (1) < / a(s) (2 +n) (5) + b(s)| [z — 1] ()ds < e / W — | (s)ds, t<T,

for some ¢ > 0 by boundedeness of (¢1,19,a,b) using (2.11), so that the uniqueness is obtained from
Gronwall’s lemma. O
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2.2 Proof of Theorem 2.1

We first argue the existence of a solution to the system of Riccati equations (2.3)-(2.4). Let us rewrite the
Ricatti ODE from (2.4) as

PL(t) = ac2(t) + be(H)Ye(t) + cc(t), 1%e(0) =0, t<T, (2.12)
where we defined )
Qe eré %
be(t) = eTm2pgf(t) — ! (2.13)
) = et} [gfe) + PO,

Since condition (2.1) ensures

S (be)?
4da,

R(co)+ Sl = 1 (Rgot g (RP? - RA)+ (- 1) (30 <0,

then conditions (2.7) are readily satisfied and consequently Theorem 2.4 yields the existence and uniqueness
of a solution . : [0,7] — C to the Ricatti ODE (2.4) such that

R(e(t)) <0, t<T.
The function ¢, defined in integral form as
) t
00) = (0+ ) [Cwopis. 1<,
0

solves (2.3).
We now prove the expression for the charateristic functional (2.2). Define the following process M:

Mt = exp(Ut)7

t t
Ut=¢€(T—t)+e%—H¢€(T—t)W+/ f(T—s)dlogs;+/ o(T — s)dVe.
0 0

In order to obtain (2.2), it suffices to show that M is a martingale. Indeed, if this is the case, and after
observing that the terminal value of M is given by

T T
My = exp (/ f(T — s)dlog S¢ +/ 9(T — s)df/j) ,
0 0

recall that ¢(0) = 1.(0) = 0, we obtain

T T _
Efexp [ 5 s0gsi+ [ g(r - s)av: ‘ff — E (M| 7] = My = exp (U),
0 0

which yields (2.2). We now argue that M is a martingale. We first show that M is a local martingale using
It6 formula. The dynamics of M read

dM, = M, <dUt + ;d<U>t> ,
with
dU; = {¢L(T —t) — (e + e—%—HVO) V(T —t) + <_€;—H¢2(T Lty (T —t) 4 g — ) — LY
+ (EVe(T = t) + pf(T = 1)) /VEAW, + /1 = p2 f(T — )/ VAW
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This yields that the drift in dM;/M; is given by

&(T — 1) — (9 n e*%*HV) be(T — 1)

¢ AT —t) - f(T—1)

+ (—62-% (T =)+ 3 el = 1)) + (pEF(T = 8) = 3T ) (T = 1) + g(T 1)+

which is equal to 0 from the Riccati equations (2.3) and (2.4). This shows that M is a local martingale. To
argue that M is a true martingale, we note that R(¢.) < 0 which implies R(¢.) < 0, so that

R(U;) < /3? T — s))dlog S; + /éR s))dV;
-[ (%(g(T—S))—?R(f( —o) ) vids + [ - spyvzas,
_7/ R(f(T — s) VEds+/ R(f(T — )/ VedB, =: Uy,

where the last inequality follows from (2.1). It follows that

IA

|Mi|= exp(R(Uy)) < exp(Ty),

where the process exp(U) is a true martingale, see [6, Lemma 7.3]. This shows that M is a true martingale,
being a local martingale bounded by a true martingale, see [34, Lemma 1.4], which concludes the proof.

3 From reversionary Heston to jump processes

In this section, we establish the convergence of the log-price and the integrated variance (log S, V<) in the
reversionary Heston model (0.2)-(0.3) towards a Lévy jump process (X,Y), as € goes to 0. More precisely,
the limit (X,Y") belongs to the class of Normal Inverse Gaussian - Inverse Gaussian (NIG-IG) processes
defined as follows.

Definition 3.1 (NIG-IG process). Fiz o > |3]> 0, 6, A > 0 and p € R. We say that (X;,Y}),~q is a
Normal Inverse Gaussian - Inverse Gaussian (NIG-IG) process with parameters («, 3,8, u, \) if it is a two-
dimensional homogeneous Lévy process with cadlag sample paths, starting from (Xo,Yy) = (0,0) almost
surely, with Lévy exponent n defined by

n(u,v) = [i,uu+ b <\/a2762 - \/a2 — 2 v — (B + z‘u)Qﬂ . w,veER, (3.1)

i.e. the joint characteristic function is given by

E [exp (iuX; + ivYy)] = exp (n(u,v)t), wu,v€R, t<T. (3.2)

In order to justify the existence of such a class of Lévy processes, one needs to justify that n given in (3.1)
is indeed the logarithm of a characteristic function associated to an infinitely divisible distribution, see [41,
Corollary 11.6]. This is the object of the following lemma, which also provides the link with first-hitting
times and subordinated processes.

Lemma 3.2 (Representation using subordination). Let a > |3|> 0, §,A >0, u € R and (W, Wl) be a two
dimensional Brownian motion. Let (At)iepo,r) be the first hitting-time process defined as

Ay ::inf{SZO:\/a27525+W925t}, telo,T], (3.3)

and define Z as the following shifted subordinated process

Zy = pt + BN+ Wi, tel0,T]. (3.4)
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Then,
E [exp (iuZy + ivAA¢)] = exp(n(u,v)t), w,veR, te€][0,T].

In particular, n given by (3.1) is the logarithm of the characteristic function of the joint random variable
(Z1, A\1) which is infinitely divisible.

