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Abstract 

Mitochondria play an essential role in the life cycle of eukaryotic cells. However, we still don't 
know how their ultrastructure, like the cristae of the inner membrane, dynamically evolves to 
regulate these fundamental functions, in response to external conditions or during interaction 
with other cell components. Although high-resolution fluorescent microscopy coupled with 
recently developed innovative probes can reveal this structural organization, their long-term, 
fast and live 3D imaging remains challenging. To address this problem, we have developed a 
convolutional neural network (CNN), called DeepCristae, to restore mitochondrial cristae in 
low spatial resolution microscopy images. Our CNN is trained from 2D STED images using a 
novel loss specifically designed for cristae restoration. Random sampling centered on 
mitochondrial areas was also developed to improve training efficiency. Quantitative 
assessments were carried out using metrics we derived to give a meaningful measure of 
cristae restoration. Depending on the conditions of use indicated, DeepCristae works well on 
broad microscopy modalities (STED, Live-SR, AiryScan and LLSM). It is ultimately applied in 
the context of mitochondrial network dynamics during interaction with endo/lysosomes 
membranes. 

Keywords: Convolution neural network, image restoration, mitochondria cristae, fluorescence 
microscopy, super resolution, live imaging 
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Introduction 

The study of certain pathologies has shown the importance of mitochondria, which above all, 
ensure ATP production within cells and are central in many biological functions (e.g., metabolic 
pathways, ion homeostasis, apoptosis, autophagy, epigenetics…)1,2. Mitochondrial energetic 
adaptations to environmental constraints encompass a plethora of processes that maintain 
cell survival. An alteration of these processes generally leads to serious diseases such as 
cancer, neurodegenerative and cardiovascular disorders3. Although much attention has been 
paid to the role of mitochondria, the precise niche the organelle plays in cell life and death still 
remains unclear. The lack of in-depth knowledge about the ultrastructural evolution of 
mitochondria in live cells, under normal and stressful conditions, might be one of the blind 
spots. In particular, the cristae formed by the inner membrane of mitochondria that concentrate 
ATP production in a defined area, their dynamic behavior, sublocation or density have been 
poorly related to the various functionalities or dynamic processes (e.g., fusion, fission) that 
mitochondria undergo. The challenge we address, lies in imaging mitochondria cristae, which 
measure between 30 and 50 nm wide4, at a high spatial and temporal resolution so that their 
structural dynamics and interactions can be accurately studied over time for several dozens of 
milliseconds to a few seconds. However, this is starting to be possible with the recent 
development of high-resolution imaging approaches5. 

Stimulated emission depletion (STED) microscopy, which allows for sub-diffraction resolution 
(xy: 30-50 nm), is one of the very few techniques6,7 able to decipher dynamics of mitochondria 
cristae in live cells4. However, their observation in 3D and in fast time is limited by the 
acquisition frame rate capacity (1 plane ≈1 to 10 s). In addition, depletion STED, which is the 
principle that achieves nanoscopic resolution, induces local heat by high illumination intensity8 

to which mitochondria are known to be particularly sensitive9,10. This can affect their overall 
physiology and potentially lead to apoptosis and mitophagy. A number of new fluorescent 
probes that are more photostable with less saturation intensity and that allow cristae 
decoration, have been developed the very last years7,9,11,12. Yet, the application of a dark 
recovery step (≈30 s) after STED imaging is still necessary, again at the expense of temporal 
resolution. This could be improved by applying a partial STED depletion protocol, leading to 
an intermediate quality resolution (xy≈100 nm)13, but insufficient to spatially resolve 
mitochondria cristae and not solving the frame rate limitation (4-5 s in average). 

