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Introduction

Consider a nonlinear conservation law [START_REF] Aregba | Kinetic approximation of a boundary value problem for conservation laws[END_REF] ∂ t u + divA(u) = 0 where u(x, t) ∈ U a real interval, (x, t) ∈ R D × R and A ∈ C 1 (U; R). In what follows we assume that A is not constant and, without loss of generality, that U = R and A(0) = 0. Numerical approximations of this equation can be designed by using a discrete kinetic system of BGK type, as introduced in [START_REF] Natalini | A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws[END_REF], [START_REF] Aregba | Discrete kinetic schemes for systems of conservation laws[END_REF]:

(2) ∀l ∈ {1, . . . , L}, ∂

t f ε l + D d=1 v ld ∂ x d f ε l = - 1 ε (f ε l -M l (u ε )) , u ε = L l=1 f ε l .
Here, the v ld are fixed real coefficients, the "maxwellian functions" M l are defined on R and ε is a positive relaxation parameter. Moreover the following compatibility conditions are fulfilled:

(3) ∀u ∈ R,

L l=1 M l (u) = u, L l=1 v ld M l (u) = A d (u), d = 1, . . . , D.
If f ε is a solution of (2) then, denoting w ε j = L l=1 v lj f ε l , we have

             ∂ t u ε + D d=1 ∂ x d w ε d = 0, ∂ t w ε j + D d=1 L l=1 (v ld v lj ∂ x d f ε l ) = - 1 ε w ε j -A j (u ε ) , j = 1, . . . , D.
Hence formally if f ε → f when ε tends to 0, then in the limit w = A(u) where u is a solution of equation [START_REF] Aregba | Kinetic approximation of a boundary value problem for conservation laws[END_REF]. Actually, let u 0 ∈ L 1 (R D ) ∩ L ∞ (R D ) ∩ BV(R D ) be an initial data for (1):

(4) u(x, 0) = u 0 (x), x ∈ R.

The convergence towards the unique weak entropy solution of the Cauchy problem (1)(4) has been rigorously proved in [START_REF] Natalini | A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws[END_REF]. Convergence also holds in the presence of boundary conditions, see [START_REF] Milišić | Stability and convergence of discrete kinetic approximations to an initial-boundary value problem for conservation laws[END_REF]. An essential assumption for convergence is that the maxwellian functions M l are monotone nondecreasing:

(5) ∀u ∈ [-µ ∞ , µ ∞ ], M l (u) ≥ 0, l = 1, . . . , L where (6) µ ∞ = u 0 ∞ .

In [START_REF] Aregba | Discrete kinetic schemes for systems of conservation laws[END_REF], [START_REF] Aregba | Discrete kinetic schemes for multidimensional systems of conservation laws[END_REF], [START_REF] Aregba | Kinetic approximation of a boundary value problem for conservation laws[END_REF] we use system [START_REF] Aregba | Convergence of relaxation schemes for conservation laws[END_REF] to construct finite volume schemes for [START_REF] Aregba | Kinetic approximation of a boundary value problem for conservation laws[END_REF]. The procedure is as follows:

(1) For fixed ε > 0, construct a numerical approximation of the BGK system (2) by splitting it into a set of linear transport equations which are solved by a monotone upwind scheme, and a system of ordinary differential equations which can be solved analytically. (2) Make ε → 0 in this approximation to obtain a finite volume "relaxed" scheme for [START_REF] Aregba | Kinetic approximation of a boundary value problem for conservation laws[END_REF]. Under condition [START_REF] Baty | A robust and efficient solver based on kinetic schemes for magnetohydrodynamics (MHD) equations[END_REF], we established L ∞ , L 1 and BV estimates which are uniform with respect to ε. We proved convergence for f ε for all ε > 0 and also convergence of the relaxed scheme to the unique weak entropy solution of (1)(4). Systems of form [START_REF] Aregba | Convergence of relaxation schemes for conservation laws[END_REF] can also be used to construct lattice Boltzmann schemes for [START_REF] Aregba | Kinetic approximation of a boundary value problem for conservation laws[END_REF], see [START_REF] Graille | Approximation of mono-dimensional hyperbolic systems: a lattice Boltzmann scheme as a relaxation method[END_REF], [START_REF] Coulette | High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation[END_REF], [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxations schemes[END_REF], [START_REF] Hélie | Schéma de relaxation pour la simulation de plasmas dans les tokamaks[END_REF], [START_REF] Baty | A robust and efficient solver based on kinetic schemes for magnetohydrodynamics (MHD) equations[END_REF], [START_REF] Bellotti | Numerical analysis of lattice Boltzmann schemes: from jundamental issues to efficient and accurate adaptive methods[END_REF], [START_REF] Bellotti | Monotonicity for genuinely multi-step methods: Results and issues from a simple lattice boltzmann scheme[END_REF]. The velocities v (l) = (v l1 , . . . , v lD ) must be such that if x α is a node of the lattice then x α -∆tv (l) is also a node of the lattice, which we denote x α l . Splitting again system (2) into the linear transport part and an ordinary differential system, we study here a cartesian lattice Boltzmann scheme with space step ∆x = (∆x d ) 1≤d≤D :

x α = (x d,α d ) 1≤d≤D = (α d ∆x d ) 1≤d≤D , C α = D d=1 x d,α d - ∆x d 2 , x d,α d + ∆x d 2 , α ∈ Z D .
We We denote V = 1≤d≤D ∆x d the volume of C α .