Proof. Fix t € [0,T]. By construction, it is well-known that A; has an Inverse Gaussian distribution if

« > |B] with parameters IG <\/a62t7527 6%)7 and in the drift-free case o = |B|, A; follows a Lévy distribution

with parameters Lévy (0,5%t) (see [13] and Definition A.3 in the Appendix). Now conditional on A, Z; is
Gaussian with parameters .4 (ut + SA+, A¢) and using the tower property of conditional expectation, we get
for the first case that

E [exp (iuZy + ivAA:)] = E[E [exp (1uZ:)| Ae] exp (ivAA:)]

. Atu2 .
=[E [exp | du (ut + BA:) — 5 T AN,

- xp it o ( (3 % +i00) )]

= exp <iuut+§t\/a2 — B2 (1 — \/1 — CYQ%BQ <iu6 — u; +iv)\>>>
ie. E[exp (iuZ; + ivAAt)] = exp <iu,ut + 3t (\/oz2 -082- \/042 —2idv — (B+ zu)2)> =exp(n(u,v)t), wu,vER,

where we used Definition A.3 to get the fourth equality, noting that & (z (uf 4+ v) — “72) < 0. Simi-

lar computations yield the result for the case o = |B|. Furthermore, we will say that that the random
variable (Z;,AA;) follows a NIG-IG distribution with parameters («, 3, i, d, A) (see Definition A.3 in the
Appendix). Such distribution is infinitely divisible because if (X1,Y1), -, (Xm, Ym) are independent NIG-
IG random variables with common parameters (a,,A) and individual (u;,0;), for @ = 1,--- m, then
(X,Y):= (2", X5, 2", Y;) is again NIG-IG-distributed with parameters (v, 3, > 1 fii, D iy 03, A). O

The appellation NIG-IG for the couple (X,Y") in Definition 3.1 is justified as follows:

e Y is an Inverse Gaussian process first derived by Schrodinger [42] which can be checked either by

recovering the Inverse Gaussian distribution with parameters IG ( \/%, )\62> after setting u = 0
a2

in (3.2); or by using the representation as a first passage-time in (3.3). It is worth pointing that, for
a = |B], one recovers the well-known Lévy distribution for the first-passage of a Brownian motion with
parameters Lévy (O7 )\52). The Lévy distribution can be seen as a special case of the Inverse Gaussian
distribution.

e X is the celebrated Normal Inverse Gaussian process of Barndorff-Nielsen [13], with parameters
NIG (o, B, 1, 0), which can be checked by setting v = 0 in (3.2) or by using the representation as
subordinated Brownian motion with an Inverse Gaussian subordinator as in (3.4).

In addition, we allow in Definition 3.1 the parameter « to be equal to co in the following sense:

Remark 3.3 (Normal process). Considering the set of parameters

(0[7 Ba 57 1y )\) = (Oé7 07 02&7 2 1) )

a second order Taylor expansion, as a — oo, of the square root yields

2
E [exp (iuX; + ivY:)] = exp ([iuu—02 (u2 —I—ivﬂ t) , uw,veR, t<T,
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which is equivalent to the normal-deterministic process defined by

(Xta Yt)te[(LT] - <:U‘t + O-/V\V/ty U2t) i (/J“t + /V\V/azta O-Qt)

te[0,T) te0,T]

We will consider that such (degenerate) process is a particular case of Definition 3.1 with parameters denoted

by
(a, 0,0%a, Iy 1)|

a—oo

We are now in place to state our main convergence theorem. Theorem 3.4 provides the convergence of the
finite-dimensional distributions of the joint process (log S€,V¢) through the study of the limiting behavior
of the characteristic functional given in Theorem 2.1. Interestingly, the limiting behavior disentangles three
different asymptotic regimes based on the values of H that can be seen intuitively on the level of the Riccati
equation (2.4) as follows. Applying the variation of constants on v, we get:

Delt) = M1/ /0 K.(t — 8)F(s,.(s))ds, t<T, (3.5)

f2(s) = f(s)

F(s,u) = >u® + p&f(s)u+ g(s) + 5 :

2
with K. the kernel defined by
K(t)=¢le 't t>0.

Assuming that 1. converges to some 1)y and observing that K. plays the role of the Dirac delta as € — 0, one
expects fot K (t — 8)F(s,%c(s))ds — F(t,1(t)) in (3.5), the pre-factor ¢/+1/2 suggests then three different
limiting regimes with respect to H that can be characterized through the functions F' and y:

Po(t) =0, if H>—1/2,
Yo(t) = F(t,vo(t), R(o(t) <0, if H=-1/2, (3.7)
0 = F(t,vo(t)), R(o(t)) <0, if H<—1/2.
The function v in (3.7) is even explicitly given by
0, if H>-1/2,
volt) =4 €7 (1 — pEf(t) - \/ (1= pef () =262 (g(t) + “”“)) CHH=-1/2. (38
€ (p () + VIO T (L 2 F0) -~ 290)) itH < -1/2

see Lemma A.l below. Furthermore, the convergence of the integrated variance process is strengthened
to a functional weak convergence on the Skorokhod space (D(0,T), M) of cadlag paths on [0,7] endowed
with the strong M; topology, see Section 3.3.1 below. Such topology is weaker and less restrictive than the
commonly used uniform or J; topologies which share the property that a jump in a limiting process can
only be approximated by jumps of comparable size at the same time or, respectively, at nearby times. On
the contrary, the M; topology of Skorokhod [43] captures approximations of unmatched jumps, which in our
case, will allow us to prove the convergence of the stochastic process V¢ with continuous sample trajectories
towards a Lévy process with cadlag sample trajectories. The statement is now made rigorous in the following
theorem.

Theorem 3.4 (Convergence towards NIG-IG processes). Let f,g : [0,T] — C be bounded and measurable
such that Rf = Rg = 0 and such that ¢y defined in (3.8) has bounded variations. Then, based on the value
of H, we obtain different explicit asymptotic formulas for the characteristic functional given in Theorem 2.1:

T T B
lim E [eXp (/O f(T = s)dlog S5 + /O 9(T — S)dV'SE) = exp (¢o(T)) , (3.9)
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with

Vo Jof h(s)ds, if H > —1/2,
o) = { @4V (T [T (pe6) + = pef (o) ~26200e) ) s ) ifH=-1/2 (310
—pet [T (pf(s) () = 2h(s)) ds, if H < —1/2,

where h(s) = g(s) + M In particular for p € (—1,1), as € — 0, the finite-dimensional distributions
of the joint process (log g—;, V) converge to the finite-dimensional distributions of a NIG-IG process (X,Y)
in the sense of Definition 3.1 with the following parameters depending on the value of H:

(a,0, Voo, =22, 1))| if H> —1/2,

a—oo’

V(E=2p)%+4(1-p?) - - - ,
(0, 8,0,1,0) = (é R ety VI ROV —p (04 V0 €7 2 ) i H = —1)2,
(2(1ip2)’_2(1ip2)’ \% 1- p29§—1’ _p9§_17 1—1/)2) ’ ZfH < —1/2,
(3.11)

where 6, Sy, € and Vi are the same from (0.2)-(0.3). Furthermore, the process V¢ converges weakly towards
Y on the space (D(0,T), My), as € — 0.