In this context, one solution to study the dynamics of mitochondria cristae is to collect as much 
temporal information with minimal phototoxicity using an appropriate microscope, and then 
restore the spatial dimension using computational methods. Indeed, the development of image 
restoration algorithms has become increasingly popular in recent years with the need for 
nanoscale analysis14–22. At the heart of fluorescence microscopy have been actively developed 
denoising algorithms23–28, dedicated to images corrupted by a mixed Poisson-Gaussian noise, 
as well as deconvolution algorithms29–31, designed to remove the blur induced by the limited 
aperture of the microscope objective. Some methods combine the two approaches32. 
However, these conventional restoration methods usually rely on general assumptions, such 
as the nature and level of noise and spatial regularity, which hampers their effectiveness on 
the diversity of structures and level of degradation in microscopy images. Over the years, the 
literature on image restoration has evolved considerably due to deep learning and the rapid 
growth of convolutional neural networks (CNNs). These methods have the advantage of 
making assumptions based on image content, resulting in state-of-the-art performance in 
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denoising33,34 and deblurring14,19,22,35–38 fluorescence microscopy images. However, these 
methods have two major drawbacks. First, these CNNs often require a training step based on 
a large ground truth dataset that is generally not available in microscopy. Second, they focus 
on restoring the entire image, while sometimes little information is worth restoring within it, 
especially in the dark background. This is the case with mitochondria cristae, which have a 
sparse number of pixels in the image compared to the background. Therefore, CNNs that have 
been previously applied to mitochondria microscopy images21,22,38,39 provide good global 
restoration of the background and mitochondria but fail to accurately restore fine details as 
cristae, especially in very low spatial resolution images. To circumvent this, new conventional 
methods have been proposed to enhance resolution and suppress artifacts in high-resolution 
techniques, including Hessian-SIM17. However, as explained above, the denoising results are 
limited when dealing with low signal-to-noise ratio images and Hessian deconvolution 
assumes that the unknown image is smooth in some sense and sparse. A hybrid solution has 
been proposed in TDV-SIM40, which combines the strengths of conventional physical model-
based algorithms with deep learning-based algorithms. Another hybrid solution, rdLSIM21, 
incorporates the deterministic physical model of specific microscopy into network training and 
inference. Nevertheless, the effectiveness of these methods, along with conventional 
restoration algorithms, relies on the careful selection of optimal parameters or on prior 
knowledge of illumination patterns, respectively. 

Instead of developing an additional generic image restoration method that may not 
satisfactorily enhance certain sparse but informative pixels in the image, we present 
DeepCristae, a CNN specifically developed to restore mitochondrial cristae in low spatial 
resolution microscopy images. DeepCristae was applied to several microscopy modalities and 
different biological scenarios capturing live mitochondria at high speed with low illumination 
and thus low phototoxicity. DeepCristae allows long-term/fast dynamic observation of cristae 
behavior and organization. The main challenge was to handle the low number of cristae pixels 
compared to the background in the acquired images. Therefore, the main contributions of this 
work are 1) the design of a new training loss dedicated to the restoration of specific pixels of 
interest, 2) a random patch sampling focusing on areas of mitochondria, and 3) the building of 
metrics for objective assessment of cristae restoration. 

Results 

Overview of DeepCristae 

DeepCristae aims to restore mitochondrial cristae in intermediate to low spatial resolution 
microscopy images (Fig. 1). DeepCristae mainly consists of a U-Net trained on a dedicated 
dataset built from real high-resolution 2D STED images (Fig.1 and Supplementary Table 1) 
and using a novel training loss we specifically designed for cristae restoration (Methods, Eq. 
(1)). Although the term is not fully appropriate, for simplification we refer to this dataset as 
“synthetic” 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. A pipeline for random patch sampling focusing on regions of mitochondria in 
the acquired data was also developed (Supplementary Fig. 1). DeepCristae image restoration 
network was implemented in Python (TensorFlow version 2.11) and is freely available as an 
open-source software (see code availability). DeepCristae is also integrated into BioImageIT41, 
an open-source platform with existing software for microscopy. 
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DeepCristae quantitatively outperforms state-of-the-art algorithms on the synthetic 
dataset 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Our method was quantitatively compared to existing both conventional and deep learning 
algorithms for image restoration. It includes denoising methods (ND-SAFIR23, 2D median filter 
and Noise2Void33), deconvolution algorithms (Richardson-Lucy29,30 and Wiener31), and 
approaches combining both, such as SPITFIR(e)32, CARE19, RCAN37 and SRResNet35 (details 
are in Supplementary Note 2.2.2). All methods were applied to 9 test images of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
(Supplementary Note 1.2.1). Note that in this dataset, the ground truth images were obtained 
by deconvolving the high-resolution 2D STED images with a Richardson-Lucy (RL) algorithm 
to enhance mitochondria cristae. Iterative RL algorithm is suitable for signal-dependent noise 
removal. Nevertheless, after several iterations it may create unwanted artifacts such as a 
"night sky" pattern in the image. To generate ground truth images from the input 2D STED 
images, restored intermediate images with little “sky night” pattern, less blurred and noisy than 
the input images, were carefully selected. All deep learning methods were trained from the 
same patches extracted from 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 
First, to evaluate the performance of the different methods, we used current metrics, namely 
NRMSE, PSNR and SSIM (Supplementary Note 2.1). However, these measures are relevant 
to the image as a whole, but insufficient in the context of mitochondrial cristae restoration. 
Indeed, the images contain only few pixels of cristae and thus have too little impact in those 
metrics unlike the many background pixels. To overcome this issue, we encouraged the 
evaluation metrics to focus exclusively on mitochondria pixels. To solve this problem, 
evaluation metrics are focused exclusively on mitochondrial pixels. We call these mitochondrial 
metrics 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚, 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚 and 𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚. To go one step beyond and accurately assess 
cristae restoration, we also introduced the cristae metrics 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐, 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 and 
𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐. These metrics are computed over mitochondria cristae pixels only, obtained from 
manual annotations (Supplementary Note 2.1). Each competing algorithm was evaluated over 
nine test images, for the nine aforementioned metrics (Fig. 2b). For all measurements focusing 
on mitochondria or cristae, DeepCristae ranks first, and is either first or second otherwise. 
Conventional methods behave worse than deep learning approaches, CARE appearing 
DeepCristae's most competitive method. However, as confirmed by the values of the metrics 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐, 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 and 𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐, CARE restores mitochondria cristae with less 
sharpness, especially for mitochondria with low contrast or in a noisy background (Fig. 2a, 
CARE white arrows). It should be noted that if we had considered conventional NRMSE, PSNR 
and SSIM measurements, we would not have been able to demonstrate the benefits of 
restoring more informative pixels. In terms of visual assessment, SRResNet and RCAN amplify 
the background noise, resulting in less accurate restoration of cristae and unrealistic 
reconstructed structures in the background or in mitochondria (Fig. 2a). DeepCristae removes 
noise background while restoring most of the cristae details. 