Initialization:

(8) u 0 α = 1 V Cα u 0 (x)dx, α ∈ Z D , (9) 
f 0 l,α = M l (u 0 α ), α ∈ Z D , l = 1, . . . , L. Then for n ≥ 0:
Step 1: stream phase. Each transport equation is solved exactly: [START_REF] Caetano | A result of convergence for a mono-dimensional two-velocities lattice Boltzmann scheme[END_REF] f

n+ 1 2 l,α = f n l,α l with α l = α -j l , l = 1, . . . , L, and (11) 
u n+ 1 2 α = L l=1 f n+ 1 2 l,α .
Step 2: collision phase. For each node x α we solve numerically on [t n , t n+1 ] the system

(f ε l ) = - 1 ε (f ε l -M l (u ε )) , l = 1, . . . , L, u ε = L l=1 f ε l with f ε l (t n ) = f n+ 1 2
l,α . We drop the superscript ε for the sake of simplicity. By the compatibility conditions (3), we have

u(t) = u(t n ) so that we set (12) u n+1 α = u n+ 1 2 α .
Note that the exact solution of the system is

(13) f l,α (t n+1 ) = 1 -exp(- ∆t ) M l (u n+ 1 2 α ) + exp(- ∆t )f n+ 1 2 l,α , l = 1, . . . , L
while the explicit Euler scheme gives

f n+1 l,α = 1 - ∆t f n+ 1 2 l,α + ∆t M l (u n+ 1 2 α
), l = 1, . . . , L.

Here we choose a positive parameter ω and we set ( 14)

f n+1 l,α = (1 -ω)f n+ 1 2 l,α + ωM l (u n+ 1 2 α
), l = 1, . . . , L.

Note that we have then [START_REF] Coulette | High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation[END_REF].

If ω ∈]0, 1] the Lattice Boltzmann Method (abbreviated LBM) ( 10)-( 11)-( 14) can be interpreted as ( 10)-( 11)-( 13) by setting ω = 1 -exp(-∆t ), the asymtotic limit ε = 0 being the case ω = 1. Therefore all the estimates of [START_REF] Aregba | Discrete kinetic schemes for multidimensional systems of conservation laws[END_REF] apply. Giving a fixed value to the ratio ∆t/ε means that ∆t (and therefore ∆x) and ε tend simultaneously to 0. This case has been treated in [START_REF] Caetano | A result of convergence for a mono-dimensional two-velocities lattice Boltzmann scheme[END_REF] for the D1Q2 approximation.

The overrelaxation case ω > 1 cannot be treated by the same method. Nevertheless this case is meaningful by considering the interpretation as an Euler explicit scheme with ω = ∆t . Several numerical experiments show that the LBM is more accurate for ω > 1, see [START_REF] Caetano | A result of convergence for a mono-dimensional two-velocities lattice Boltzmann scheme[END_REF], [START_REF] Hélie | Schéma de relaxation pour la simulation de plasmas dans les tokamaks[END_REF] for example.

In the general nonlinear scalar case, as far as we know, the only result of convergence with ω > 1 is due to T. Bellotti ([7], [START_REF] Bellotti | Monotonicity for genuinely multi-step methods: Results and issues from a simple lattice boltzmann scheme[END_REF]) in the case of the D1Q2 model: the LBM is interpreted as a multistep finite difference method, and by monotony convergence is proved for ω ∈]1, 2[.

In the present paper, we highlight the fact that mononicity properties can be retrieved in the case ω > 1, for a large class of multidimensional models, thus allowing to prove convergence of the LBM. We do not follow the multistep interpretation of [START_REF] Bellotti | Numerical analysis of lattice Boltzmann schemes: from jundamental issues to efficient and accurate adaptive methods[END_REF] but rather keep the scheme under the form ( 10)-( 11)- [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF]. We show that the choice of the velocities v ld dictates the range of values of ω for which monotonicity holds.

The plan of the paper is the following. In section 2 we present the LBM in detail and study monotonicity conditions. In section 3, some 1D and 2D examples are given. Section 4 is devoted to the proof of convergence. Some numerical tests illustrate our result in section 5.

Detailed presentation of the LBM and monotonicity conditions

We remark that except in the case ω = 1 the scheme ( 10)-( 11)-( 14) cannot be explicited as a one-step finite volume approximation of [START_REF] Aregba | Kinetic approximation of a boundary value problem for conservation laws[END_REF]. We have to deal with the f l .

For a given initial data u 0 ∈ L ∞ (R D ) we define the f 0 l,α by ( 8)- [START_REF] Bouchut | Entropy satisfying flux vector splittings and kinetic BGK models[END_REF]. For n ≥ 0 the scheme can be written as:

f n+1 l,α = (1 -ω)f n l,α l + ωM l L k=1 f n k,α k , l = 1, . . . , L and 
u n+1 α = L k=1 f n k,α k .
We consider here the most usual case where

(15) M l (u) = a l u + D d=1 b ld A d (u), l = 1, . . . , L,
where the a l and b ld are real coefficients. In order to satisfy the compatibility conditions (3), we have to impose ( 16)

L l=1 a l = 1, L l=1 b ld = 0, L l=1 v ld a l = 0, L l=1 v ld b lj = δ dj .
Note that M(0) = 0.

We can write the scheme as follows:

(17) f n+1 l,α = S l (f n 1,α 1 , . . . , f n L,α L ) (l = 1, . . . , L), and u n+1 α = L k=1 f n+1 k,α with S l (f ) = (1 -ω)f l + ωM l L k=1 f k , l = 1, . . . , L, or (18) S l (f ) = (1 -ω(1 -a l ))f l + ωa l k =l f k + ω D d=1 b ld A d L k=1 f k , l = 1, . . . , L.
It is useful to remark that by the compatibility conditions (3)

(19) ∀u ∈ R, S l (M(u)) = M l (u), l = 1, . . . , L.
Using notation [START_REF] Bellotti | Monotonicity for genuinely multi-step methods: Results and issues from a simple lattice boltzmann scheme[END_REF], we define (20)

m l = M l (-µ ∞ ), M l = M l (µ ∞ ), V = L l=1 [m l , M l ].
We denote f = (f 1 , . . . , f L ). We define the following monotonicity condition:

(21) ∀k ∈ {1, . . . , L}, ∀l ∈ {1, . . . , L}, ∀f ∈ V, ∂ k S l (f ) ≥ 0. Proposition 2.1. Suppose that (5) is satisfied. For f ∈ V , we denote u = L l=1 f l . Then u ∈ [-µ ∞ , µ ∞ ], ( 22 
) 0 ≤ M l (u) = a l + D d=1 b ld A d (u) ≤ 1, l = 1, . . . , L,
and condition (21) is satisfied if and only if the following condition is satisfied:

(23) ∀u ∈ [-µ ∞ , µ ∞ ], ∀l ∈ {1, . . . , L}, ω ≤ 1 1 -a l - D d=1 b ld A d (u)
.