Proof. The convergence of the characteristic functional in (3.9) is established in Section 3.1 (Lemmas 3.7
and 3.8). This implies the convergence of the finite-dimensional distributions of (log S¢,V€) as detailed in
Section 3.2. Finally, the weak convergence of V¢ on (D(0,T), M) is proved in Section 3.3. O

Remark 3.5 (An interesting interpretation). The interpretation of the convergence results becomes even
more interesting when combined with Section 1. In Section 1, for H > —1/2, the reversionary Heston model
(log S¢,V€) is constructed as a prozy of rough and hyper-rough Heston models. Theorem 3.4 shows that the
limiting regime for H > —1/2 is a (degenerate) Black-Scholes regime, cf.Remark 3.3, whereas, for H < —1/2
one obtains the convergence of the reversionary regimes towards (non-degenerate) jump processes with distinct
regimes between H = —1/2 and H < —1/2, see Corollary 3.6 below. This suggests that jump models and
(hyper-)rough wvolatility models are complementary, and do not overlap. For H > —1/2 the reversionary
model can be interpreted as a proxy of rough and hyper-rough volatility models, while for H < —1/2 it can be
interpreted as a prozy of jump models. Jump models actually start at H = —1/2 (and below), the first value
for which hyper-rough volatility models can no-longer be defined.

In Figures 3 and 4, we plot respectively the convergence of the smiles and the skew of the reversionary Heston
model (log S¢, V¢) for the case H = —1/2 towards the Normal Inverse Gaussian model. The volatility surface
is obtained by applying Fourier inversion formulas on the corresponding characteristic functions. Similar to
Figures 1 and 2, the graphs show that the fast parametrizations introduced in the Heston model are able to
reproduce very steep skews for the implied volatility surface.
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Figure 3: Reversionary Heston smiles for different maturities from one week to one year. Parameters are:

So =100,p = —0.7,0 = 0.3, £ = 0.8, Vp = 0.3 and H = —1/2, and the reversionary time-scale is varied from
one hundred days to one day.
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Figure 4: ATM skew of reversionary Heston and its asymptotic NIG law in the regime H = —0.5. Parameters

are: So = 100,p = —0.7,0 = 0.3, £ = 0.8, V = 0.3 and the reversionary time-scale is varied from one hundred
days to one day.
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In the case (f,g) = (iu,iv), with u,v € R, the asymptotic marginals of reversionary Heston expressed in
Corollary 3.6 below are obtained as a direct consequence of the convergence Theorem 3.4.

Corollary 3.6 (Explicit asymptotic marginals). Based on the value of H € R, the pair of normalized log
price and integrated variance <log %7 Vf) has distinct asymptotic marginals as the reversionary time-scale

€ goes to zero given by:

1. H > —1/2, i.e. Black Scholes-type asymptotic regime (BS regime)

E [iulog % + wf/;] — exp {—‘;0 (u2 — 2 (v - %)) T} . (3.12)

e—0

2. H=-1/2, i.e. Normal Inverse Gaussian-type asymptotic regime (NIG regime)

E [iulog % + Z'Wf} 3 eXp {(9 + Vo) &2 <1 — iptu — \/(1 — iptu)? — 2¢2 (w o ;“‘)) T} .
0 e—

(3.13)
3. H < —1/2, i.e. Normal Lévy-type asymptotic regime (NL regime)
. S{% . e 1. . U
E |iulog = + vV | — exp q —6¢ ipu—+ /(1= p?)u? —2i <v - f) T:. (3.14)
SO e—0 2

In Figure 5, we illustrate numerically the convergence of the characteristic function in all three regimes.
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Figure 5: Convergence of reversionary Heston’s joint characteristic function (2.5) in all three regimes whose
asymptotic joint characteristic functions are given respectively in (3.12) for the Black-Scholes regime, in
(3.13) for the Normal Inverse Gaussian regime and in (3.14) for the Normal-Lévy regime. v is fixed at 100
and model parameters are p = —0.7,0 = 0.3, £ = 0.8, V5 = 0.3 and the reversionary time-scale is varied from
one 21 days to le — 5 day.

The rest of the section is dedicated to the proof of Theorem 3.4.

3.1 Convergence of the joint characteristic functional

In this section we prove the convergence of the characteristic functional of (log 2—:, V) as € goes to 0 stated
in Theorem 3.4. For this, we fix f, g : [0,7] — C bounded and measurable such that £f = fg = 0. We note
that (2.1) is trivially satisfied so that an application of Theorem 2.1, with ¢ = 0, yields that

T T
E [exp (/0 f(T — s)dlog S¢ +/0 g(T — s)de)

where (¢, Pe) solve (2.3)-(2.4). We start by showing that the second term in the exponential e
to 0 for any value of H € R in the following lemma.

Lemma 3.7. Fore > 0, let 1. be a solution the time-dependent Ricatti ODE (2.4) such that R(¢°) < 0 with
fy9:[0,T] = C bounded and measurable functions such that Rf = Rg = 0. Then,

= exp (¢E(T) + 6%7H¢6(T)V0) )

1/2=Hyy ooes

[e(t)] < Ceflt3 (1 - e—f’lt) . L<T,
for some constant C independent of €. In particular, we have the uniform convergence

lim sup e//2~H 4. (t)|= 0, H€R.
e—0 t<T
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Proof. The variation of constants applied to the differential equation (2.12) yields:
t
Ye(t) = / ce(s)els (actelwrbe(w)dugy,
0

with ae, be, ¢, defined as in (2.13). Given that f and g are both bounded on [0, 7], we fix C' > 0 such that
lee(u)| < Ce'=2 u < T. Note that Rb, = —e !, having also R (¢.) < 0 and a, > 0, we get the desired upper
bound on the solution. The convergence result follows immediately. O

The first term ¢, however, yields different limits based on the value of H. Consequently, we will study in
Lemma 3.8 the convergence of the following quantity

oe(t) = /Ot (9 + efH*%VO) Ye(s)ds,

for different regimes of H.