Moreover if (5) and (21) are satisfied, then ω ∈]0, 2[.

Proof. Suppose that (5) is satisfied. If f ∈ V we set u = L k=1 f k . The compatibility conditions (3) insure that u ∈ [-µ ∞ , µ ∞ ], so for k = l (24) ∂ k S l (f ) = ωM l (u) ≥ 0.
Consequently condition [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF] is satisfied if and only if ∂ l S l ≥ 0 on V for all l.

By (3), L l=1
M l (u) = 1 which with ( 5) proves ( 22). Now we have (25)

∂ l S l (f ) = 1 -ω (1 -M l (u)) = 1 -ω 1 -a l - D d=1 b ld A d (u)
which gives condition [START_REF] Milišić | Stability and convergence of discrete kinetic approximations to an initial-boundary value problem for conservation laws[END_REF].

We prove now that ω ∈]0, 2[. As

L l=1 M l (u) = 1, if L > 2 then
there exists l and u such that

M l (u) < 1 2 , hence ω < 2. If L = 2
we are in one space dimension. If M l (u) ≥ 1 2 for all l and u, then M l (u) = 1 2 for all l and u. This happens only in the trivial case of a constant flux A. Therefore ω < 2.

In view of these properties, we can proceed as follows:

• u 0 being given, we choose ∆x.

• We fix the velocity scale λ (and hence ∆t) and ω such that conditions ( 5) and ( 23) are satisfied. We now illustrate the method by some 1D and 2D examples.

Examples in 1D and 2D

3.1. The D1Q2 model. In 1D, the minimal number of velocities is 2, and in that case system (2) is the wellknown Jin and Xin's model [START_REF] Shi | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF]:

v 2 = -v 1 = λ > 0,
and

M 1 (u) = 1 2 u - A(u) λ , M 2 (u) = 1 2 u + A(u) λ . Condition (5) is satisfied if and only if ∀u ∈ [-µ ∞ , µ ∞ ], |A (u)| ≤ λ. Condition (23) is satisfied if and only if (26) ω ≤ 2 1 + max u∈[-µ∞,µ∞] |A (u)| λ .
Note that this condition appears in T. Bellotti's proof of convergence ( [START_REF] Bellotti | Numerical analysis of lattice Boltzmann schemes: from jundamental issues to efficient and accurate adaptive methods[END_REF]).

As a consequence, ω can take all values in ]0, 2[, provided that λ is large enough. The numerical scheme can be written as

             f n+1 1,α = (1 -ω)f n 1,α+1 + ω 2 u n+1 α - A(u n+1 α ) λ f n+1 2,α = (1 -ω)f n 1,α-1 + ω 2 u n+1 α + A(u n+1 α ) λ u n+1 α = f n 1,α+1 + f n 2,α-1 . Remark 3.1. We can express the variables u = L l=1 f l and w = L l=1 v l f l ,
showing that u is constant in the collision phase while w is not at its asymptotic equilibrium A(u) except for ω = 1.

Using the notation (7) we have

             u n+ 1 2 α = L l=1 f n l,α-j l w n+ 1 2 α = L l=1 v l f n l,α-j l and    u n+1 α = u n+ 1 2 α w n+1 α = w n+ 1 2 α -ω(w n+ 1 2 α -A(u n+ 1 2 α
)).

A D1Q4 model.

We consider the following model:

(27) -v 1 = v 4 = 2λ, -v 2 = v 3 = λ
where λ > 0, and

                       M 1 (u) = u 4 - A(u) 6λ , M 2 (u) = u 4 - A(u) 6λ , M 3 (u) = u 4 + A(u) 6λ , M 4 (u) = u 4 + A(u) 6λ . Condition (5) is satisfied if and only if ∀u ∈ [-µ ∞ , µ ∞ ], |A (u)| ≤ 3 2 λ. (28) 
Condition ( 23) is here

∀u ∈ [-µ ∞ , µ ∞ ], ω ≤ 1 3 4 + |A (u)| 6λ .
The maximal value for ω is then 4 3 . The numerical scheme can be written as

                                 f n+1 1,α = (1 -ω)f n 1,α+2 + ω u n+1 α 4 - A(u n+1 α ) 6λ f n+1 2,α = (1 -ω)f n 2,α+1 + ω u n+1 α 4 - A(u n+1 α ) 6λ f n+1 3,α = (1 -ω)f n 3,α-1 + ω u n+1 α 4 + A(u n+1 α ) 6λ f n+1 4,α = (1 -ω)f n 4,α-2 + ω u n+1 α 4 + A(u n+1 α ) 6λ u n+1 α = f n 1,α+2 + f n 2,α+1 + f n 3,α-1 + f n 4,α-2 .