Lemma 3.8. We have the convergence
lim ¢.(T) = ¢o(T),
e—0

where ¢o(T) is given by (3.10).

Proof. Case H > —1/2. In this case, the solution 1. converges uniformly to zero from the upper bound
given in Lemma 3.7 which, combined with the expression of F' in (3.6), yields

N RORT (O

}E}%F(&we(s)) =F(s,0) = g(S) 9

Furthermore, integrating the variation of constants expression (3.5) leads to

/Ot e =120 (u)du = /Ot {/Ou K(u— S)F(S,we(s))ds} du

_ / { / Ko s)du} F(s, e(s))ds

= / (1 - e_efl(t_s)) F(s,¢c(s))ds,

0

where we used Fubini for the second equality as the integrated quantity is bounded and measurable. Now,
given the function s ~— (1 - efefl(tfs)) F(s,1(s)) is uniformly bounded in e by a constant on [0,7],

and that it converges pointwise to s — F(0,s), then an application of Lebesgue’s Dominated Convergence

Theorem yields \ ,
t 2
/ e =129 (u)du — (g(s) + f(s)_f(s)) ds,
0 e—0 0 2

hence the resulting convergence

60 =370 [ (ot + EELE ) g

Case H = —1/2. Now fix € > 0 and using the second equation in (3.7), observe that

YL(t) = —e Mpe(t) + € (F(te(t) — F(t,%o(t) + ¢o(t))
= — " (Pe(t) — Yo (b)) + € Be(t) (Welt) — (1)),

with B(t) == & (Welt) +do(t)) + pEF(T — ) (3.15)
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Since 1y has bounded variations by assumption, the complex-valued Riemann-Stieltjes integral on continuous
functions f against 1 is well-defined, and satisfies an integration by part formula such that

t t
| 1syain(s) = sieyin(®) = 10)in(0) = [ uls)arts
see Theorems A.1 and A.2 from [39]. Define A (t) := (1 (t) — o(t))e!/¢. Then, it follows that

dA(t) = (e(t)dt — dibo (t))et/€ + e (We(t) — o (t))et/edt
=€ 1 Be(t)Ac(t) — e dyy (1),

and applying the variation of constants formula leads to
Ad(t) = e Ji B () - /Ot e o e g s),
so that, recalling that 1.(0) = 0,
Pelt) = wo(t) = —e o PeDirem sy 0) - / e Bt g ) g )
=: L (t) + IL(¢). i

We now prove successively that | fOT (t)dt|— 0 and | fo I1.(t)dt|— 0.

e Given that RS, < 0, then

66H71/2 fot ﬂe(r)dre—efltwo(o)‘ < e—eflt |'(/JO(0)| N 0’ te (O,T),

SO that I.(t) converges pointwise to 0 on (0,7) and is dominated by an integrable function, hence
\ fo (t)dt|— 0 by Lebesgue’s dominated convergence theorem.

e Regarding the second term, we have

t
eeH’l/2 It Be (r)drefe’1 (tfs)dwo (S)dt

Tt
< / / =< =) o (s)] i
0 0

T T
=[] e e aiano)
-/ Lo (1T Jag (o)

where the inequality comes from Theorem A.4 from [39] and using again that 5. < 0, with the
positive measure on the right-hand side being the total variation measure defined as in Theorem 6.2
from [40], and we used Fubini-Lebesgue to get the first equality. Noting the point-wise convergence of

the function f. : s — € (1 — eiﬁfl(T’S)) to zero and its uniform boundedness in € by a constant on

[0,T7], the dominated convergence theorem applied to the total variation measure proves the result.

Thus, we obtained
/ belt)dt — wo<)

where 1y satisfies the second equation in (3.7), hence we get
T
0AT) =3 0+ V%) [ wnlo)ds
e—0 0
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which is the desired convergence.

Case H < —1/2. Define 9y as the root with non-positive real part from the third equation in (3.7), recall
Lemma A.1. Fixing again € > 0, we have

PL(t) = —€ Mpe(t) + €TV (F(t v (1) — F(t, ¢o(t)))
= — e (t) + T T2B(t) (1he(t) — vo(t))

with S, given by (3.15). Similarly the case H < —1/2, computing the differential of A.(¢) := (¢¥(t) —
Yo(t))et/€ and applying the variation of constants formula leads to

i
A(t) = eeH_1/2 I Be(r)drAE(O) _/ 66H—1/2 Ji Be(r)dr s/e (dil)o(s) + 6711/}0(8)(18) ’
0

so that

t
"/’e(ﬂ . ’(/Jo(t) _ —€€H71/2 Iy Be(r)dre—e’ltwo(o) _ / eeH71/2 K ﬂe("’)d?"e—ﬁil(t—s) (dwo(s) + 6_1’(/)0(8)ds)
0

t
B A T */ e B o= gy 5)
0

t
‘/ e L B =T =) =Ly (5)ds
0

= L.(t) + IL.(t) + ITL(t).

We already have from the previous case H = —1/2 that, as ¢ — 0, both integrals fOT I.(t)dt, fOT II.(¢)dt
converge to 0, all that remains to show consequently is that fOT III.(¢)dt converges to 0 too.

e A finer upper bound on R, is required to deal with this third term. We already know from Theorem
2.4 that Ry, < 0, and by definition of ¥y, we get the following bound

52

2
R5. = 5 (R + Ry) < &R <0

Set

E:={s€[0,T],(f(s),9(s)) # (0,0)},
and from (3.8), we know that 19 = 0 on E® while lemma A.2 yields Ry # 0 on E so that we can
bound ITI, as follows

[TIL(¢)| < / e_1|¢0(s)|efH7”2 JERB(r)dr ,—eH (t=5) 1o
[0,(nE

</ 1 |w0(f)| <_€H—1/2£2§Rw0(8)€f;‘51{1/25;§Rw0(r)dr> ds
~ JonE ferl/Q%%wo(s) 2

é/ 6—H—1/22§—2 |70l (_GH—1/2§2§R,¢}0(s)ef;eH1/2£22§]‘t1/;0(r)dr> ds,
[0,]NE —Rh 2

and an application of lemma A.2 yields the existence of a finite positive constant C' > 0 such that

0]
—Ro

<C, VseE,

so that

ITIL (t)] < ce-H—1/2/

2
<_5H_1/2£§R1/)0(s)efst 6H1/2522§R1/10(7‘)d7“) ds
(0,4NE 2

<O 12 (1 _ ot HV2E R (rdr | 0
- e—0
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since —H — 1/2 > 0 so that e 7=1/2 — 0 as ¢ — 0. Thus III, is dominated by a finite constant C
independent of e (which is integrable on [0,7]) and Lebesgue’s dominated convergence theorem yields

that fOT III.(¢)dt converges to 0.

Consequently, we obtained

T T
| v = [ votar

T
—H-1/2
] /O velt)dt — 0,

E%O / Yo(s

3.2 Convergence of the finite-dimensional distributions towards NIG-1G

which then yields

and finally we get

In this section, we prove the second part of Theorem 3.4, that is the convergence of the finite-dimensional
distributions of <log g—;, ‘_/E> towards those of a NIG-IG process (X,Y) in the sense of Definition 3.1 with
parameters (a, 3, 4,0, A) as in (3.11) depending on the regime of H. Let d € N* and take 0 =: tg < t; <

- < tqg < T to be d distinct times of the time interval [0,T] and (uy, Uk)ke{l,...,d} € ([RQ)d. We will prove

that
[exp < Zuk lo t’“ ) exp ( ZUkth + ZkaYtk>

First, we recover the finite-dimensional distributions of (log S—g, ‘_/7‘5) from (3.9) by setting the bounded and

(3.16)

measurable functions f and g to be equal to

d
Ty, ) (T —s Zu] and g(s —’LZ]].[tk Lte) T—S)Zvj.
k=j

i
~.
M&
I

Notice indeed that
d

d
ZZuklogS —ZZ(lg ]g tSkl)Zuj—‘rZZ(V;k ‘7752,1>ZU]'
=k
T
:/ f(T—s)dlogS§+/ 9(T — s)dVy,
0 0

and that the corresponding 1y defined in (3.7) has bounded variations (being piece-wise constant for this
choice of f and g), so that an application of the convergence of the characteristic functional in (3.9) yields

[GXP ( _ti> —exp (¢o(T)),
with
Vo Sy (th — tim) (i — B0, if H>—1/2,
bo(T) = 4 O+ Vo) €72 T4, bk — tia) (1 — péitiy, + \/(1 — pgity)® — 282 (ivy, — “*2“’“)> , if H=-1/2,
—057 S0 (ke — te) (pz’uk /=2 — (v, - “2“)) : it H < —1/2,
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_ d _ d
where we defined @y := >0, uj, Ok 1= D25, v;.
Second, we identify such ¢o(T) with the corresponding finite-dimensional distributions of the NIG-IG process

(X,Y) with parameters (o, 8, it,0,A) as in (3.11) depending on the regime of H. We denote by 7 its Lévy
exponent, recall (3.1), and we write

d d
E [exp (z’Zukth —I—ink}Qk)
k=1 k=1

d d d d
=[E |exp iZ(th_th—l)Z“j"’ Z Y;:k Yii o Z”a
k=1 k=1 Jj=k

|
EQ

j=k
d
exXp (th - th—l)izuj + (Ytk Ytk 1
=k

k=1 |
a | d d
:H[E exp | Xe,—t,_ JZ“J‘*‘Y% th1l Zvj
k=1 =k j=k
P
= exp (Z (te —te—1)n (Ttk,’t_}k)>
k=1

using respectively telescopic summation, the independence of increments, the fact that (X;,, Y:,)— (X, Yy,) law

(Xty—t,,Y:,—1,) and the definition of the characteristic function of (th,tk_l,Ytk,tk_l) forallkel,...,d
to get the successive equalities. Using the parameters («a, 8, u,d,\) as in (3.11) it is immediate to see that

Mg

(tk — ti—1) n (g, Ux) = ¢o(T),
=1

hence the desired convergence (3.16).

3.3 Weak-convergence of the integrated variance process for the M; topology

In this section, we prove the weak convergence stated in Theorem 3.4 of the integrated variance process V¢
with sample paths in C ([0, T], R*) to the Lévy process V° whose Lévy exponent is given by v + (0, v) with
7n defined in (3.1) and with sample paths valued in the cadlag functional space D := 2 ([0, T], R")) endowed
with Skorokhod’s Strong M1 (SM;) topology. There will be two subsections: first, in Section 3.3.1 we recall
briefly the definition of the Strong M1 (SM;) topology as well as some associated convergence results, and
then we prove the tightness of the integrated variance in Section 3.3.2.

3.3.1 Reminder on the SM; topology and conditions for convergence

We recall succinctly key definitions and convergence theorems for the M; topology. We refer the reader to
the key reference book Whitt [44, Chapter 12] for more details. For « € D, we define the thin graph of x as

r,:= {(z,t) eERx[0,T]:z¢€ [Uﬁ(t_)>33(t)]}’

where, for ¢ € [0,T], [(t7), z(t)] denotes the standard segment {ax(t~) + (1 — ) z(¢),0 < a < 1}, which is
different from a singleton at discontinuity points of the cadlag sample trajectory . We denote Disc(x) the
set of such instants. Define on T', the strong order relation as follows: (z1,t1) < (29,t2) if either ¢; < ¢y
or t; = ty and |x(t1_) - zl} < |x(t1_) - 22|. Furthermore define a strong parametric representations of x
as a continuous non-decreasing (with respect to the previous order relation) function (&,7) mapping [0, 1]
into I';, such that (£(0),#(0)) = (2(0),0) and (Z(T),#(T)) = (z(T),T). We say the component 7 scales the
time interval [0,77] to [0,1] while & time-scales x, and we denote by II,(x) the set of all strong parametric
representations of x. Finally, the strong M1 topology is the topology induced by the metric ds defined as

ds (x1,22) := nf {

(&%,71) €I, (27),5=1,2

gt — 22| v |t =2
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Below we mention briefly five theorems in a row that eventually yields criteria to prove the desired conver-
gence.

Theorem 3.9. D := D ([0,T],R") endowed with the SMj topology is Polish, i.e. metrizable as a complete
separable metric space.