A D2Q4 model. This model is the direct extension of the D1Q2 model in 2D:

(29)

v (1) = λ 1 (-1, 0), v (2) = λ 2 (0, -1), v (3) = λ 1 (1, 0), v (4) = λ 2 (0, 1),
where λ 1 > 0, λ 2 > 0, and

                         M 1 (u) = u 4 - A 1 (u) 2λ 1 , M 2 (u) = u 4 - A 2 (u) 2λ 2 , M 3 (u) = u 4 + A 1 (u) 2λ 1 , M 4 (u) = u 4 + A 2 (u) 2λ 2 Condition (5) is satisfied if and only if ∀u ∈ [-µ ∞ , µ ∞ ], 2|A d (u)| ≤ λ d , d = 1, 2. (30) 
Condition [START_REF] Milišić | Stability and convergence of discrete kinetic approximations to an initial-boundary value problem for conservation laws[END_REF] reads as

ω ≤ 4 3 + 2 |A d (u)| λ d , d = 1, 2.
The maximal value of ω is ω = 4 3 . 3.4. A D2Q8 model. One can consider more velocities, : for (8) .

λ 1 > 0, λ 2 > 0 we define (31) v (1) = (-λ 1 , 0) = -v (5) , v (2) = (-λ 1 , -λ 2 ) = -v (6) v (3) = (0, -λ 2 ) = -v (7) , v (4) = (λ 1 , -λ 2 ) = -v

and

(32)

                         M 1 (u) = u 8 - A 1 (u) 6λ 1 M 2 (u) = u 8 - A 1 (u) 6λ 1 - A 2 (u) 6λ 2 , M 3 (u) = u 8 - A 2 (u) 6λ 2 M 4 (u) = u 8 + A 1 (u) 6λ 1 - A 2 (u) 6λ 2 , M 5 (u) = u 8 + A 1 (u) 6λ 1 M 6 (u) = u 8 + A 1 (u) 6λ 1 + A 2 (u) 6λ 2 , M 7 (u) = u 8 + A 2 (u) 6λ 2 M 8 (u) = u 8 - A 1 (u) 6λ 1 + A 2 (u) 6λ 2 . Proposition 3.2. We denote c d = max u∈[-µ∞,µ∞] 8|A d (u)| 3λ d . A sufficient condition for (5) to be satisfied is that c d ≤ 1 for d = 1, 2. In this case condition (23) is verified if ω ≤ 8 7 + 1 2 (c 1 + c 2 )
.

Proof. For all l we have

a l + 2 d=1 b ld A d (u) = 1 8 1 + 1 2 2 d=1 d 8A d (u) 3λ d , d ∈ {-1, 0, 1}. Hence 0 ≤ a l + 2 d=1 b ld A d (u) ≤ 1 8 1 + 1 2 (c 1 + c 2 ) ≤ 1 4
so condition ( 5) is satisfied. Moreover

a l + 2 d=1 b ld A d (u) ≥ 1 8 1 - 1 2 (c 1 + c 2 ) so that condition (23) is satisfied if ω ≤ 8 7 + 1 2 (c 1 + c 2 )
.

The above examples show that monotonicity can hold for ω > 1, and that the maximal value of this parameter depends on λ, which value determines the velocity scale. The spacestep being fixed, when |λ| increases, ∆t decreases.

Convergence of the LBM

In the remaining of the paper, we consider the cartesian LBM with equilibrium functions under the form [START_REF] Godlewski | Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications[END_REF]. We take an initial function u 0 ∈ L 1 (R) ∩ L ∞ (R) ∩ BV(R) and initialize the scheme by ( 8) and [START_REF] Bouchut | Entropy satisfying flux vector splittings and kinetic BGK models[END_REF]. Then the scheme is given by ( 17) with [START_REF] Guillon | Stability analysis of the vectorial lattice-Boltzmann method[END_REF].

Denoting χ n α the characteristic function of C α × [t n , t n+1 [ and χ α the characteristic function of C α we define f ∆ (x, t) = ∞ n=0 α∈Z D f n α χ n α (x, t), u ∆ (x, t) = L l=1 f ∆,l (x, t) f n ∆ (x) = α∈Z D f n α χ α (x), u n ∆ (x) = L l=1 f n ∆,l (x) 
f n = (f n α ) α∈Z D .
Our goal is to prove the convergence of u ∆ to the unique weak entropy solution of (1)(4) when ∆x (and hence ∆t) tends to zero.

The initial value u 0 being given, we fix the v ld and ω such that conditions ( 5) and ( 23) are satisfied. Therefore the ratios ∆t/∆x d are constant and when we make ∆t vary, then ∆x varies in the same proportion.

We establish L ∞ , L 1 , BV and entropy estimates in the spirit of Crandall and Majda ( [START_REF] Michael | Monotone difference approximations for scalar conservation laws[END_REF]). In this reference, the authors consider monotone schemes in conservative form for [START_REF] Aregba | Kinetic approximation of a boundary value problem for conservation laws[END_REF]. They prove convergence to the unique weak entropy solution of the Cauchy problem. Our framework is different, as we cannot express u n+1 α as a function of some u n β where the C β are some neighbour cells of C α . Nevertheless, we prove some properties on the f n α and u n α which allow us to use the same mathematical tools.

We recall that

u n ∆ ∞ = sup α∈Z D |u n α |, u n ∆ 1 = V α∈Z D |u n α |, TV(u n ∆ ) = α∈Z D D d=1 V ∆x d |u n α+e d -u n α |
where we denoted (e 1 , . . . , e D ) the canonical basis of R D . Also:

f n ∆ ∞ = sup α∈Z D L l=1 |f n l,α |, f n ∆ 1 = V α∈Z D L l=1 |f n l,α |, TV(f n ∆ ) = α∈Z D D d=1 L l=1 V ∆x d |f n l,α+e d -f n l,α | . Lemma 4.1.
The discretization of the initial data satisfies the following properties:

(33) u 0 ∆ ∞ ≤ µ ∞ , u 0 ∆ 1 ≤ u 0 1 , TV(u 0 ∆ ) ≤ TV(u 0 ) and (34) f 0 ∆ ∞ = u 0 ∆ ∞ , f 0 ∆ 1 = u 0 ∆ 1 , TV(f 0 ∆ ) = TV(u 0 ∆ ). Proof.
The two first inequalities in (33) are clear, the last one is proved in [START_REF] Michael | Monotone difference approximations for scalar conservation laws[END_REF]. To prove (34) we use (3), the monotony property [START_REF] Baty | A robust and efficient solver based on kinetic schemes for magnetohydrodynamics (MHD) equations[END_REF] and the fact that M(0) = 0.

f 0 ∆ ∞ = sup α∈Z D L l=1 |M l (u 0 α ) -M l (0)| = sup α∈Z D | L l=1 (M l (u 0 α ) -M l (0))| so f 0 ∆ ∞ = u 0 ∆ ∞ .
The proof is the same for the L 1 norm.