Theorem 3.10 (Prohorov’s theorem). Let (S,m) be a metric space. If a subset A in P(S) is tight, then
it’s relatively compact. On the other hand, if the subset A is relatively compact and the topological space is
Polish, then A is tight.

The first two theorems ensure that, since (D, SM;) is Polish, proving relative compactness of any family
of probability measures on such space is sufficient to ensure the existence of a convergent sub-sequence.
Finally the convergence of finite-dimensional laws allows to uniquely determine its limit as formulated in the
following theorem.

Theorem 3.11 (Criteria for convergence in distribution in (D, SM;)). Let ((Xp)nen, X) be random func-
tions defined on a common filtered probability space (0, (%), ,P). Then, X,, = X in D for the SM; topology
if the following conditions hold:

o (X,)nen is tight with regards to the SM; topology.

o The finite dimensional distributions of X,, converge to those of X on Tx, where:

Tx = {t>0,P (t € Disc(X)) = 0} U{T}.

To conclude this section, we recall a characterization of tightness for a sequence of probability measures.

Theorem 3.12 (Characterization of tightness). The sequence of probability measures {Py},~, on (D, SM;)
is tight if and only if: B

(i) V&> 0,3c < o0,Vn > 1,P, {z € D : ||z||>¢}) < &
(i) V& > 0,¥n > 0,30 > 0,Yn > 1,P, {x € D :w'(z,0) > n}) <&
Where we defined for x € D, t € [0,T] and 6 > 0:

|zl == sup |24,

te[0,T]

w'(x,8) = w(x,d) Vv(x,0,6)Vo(x,T,6),

w(x,d) = sup ws(z,t,0),
te[0,T]

ws (v, t,0) == sup |lz(t2) — [2(t1), 2(t3)]] ,

OVE—8<ty <ty <tz<(t+8)AT

o, t,6) = sup 2(t1) — w(t2)].

ovt—96<ty Stzg(t+6)/\T

3.3.2 Convergence of the integrated variance process

We already proved in Section 3.2 the convergence of finite dimensional distributions as € goes to zero of
V¢ toward those of either the deterministic linear, or the Inverse Gaussian, or the Lévy process denoted
Y depending respectively on the value of the Hurst index with Lévy exponent 7(0,-) from (3.1) with the
respective parameters given in Theorem 3.4. Consequently, all that remains to prove is the tightness of the
family of processes (‘76)6>0 for the SM; topology to get the desired convergence result as a direct conse-
quence of Theorem 3.11. We will apply the characterization Theorem 3.12 of tightness in SM; to conclude,
and more precisely, we will see that the criteria of tightness within the SM; topology simplifies greatly for
almost surely non-decreasing and continuous stochastic processes in general.
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Fix & > 0. Since, for all € > 0, V¢ is almost surely non-decreasing and non-negative, we have that, for all
weN
V(W) = Vi(w),
w' (VE(w)),8) =0V Vs (w)V (Vi(w) — Vi_sw), §>0.
This yields that, for a threshold ¢ > 0 big enough, the probability in condition (i) on the measures P, :=
[P( )_1 reduces to

V'te

Pc({z € D,||z]|> c}) =P ({w : [V (w)|[> c}) =P (V5 > ¢) < §1>115[P (Vi >c) <€,

where the last inequality is satisfied by tightness of the family (Vf)€>0 of random variables in R which
is obtained as a direct consequence of Lévy’s continuity theorem, recall that (Vf)oo has been shown to

converge in Section 3.1. This yields (7). In addition, regarding the second condition (i), set an arbitrary
1 > 0, then the oscillation function w’ simplifies to

Pc({z € D:w'(z,6) >n}) =P 0V V5|V |Vi—Vi_s| >n) <&,
where we take ¢ small enough to ensure the last inequality by stochastic continuity of V.
Remark 3.13. Since log S = —%‘76 +pWye++/1— pQWéE, and composition is not continuous in (D, My)
(see [87, Theorem 4.1]), we cannot expect the tightness of the log price within SM;.
A Some lemmas

Lemma A.l. (Uniqueness of the complex root with a non-positive real part) Take & > 0. For all f, g
bounded and measurable with Rf =Rg =0, t € [0,T] and p € [—1, 1], both polynomials

P(X) = %XQ — (1= pef (1) X +g(t) + M
Q(X) := %XQ +pEf()X +g(t) + M

admit ezxactly two roots with respective real parts of strict opposite signs if (f(t),g(t)) # (0,0), and if
(f(t),g(t)) = (0,0), then the polynomial P has roots 0 and g%, while Q has 0 as a double root.

Proof. Let us detail the proof for P, similar arguments will apply to Q. By d’Alembert-Gauss theorem, the
polynomial P admits exactly two roots expressed as:

{ e (1 — pEf() + \/ (1= pEf()* - 262 (9<t) * fz(t)z_f(t)» } ’

where we take the principal square root in the expression above, i.e.with non-negative real-part. Conse-
quently, the roots have real parts

(e (20 ({fa s G FEIT) )|

so that it remains to show ‘?R (\/(1 — pEf(t)? — 2¢2 (g(t) + W))‘ > 1.

Denote § = a +ib, a,b € R such that 62 = (1 — p&f(t))> — 2¢2 (g(t) + M), then it follows that a and
b satisfy
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_ _ Sf(1)?
{a2 2 =14+ (1 p2) (ESf(2)) (A.1)

ab == (peSfit) + € (%(5 - 0)).

If p # £1, then the result is immediate from the first inequality in (A.1), while if p = +1, then |a|= V1 + b?
and b cannot be zero, otherwise 2 = a? =1 — 2i (pf%f(t) +&2 (%g(t) - %(t))> which cannot be the case,
since a € R and (3£ (¢), Sg(t)) # (0,0). O

Lemma A.2. Let f and g be bounded measurable functions such that Rf = Rg = 0. Then there exists a
finite positive constant C such that the ratio

[%0(s)]

~(s) := R (s) <C,\VseE,

where the set E is given by
E:={s€[0,T],(f(s),9(s)) # (0,0)},
and vy is given in (3.8) in the case H < —1/2.