TV(f 0 ∆ ) = α∈Z D D d=1 L l=1 V ∆x d |M l (u 0 α+e d ) -M l (u 0 α )|
and we conclude with the same arguments.

4.1. Convergence to a weak solution.

Here we obtain the same kind of estimates as in [START_REF] Aregba | Discrete kinetic schemes for multidimensional systems of conservation laws[END_REF]: supremum norm bound, L 1 contraction, TVD property and convergence to equilibrium, in order to obtain convergence of u n ∆ to a weak solution of the problem (1)(4). Proposition 4.2. Suppose that conditions (5) and (23) are satisfied. Then for all n ≥ 0,

(35) ∀α ∈ Z D , u n α ∈ [-µ ∞ , µ ∞ ] and f n α ∈ V where V is defined in (20). Proof. By lemma 4.1 u 0 α ∈ [-µ ∞ , µ ∞ ],
which is the domain where the M l are monotone. Therefore f 0 α ∈ V . By recurrence, suppose that (35) is true for a given n ≥ 0. We remark that by [START_REF] Hélie | Schéma de relaxation pour la simulation de plasmas dans les tokamaks[END_REF] S l (m 1 , . . . ,

m L ) = m l , S l (M 1 , . . . , M L ) = M l . Denoting f n α = (f n 1,α 1 , . . . , f n L,α L
), m = (m 1 , . . . , m L ):

f n+1 l,α -m l = S l (f n α ) -S l (m) = 1 0 L k=1 ∂ k S l (m + θ(f n α -m))(f n k,α k -m k )dθ ≥ 0
by [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]. In the same way, M l -f n+1 l,α ≥ 0 so that

f n+1 α ∈ V and hence u n+1 α ∈ [-µ ∞ , µ ∞ ].
Corollary 4.3. Suppose that conditions (5) and (23) are satisfied.

(36) u ∆ ∞ ≤ µ ∞ and f ∆ ∞ ≤ L l=1 max(|m l |, |M l |).
Lemma 4.4. Suppose that conditions (5) and (23) are satisfied. For all f ∈ V , g ∈ V :

(37)

L l=1 |S l (g) -S l (f )| ≤ L l=1 |g l -f l |. Proof. We denote u = L k=1 f k , v = L k=1 g k . S l (g) -S l (f ) = (1 -ω) (g l -f l ) + ω (M l (v) -M l (u)) = (1 -ω) (g l -f l ) + ω 1 0 M l (u + θ(v -u)) L k=1 (g k -f k )dθ. Denote w θ = u + θ(v -u). w θ ∈ [-µ ∞ , µ ∞ ] and S l (g) -S l (f ) =(g l -f l ) 1 0 (1 -ω(1 -M l (w θ )))dθ + ω k =l (g k -f k ) 1 0 M l (w θ )dθ.
By proposition 2.1 the terms in the integrals are non negative (see (25)) so

L l=1 |S l (g) -S l (f )| ≤ L l=1 |g l -f l | 1 0 (1 -ω(1 -M l (w θ )))dθ + ω L l=1   k =l |g k -f k | 1 0 M l (w θ )dθ  
which can be written as

L l=1 |S l (g) -S l (f )| ≤ L l=1 |g l -f l |(1 -ω) + ω L l=1 L k=1 |g k -f k | 1 0 M l (w θ )dθ . As L l=1
M l (w θ ) = 1 we obtain the desired inequality.

Proposition 4.5. Suppose that conditions (5) and (23) are satisfied. Let f n α and g n α be two numerical solutions, with initial data u 0 and v 0 respectively,

u 0 , v 0 ∈ L 1 (R) ∩ L ∞ (R) ∩ BV(R) satisfying u 0 ∞ ≤ µ ∞ , v 0 ∞ ≤ µ ∞ . Then for all n ≥ 0 (38) g n+1 ∆ -f n+1 ∆ 1 ≤ g n ∆ -f n ∆ 1 ≤ v 0 -u 0 1 and there exists C > 0 such that (39) f n+1 ∆ -f n ∆ 1 ≤ C ∆t TV(u 0 ). Proof. g n+1 ∆ -f n+1 ∆ 1 = V α∈Z D L l=1 |g n+1 l,α -f n+1 l,α |.
We apply inequality (37):

α∈Z D L l=1 |g n+1 l,α -f n+1 l,α | = α∈Z D L l=1 |S l (g n 1,α-j1 , . . . , g n L,α-j L ) -S l (f n 1,α-j1 , . . . , f n L,α-j L )| ≤ α∈Z D L l=1 |g n l,α-j l -f n l,α-j l | = α∈Z D L l=1 |g n l,α -f n l,α |. Moreover α∈Z D L l=1 |g 0 l,α -f 0 l,α | = α∈Z D L l=1 |M l (v 0 α ) -M l (u 0 α )| = α∈Z D | L l=1 (M l (v 0 α ) -M l (u 0 α ))|
by condition [START_REF] Baty | A robust and efficient solver based on kinetic schemes for magnetohydrodynamics (MHD) equations[END_REF]. Then by ( 3) and ( 8)

α∈Z D L l=1 |g 0 l,α -f 0 l,α | = α∈Z D |v 0 α -u 0 α | ≤ 1 V v 0 -u 0 1
which proves (38). Let us prove the second inequality.