Proof. We start by explicitly computing the real and imaginary parts of ¢ in the case H < —1/2, whose
expression is given anew by

do(s) =~ (pf(s) + VI (L — (- ) 7(5)) ~ 29(3)) . s € 0.7,
Set the real functions a and b such that, for any s € [0, T

a(s) +ib(s) = v/ f(s) (1 — (1= p?) f(5)) — 29(s),

square the above equality, identify the real and imaginary parts, find a unambiguously on E (which imposes
a # 0) as a root to a fourth-degree polynomial knowing the square roots in (3.7) are principal (i.e. with
positive real parts), then deduce the associated b, such that

Consequently, we get explicitly on F
Yo = Repo + 1S,
with

%1/}0 = _5_10"
lovr
Sy = ¢! <p%f s 22 2% — ) .

Rewrite v as

5
1=V, =g

Ry’
and we can readily discard the case p = 0 and S f — 28g = 0, since 3y = 0 in that case and the ratio
simplifies into 1 which yields the result. Assume from now on that p # 0 or Sf — 28g # 0. We can write

3=A(Sf,S9)+B(Sf,9y),
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with

A(S£.99) = a1 ,
¢ ; ((1 — ) (S + /(1= 02 (S +(Sf - 2%9)2)
B (37.99) = 235

) 3 ((1 — ) (S + /(L= ) (S + (S - 2%9)2) |

so that there are three remaining cases for which it is sufficient to show that both A (Sf, Sg) and B (Sf, Sg)
are bounded to conclude the proof.

e Case p# 0 and Sf — 28g = 0, then

are both bounded, recall p € (—1,1).
e Case p =0 and Sf — 28g # 0, then
A(Sf,S9) =0,

Iovr
B(3/.99) = Al

)

and B (Sf,Jg) is bounded since (z,y) — B (z,y) is continuous on any compact set of R#\{(0,0)}
(recall both S f and g are bounded) and has a finite limit at (0,0), valued 1, indeed

B(l’,y) =

1
2y _a? 2)2 __at (= y)——>(>0 0)1'
(1 —p ) z—2y + \/(1 —Pp ) (gE_Qy)Q +1 ZE*Zy#()’

e Case p # 0 and Sf — 28¢g # 0, then

A (S, 39) p3] ,
\/ 3 ((1 — ) S+ (= 2 (S + (3 - 2%9)2)
B (Sf,Sg) = 23/~ % 7
! ((1 C RGN - PP (3] 2%)2)

are both bounded by continuity of (z,y) — A (z,y) and (z,y) — B (z,y) on any compact set of
R?\{(0,0)} (recall both §f and g are bounded) and both functions have a finite limit at (0,0),
valued 0 and 1 respectively, obtained with similar arguments as in the previous case.

O
Definition A.3. (Inverse Gaussian, Lévy and NIG-IG distributions)

o We say X follows a Normal Inverse distribution, denoted X — IG (u, \) if its probability density writes

A Az — p)?
F(@) = oy o0 (—M)

where € R, X > 0, or equivalently if the following equality holds true

2
[E[exp(wX)]exp()\<1 12“;”)), weC, Ruw<o.
1

29




o We say 7 follows a Lévy distribution, denoted 7 — Lévy(p,c), if its probability density writes

c e w
27 (a2 — )"
where p € R, ¢ > 0, or equivalently if the following equality holds true

E [exp (wT)] = exp (pw — V—2cw), weC, Rw<O0.

e We say (X,Y) follows a Normal Inverse Gaussian - Inverse Gaussian distribution, denoted (X,Y) —
NIG-1G (o, B, 1,9, \), if its characteristic function writes

E [exp (iuX + ivY)] = exp [i,uu—!— ] <\/012 - B2 - \/&2 —2idv — (B + zu)zﬂ , u,v € R,
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B Additional plots
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Figure 6: Smiles comparison between target rough Heston with parameters (1.10), with H = 0, and rever-
sionary Heston with calibrated parameters from the second row of Table (1.3) for different maturities from
one week to one year.
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Figure 7: Smiles comparison between target rough Heston with parameters (1.10), with
reversionary Heston with calibrated parameters from the third row of Table (1.3) for different maturities

implied vol

implied vol

implied vol

020

O Target rough Heston
— Calibrated reversionary Heston

implied vol

035

020

O Target rough Heston
— Calibrated reversionary Heston

-0.15 -0.10 -0.05 0.00 0.05
log-moneyness

im

-0.20 -0.15 -0.10 -0.05 0.00 0.05
log-moneyness

3m

© Target rough Heston
—— Calibrated reversionary Heston

implied vol

035

0.20

© Target rough Heston
—— Calibrated reversionary Heston

Iog-moneyness

6m

-05 -0.4 -03 -0.2 -01 00 01 02
log-moneyness

O Target rough Heston
—— Calibrated reversionary Heston

implied vol

020

O Target rough Heston
—— Calibrated reversionary Heston

log-moneyness

from one week to one year.

References

Eduardo Abi Jaber.
kernels. 2021.

Eduardo Abi Jaber.
expression. Finance

32

-08 0.6 -0.4 -02 0.0 02
log-moneyness

Eduardo Abi Jaber. Lifting the Heston model. Quantitative Finance, 19(12):1995-2013, 2019.

Weak existence and uniqueness for affine stochastic Volterra equations with L!-

The characteristic function of gaussian stochastic volatility models: an analytic
and Stochastics, 26(4):733-769, 2022.

Eduardo Abi Jaber and Omar El Euch. Markovian structure of the Volterra Heston model. Statistics
& Probability Letters, 149:63-72, 2019.

H = —0.05, and



[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

Eduardo Abi Jaber and Omar El Euch. Multifactor approximation of rough volatility models. SIAM
Journal on Financial Mathematics, 10(2):309-349, 2019.

Eduardo Abi Jaber, Martin Larsson, and Sergio Pulido. Affine Volterra processes. The Annals of
Applied Probability, 29(5):3155-3200, 2019.

Eduardo Abi Jaber, Camille Illand, and Shaun Li. Joint SPX-VIX calibration with Gaussian polynomial
volatility models: deep pricing with quantization hints. arXiv preprint arXiv:2212.08297, 2022.

Eduardo Abi Jaber, Camille Illand, and Shaun Li. The quintic Ornstein-Uhlenbeck volatility model
that jointly calibrates SPX & VIX smiles. arXiv preprint arXiv:2212.10917, 2022.

Schoutens W. Albrecher H., Mayer P. and Tistaert J. The little Heston trap. Wilmott magazine, (1):
83-92, 2007.

Sassan Alizadeh, Michael W Brandt, and Francis X Diebold. Range-based estimation of stochastic
volatility models. The Journal of Finance, 57(3):1047-1091, 2002.

Elisa Alos, Jorge A Leén, and Josep Vives. On the short-time behavior of the implied volatility for
jump-diffusion models with stochastic volatility. Awvailable at SSRN 1002308, 2006.

Gurdip Bakshi, Charles Cao, and Zhiwu Chen. Empirical performance of alternative option pricing
models. The Journal of Finance, 52(5):2003-2049, 1997.

Ole Barndorff-Nielsen. Normal inverse gaussian distributions and stochastic volatility modelling. Scan-
dinavian Journal of Statistics, 24(1):1-13, 1997.

Christian Bayer, Peter Friz, and Jim Gatheral. Pricing under rough volatility. Quantitative Finance,
16(6):887-904, 2016.

Mikkel Bennedsen, Asger Lunde, and Mikko S Pakkanen. Decoupling the Short- and Long-Term Be-
havior of Stochastic Volatility. Journal of Financial Econometrics, 01 2021.

Mikhail Chernov, A Ronald Gallant, Eric Ghysels, and George Tauchen. Alternative models for stock
price dynamics. Journal of Econometrics, 116(1-2):225-257, 2003.

Rama Cont and Purba Das. Rough volatility: fact or artefact? arXiv preprint arXiv:2203.13820, 2022.

Rama Cont and Peter Tankov. Financial modelling with jump processes. Chapman and Hall/CRC,
2003.

James Darrel Duffie, Jun Pan, and Kenneth Singleton. Transform analysis and asset pricing for affine
jump-diffusions. Econometrica, 68(6):1343-1376, 2002.

Omar El Euch and Mathieu Rosenbaum. The characteristic function of rough Heston models. Mathe-
matical Finance, 29(1):3-38, 2019.

Oosterlee C.W. Fang F. A novel pricing method for European options based on Fourier-cosine series
expansions. Siam Journal on Scientific Computing, 31, 2009.

Jin Feng, Marting Forde, and Jean-Pierre Fouque. Short maturity asymptotics for a fast mean-reverting
Heston stochastic volatility model. SIAM journal on Financial Mathematics, 1, 2010.

Damir Filipovic and Eberhard Mayerhofer. Affine diffusion processes: Theory and applications. arXiv
preprint arXiw:0901.4008, 2009.

Martin Forde and Antoine Jacquier. The large-maturity smile for the Heston model. Finance and
Stochastics, 15(4):755-780, 2011.

Jean-Pierre Fouque, George Papanicolaou, and K Ronnie Sircar. Derivatives in financial markets with
stochastic volatility. Cambridge University Press, 2000.

33



Jean-Pierre Fouque, George Papanicolaou, Ronnie Sircar, and Knut Solna. Multiscale stochastic volatil-
ity asymptotics. Multiscale Modeling & Simulation, 2(1):22-42, 2003.

Jean-Pierre Fouque, George Papanicolaou, Ronnie Sircar, and Knut Solna. Short time-scale in s&p500
volatility. Journal of Computational Finance, 6(4):1-24, 2003.

Masaaki Fukasawa. Asymptotic analysis for stochastic volatility: martingale expansion. Finance and
Stochastics, 15:635-654, 2011.

Matthieu Garcin and Martino Grasselli. Long versus short time scales: the rough dilemma and beyond.
Decisions in economics and finance, 45(1):257-278, 2022.

Jim Gatheral. The Volatility Surface - A Practicioner’s Guide, volume 159. Wiley, 2006.

Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough. Quantitative finance, 18
(6):933-949, 2018.

Londen S-O. Gripenberg, G. and Staffans O. Volterra Integral and Functional Equations. Cambridge
University Press, 1990.

Steven L. Heston. A closed-form solution for options with stochastic volatility with applications to bond
and currency options. The Review of Financial Studies, 6(2):327-343, 1993.

Robert A Jarrow. Continuous-time asset pricing theory. Springer, 2018.

Paul Jusselin and Mathieu Rosenbaum. No-arbitrage implies power-law market impact and rough
volatility. Mathematical Finance, 30(4):1309-1336, 2020.

Martin Keller-Ressel. Moment explosions and long-term behavior of affine stochastic volatility models.
Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics,
21(1):73-98, 2011.

Ryan McCrickerd. Pathwise volatility: Cox-Ingersoll-Ross initial-value problems and their fast reversion
exit-time-limits. 2019.

Serguei Mechkov. Fast-reversion limit of the Heston model. Awailable at SSRN 2418631, 2015.

Hugh L. Montgomery and Robert C. Vaughan. Multiplicative nmber theory I: classical theory. Cambridge
University Press, 2007.

Walter Rudin. Real and complex analysis. Cambridge University Press, 1966.
Ken-iti Sato. Lévy process and Infinitely Divisible Distributions. Cambridge University Press, 1999.

Erwin Schrédinger. Zur theorie der fall- und steigversuche an teilchen mit brownscher bewegung.
Physikalische Zeitschrift, 16:289-295, 1915.

Anatoli V. Skorokhod. Limit theorems for stochastic processes. Theory of Probability and Its Applica-
tions, 1(3):261-290, 1956.

Ward Whitt. Stochastic-process limits. Springer Series in Operations Research, 2002.

34



	From rough Heston to reversionary Heston
	Rough and hyper-rough Heston
	Deriving reversionary Heston as a proxy: -shifting the singularity
	Numerical illustration

	The joint characteristic functional of reversionary Heston
	Time-dependent Riccati ODEs: existence and uniqueness
	Proof of Theorem 2.1

	From reversionary Heston to jump processes
	Convergence of the joint characteristic functional
	Convergence of the finite-dimensional distributions towards NIG-IG
	Weak-convergence of the integrated variance process for the M_1 topology
	Reminder on the SM_1 topology and conditions for convergence
	Convergence of the integrated variance process


	Some lemmas
	Additional plots