α∈Z D L l=1 |f n+1 l,α -f n l,α | = α∈Z D L l=1 |S l (f n 1,α-j1 , . . . , f n L,α-j L ) -S l (f n-1 1,α-j1 , . . . , f n-1 L,α-j L )| ≤ α∈Z D L l=1 |f n l,α-j l -f n-1 l,α-j l | ≤ α∈Z D L l=1 |f n l,α -f n-1 l,α | ≤ α∈Z D L l=1 |f 1 l,α -M l (u 0 α )|.
Moreover

α∈Z D L l=1 |f 1 l,α -M l (u 0 α )| = α∈Z D L l=1 |S l (f 0 1,α-j1 , . . . , f 0 L,α-j L ) -S l (M 1 (u 0 α ), . . . , M L (u 0 α ))| ≤ α∈Z D L l=1 |M l (u 0 α-j l ) -M l (u 0 α )| ≤ α∈Z D L l=1 |u 0 α-j l -u 0 α |
by [START_REF] Lax | Systems of conservation laws[END_REF]. Consequently

f n+1 ∆ -f n ∆ 1 ≤ C max d ∆x d TV(u 0 )
which gives (39).

Corollary 4.6. Suppose that conditions (5) and (23) are satisfied.

(40) ∀t > t > 0, f ∆ (•, t ) -f ∆ (•, t) 1 ≤ C(t -t + ∆t)TV(u 0 ).
The inequality (37) gives a BV estimate. Proceeding as in the proof of proposition 4.5 we obtain Proposition 4.7. Suppose that conditions (5) and (23) are satisfied. Then for all n ≥ 0 (41)

TV(f n+1 ∆ ) ≤ TV(f n ∆ ) ≤ TV(u 0 )
and

(42) TV(u n ∆ ) ≤ TV(f n ∆ ) ≤ TV(u 0 ).
We now estimate the distance between f n and the equilibrium.

Proposition 4.8. Suppose that conditions (5) and (23) are satisfied. There exists a constant C > 0 such that

(43) ∀n ≥ 0, M(u n ∆ ) -f n ∆ 1 ≤ C TV(u 0 ) |1 -ω| 1 -|1 -ω| ∆t.
Remark that if ω = 1 then the collision part of the scheme is just the projection on equilibrium: M l (u n α ) = f n l,α . In this case the inequality (43) is trivially satisfied.

Proof. We denote

E n = M(u n ∆ ) -f n ∆ 1 . E n+1 = V α∈Z D L l=1 |M l (u n+1 α ) -f n+1 l,α | = V|1 -ω| α∈Z D L l=1 |M l (u n+1 α ) -f n l,α-j l | ≤ V|1 -ω| α∈Z D L l=1 |M l (u n α-j l ) -f n l,α-j l | + |M l (u n+1 α ) -M l (u n α-j l )| ≤ |1 -ω| E n + V α∈Z D L l=1 |u n+1 α -u n α-j l | ≤ |1 -ω| (E n + C TV(u 0 )∆t) .
By recurrence, as E 0 = 0, we obtain the result.

The propositions 4.2, 4.5, 4.7, 4.8 allow us to prove the following theorem.

Theorem 4.9. Suppose that conditions (5) and ( 23) are satisfied. Let f n α be the numerical solution given by ( 17) with [START_REF] Guillon | Stability analysis of the vectorial lattice-Boltzmann method[END_REF], with initial data

u 0 ∈ L 1 (R)∩L ∞ (R)∩BV(R) satisfying u 0 ∞ ≤ µ ∞ .
Let (∆t i ) a sequence of time steps tending to 0. There exists a subsequence (∆t i k ) and a function f

: [0, +∞[→ L 1 (R D ) such that (44) lim k→∞ max 0≤t≤T f ∆ k (•, t) -f (•, t) 1 = 0 for T > 0 and, denoting u = l f l , lim k→∞ max 0≤t≤T u ∆ k (•, t) -u(•, t) 1 = 0 for T > 0.
Moreover, f = M(u) and u is a weak solution of the problem (1)(4).

Proof. The first step is to prove that f ∆ converges to a function f . We proceed as in [START_REF] Michael | Monotone difference approximations for scalar conservation laws[END_REF]: using the fact that bounded subsets of L 1 (R D ) ∩ BV(R D ) are precompact in L 1 loc and the time equicontinuity (40), we have the convergence of a subsequence (f ∆ k ) (44). The convergence of (u ∆ k ) is immediate. The fact that f = M(u) is the consequence of the estimate (43).

In a second step, in order to prove that u is a weak solution of the problem, we rewrite the scheme in the framework of conservative difference schemes.

We remark that the scheme can be written as (45)

                   f n+ 1 2 l,α = f n l,α - D d=1 ∆t ∆x d F n l,α+ e d 2 -F n l,α- e d 2 , u n+1 α = L l=1 f n+ 1 2 l,α , f n+1 l,α = (1 -ω)f n+ 1 2 l,α
+ ωM l (u n+1 α ). The numerical flux functions are given by ( 46)

F l,α+ e d 2 = -λ d -1 i=j ld f l,α-ie d if v ld < 0, 0 if v ld = 0, λ d j ld -1 i=0 f l,α-ie d if v ld > 0.
We recall that v ld = λ d j ld and λ d

∆t ∆x d = 1. Therefore F l,α+ e d 2 = F ld (f n l,α-j ld e d , . . . , f n l,α-e d ) if v ld < 0, 0 if v ld = 0, F ld (f n l,α , . . . , f n l,α-(j ld -1)e d ) if v ld > 0, with (47) ∀g l ∈ R, F ld (g l , . . . , g l ) = v ld g l .
As a consequence, if g l = M l (u) then by (3)

(48) ∀u ∈ [-µ ∞ , µ ∞ ], L l=1 F ld (M l (u), . . . , M l (u)) = A d (u).
For the unknown u n α we have

u n+1 α = u n α - D d=1 ∆t ∆x d A n α+ e d 2 -A n α- e d 2 with A n α+ e d 2 = L l=1 F n l,α+ e d 2 . A n α+ e d 2 = l/v ld <0 F ld (f n l,α-j ld e d , . . . , f n l,α-e d ) + l/v ld >0 F ld (f n l,α , . . . , f n l,α-(j ld -1)e d ).
So

A n α+ e d 2 = A d f n l,α+|j ld |e d , . . . , f n l,α-|j ld |e d -e d 1≤l≤L
with

∀(g 1 , . . . , g l ) ∈ R L , A d ((g l , . . . , g l ) 1≤l≤L ) = L l=1 v ld g l . and (49) ∀u ∈ [-µ ∞ , µ ∞ ], A d (M l (u), . . . , M l (u)) 1≤l≤L = A d (u).
We then follow the same steps as the Lax-Wendroff theorem ( [START_REF] Lax | Systems of conservation laws[END_REF], [START_REF] Michael | Monotone difference approximations for scalar conservation laws[END_REF]) but here when ∆t tends to zero, ∆t/∆x d being kept constant we take also into account the fact that u ∆ tends to equilibrium, so that the difference of flux tends to ∂ x d A d (u).

4.2.

Convergence to the entropy solution. We recall that the Cauchy problem (1)(4) admits a unique weak entropy solution which is characterized by ( [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]):

(50) |u -c|∂ t ϕ + sgn(u -c) D d=1 (A d (u) -A d (c))∂ x d ϕ dxdt ≥ 0 for any c ∈ R and ϕ ∈ C ∞ 0 (R D × (0, T ))
, ϕ ≥ 0, and, for any interval I of R D :

(51) lim

T →0 + 1 T T 0 I |u(x, t) -u 0 (x)|dx dt = 0.
As in [START_REF] Natalini | A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws[END_REF], we associate to η c (u) = |u -c| the kinetic entropy-entropy flux pair:

(52) H l,c (g l ) = |g l -M l (c)|, G l,c (g l ) = v ld |g l -M l (c)|, d = 1, . . . , D.
As the transport part of the scheme is monotone, the following discrete entropy inequality holds for every l ∈ {1, . . . , L}:

(53) H l,c (f

n+ 1 2 l,α ) -H l,c (f n l,α ) ∆t + D d=1 Q n l,c,α+ e d 2 -Q n l,c,α- e d 2 ∆x d ≤ 0 with (54) Q l,c,α+ e d 2 = -λ d -1 i=j ld |f l,α-ie d -M l (c)| if v ld < 0, 0 if v ld = 0, λ d j ld -1 i=0 |f l,α-ie d -M l (c)| if v ld > 0. Q l,c,α+ e d 2 = Q l,c,d (f n l,α-j ld e d , . . . , f n l,α-e d ) if v ld < 0, 0 if v ld = 0, Q l,c,d (f n l,α , . . . , f n l,α-(j ld -1)e d ) if v ld > 0, with (55) ∀g l ∈ R, Q l,c,d (g l , . . . , g l ) = v ld |g l -M l (c))|.
As a consequence, if g l = M l (u), as M l is non decreasing and by (3)

(56) ∀u ∈ [-µ ∞ , µ ∞ ], L l=1 Q l,c,d (M l (u), . . . , M l (u)) = sgn(u -c)(A d (u) -A d (c)). Lemma 4.10. Define (57) ∀f ∈ R L , H c (f ) = L l=1 H l,c (f l ), Q n c,α+ e d 2 = L l=1 Q n l,c,α+ e d 2 , (1 ≤ d ≤ D).
The following inequality holds:

(58) H c (f n+1 α ) -H c (f n α ) ∆t + D d=1 Q n c,α+ e d 2 -Q n c,α- e d 2 ∆x d ≤ 0.
Proof. We use lemma (4.4). Noting that M l (c) = S l (M(c)) we can write

L l=1 |f n+1 l,α -M l (c)| = L l=1 |S l (f n+ 1 2 α ) -S l (M(c))| ≤ L l=1 |f n+ 1 2 l,α -M l (c)| ≤ L l=1 H l,c (f n+ 1 2 l,α ).
Then by (53) we obtain the result.

Proceeding again as in the proof of Lax-Wendroff theorem we can state our result.

Theorem 4.11. Suppose that conditions (5) and (23) are satisfied. Let f n α be the numerical solution given by [START_REF] Graille | Approximation of mono-dimensional hyperbolic systems: a lattice Boltzmann scheme as a relaxation method[END_REF] with [START_REF] Guillon | Stability analysis of the vectorial lattice-Boltzmann method[END_REF], with initial data u 0 ∈ L 1 (R)∩L ∞ (R)∩BV(R) satisfying u 0 ∞ ≤ µ ∞ . Let (∆t i ) a sequence of time steps tending to 0. (u ∆ti (•, t)) converge in L 1 (R D ), uniformly on all [0, T ], T > 0, to u(•, t), where u is the unique weak entropy solution of the Cauchy problem (1)(4).

Numerical experiments

5.1. One-dimensional computations. We approximate the entropy solution of the Burgers equation

∂ t u + ∂ x u 2 2 = 0 with initial condition u 0 (x) = 1 if x < 0, u 0 (x) = 0 else. Then ∀t > 0, u(x, t) = 1 if x < t 2 , u(x, t) = 0 else.
The computational domain is [-1, 1]. We do not add any order increasing procedure because our goal is to study the influence of the conditions of monotony ( 5) and ( 23) on the behaviour of the solution. As the choice of λ determines the number of time steps, we fix λ and to make ω vary.

For the D1Q2 model presented in section 3, condition [START_REF] Baty | A robust and efficient solver based on kinetic schemes for magnetohydrodynamics (MHD) equations[END_REF] gives

λ ≥ 1 = A (u 0 ) ∞ .
We set λ = 5, so that condition ( 23) is satisfied if

ω ≤ ω 0 = 5 3 .
For the D1Q4 model presented in section 3, condition [START_REF] Baty | A robust and efficient solver based on kinetic schemes for magnetohydrodynamics (MHD) equations[END_REF] gives

λ ≥ 2 3 .
We set λ = 5, so that condition ( 23) is satisfied if

ω ≤ ω 1 = 60 47 .
We have 1.276 < ω 1 < 1.277. With ∆x = 1 50 and a final time of computation T max = 0.8, the supremum bound of the solution takes the values indicated in Table 1. We can see that for the D1Q2 model, if ω > ω 0 then u(•, T max ) ∞ > 1: the scheme does not preserve the extrema. The D1Q4 model is very diffusive so that the value 1 is not reached for ω ≤ 1.70. 1. The values of u ∞ when ω varies, at time T max = 0.8 with 100 points on [-1, 1], λ = 5.

ω D1Q2 u(•, T max ) ∞ D1Q4 u(•, T max ) ∞ 1.
In Figure 1, we show the solution as a function of x at the final time T max = 0.8, for some values of ω. The shock is more and more accurately approximated when ω increases but the maximum of the solution is not preserved. This is classical in the context of hyperbolic conservation laws: accuracy and stability are often contradictory. This indicates that convergence in a weaker sense than the one proved here could hold. On the left picture we show the D1Q2 results, while the D1Q4 results are depicted on the right. The D1Q4 model computes a more diffusive solution than the D1Q2 one. It is also the case with a 1000 points mesh, as shown in Figure 2 left if we take the same value of ω for both models. In Figure 2 right, we take ω = 1.67 for the D1Q2 model in order to keep the monotony property but for D1Q4 we can take ω = 1.8 and we obtain the same accuracy, without loss of stability. The extended stencil seems to bring more stability than expected by the monotonicity conditions. For ν = (cos θ, sin θ) fixed, we define for (x, t) ∈ R 2 × R:

u(x, t) = u(x • ν, t).
This defines a solution of the two-dimensional equation

∂ t u + ∂ x1 (A(u) cos θ) + ∂ x2 (A(u) sin θ) = 0.
We take the same initial value as for the one-dimensional tests:

∀x ∈ R 2 , u 0 (x) = 1 if x • ν < 0, u 0 (x) = 0 else.
The rotation angle is θ = π/12. The final simulation time is equal to T max = 0.8. The test is performed on a 100 × 100 uniform mesh of [-1, 1] × [-1, 1]:

∆x 1 = ∆x 2 = 1 50 .
As a consequence λ 1 = λ 2 = λ > 0. We test the D2Q4 and D2Q8 models presented in section 3.

For the D2Q4 model the condition (5) reads as 2 max(cos θ, sin θ) ≤ λ. The supremum bound of the solution takes the values indicated in Table 2. We observe that the L ∞ bound of the solution is preserved for ω ≤ 1.30. Table 2. The values of u ∞ when ω varies, at time T max = 0.8 with 100x100 points on [-1, 1] × [-1, 1], λ = 10.

In Figure 3 we represent the solution along the axis which contains (0, 0) and is orthogonal to the direction of propagation of the shock for several values of ω, beginning with ω 2 for D2Q4 and ω 3 for D2Q8. We also represent the two-dimensional isovalues for ω = 1.60 in Figure 4. We remark that the D2Q8 model is more diffusive than the D2Q4 one. 

Conclusion

In this article the monotony properties of the considered lattice Boltzmann Method allowed us to obtain its convergence for ω > 1, for a scalar multidimensional conservation law. In particular, for the D1Q2 model, the maximal value is ω = 2. The one and two dimensional tests show that the L ∞ norm of the solution can exceed the L ∞ norm of the initial data for values of ω greater than the theoritical value given by [START_REF] Milišić | Stability and convergence of discrete kinetic approximations to an initial-boundary value problem for conservation laws[END_REF]. Except for the D1Q2 model, it seems that some diffusion process preserves this norm on a larger interval.

Hyperbolic systems of conservation laws can be approximated by the same scheme, but monotony does not hold anymore for systems, so that the method presented here cannot work. Some investigations were already done for systems, with enlightening results in the linear case, see [START_REF] Guillon | Stability analysis of the vectorial lattice-Boltzmann method[END_REF] and references in this paper.
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 2 Figure 2. Shock solution of Burgers equation at time T max = 0.8 with 1000 points on [-1, 1], λ = 5. Left : ω = 1.3 for both D1Q2 and D1Q4 models. Right: D1Q2 model with ω = 1.67 and D1Q4 model with ω = 1.80.
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 33 Figure 3. Shock solution of Burgers equation with rotated data in 2D, at time T max = 0.8 with 100 × 100 points on [-1, 1] × [-1, 1], λ = 10. Solution along the axis containing (0, 0) and orthogonal to the direction of propagation of the shock. Left : D2Q4 model. Right: D2Q8 model.
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  D2Q4 u(•, T max ) ∞ D2Q8 u(•, T max ) ∞ 1
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 4 Figure 4. Shock solution of Burgers equation with rotated data in 2D, at time T max = 0.8 with 100 × 100 points on [-1, 1] × [-1, 1], λ = 10, ω = 1.60. Top : isovalues for the D2Q4 model. Bottom: isovalues for the D2Q8 model.