Second, a test image of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 was restored with DeepCristae (Fig. 3a). We selected four 
regions of interest (ROIs) to better appreciate the restoration results (Fig. 3b-e). For each ROI, 
a comparison of normalized intensity profiles between the input image, DeepCristae restored 
image and the ground truth image is performed. It shows that DeepCristae restores spatial 
information by revealing mitochondria cristae while improving signal to noise ratio. The line 
profiles of DeepCristae are sometimes smoother than the ones of the ground truth, especially 
in areas where the image background is noisier (Fig. 3d, e). This is due to a residual “night 
sky” effect in the ground truth that does not appear with DeepCristae. This surprising result 
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can be explained in two ways. First, we reinject information from the input into the network at 
the end and second, our new Similarity Component Prioritization (SCoP) loss (see Methods) 
especially focuses on the mitochondria and cristae pixels where there are the fewest artifacts 
with RL. 

Robustness and stability of DeepCristae. 

We have shown that DeepCristae performs well on 2D STED images and outperforms state-
of-the-art algorithms. However, it is important to verify the reliability of DeepCristae more 
widely. DeepCristae has been trained on a dedicated dataset acquired with specific 
microscope settings and mitochondria properties (e.g., fluorescence markers, width in pixels 
of the mitochondria in the images). Any change in these settings is expected to alter the quality 
of the restoration results. To evaluate the influence of changes in these parameters on the 
results, three experiments were performed. Our model was trained from the training images of 
𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 depicting mitochondria of width 15.64 ± 4.04 pixels on average. We started by studying 
the quality of the predictions as a function of the mitochondria width in pixels in the input 
images. To that end, the 9 test images of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 were rescaled 11 times in order to contain 
mitochondria of specific widths (in pixels) on average. It thus results on 11 test datasets on 
which our trained DeepCristae model was applied (Supplementary Fig. 2a, b) and the metrics 
(Supplementary Note 2.1) were computed. The evolution of the metrics as a function of 
average mitochondrial width shows that the closer you get to the training parameters (i.e. an 
average width of 15.64 pixels), the better the quality of the restorations. In fact, if the 
mitochondria are too small, few cristae are restored and the mitochondria are thin. On the 
contrary, if the size is too large, DeepCristae tends to create artifacts looking like cristae 
patterns. Next, our model was trained on images obtained with specific parameters that mimic 
microscope settings. Real images are assumed to be corrupted by mixed Poisson-Gaussian 
noise (with standard deviation 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐 = 4) and the point spread function of the microscope is 
approximated by an isotropic Gaussian function of standard deviation 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 = 3.25 pixels. We 
performed two experiments, similar to the one described above, to examine the assessment 
of DeepCristae image restoration as a function of 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐 and 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 (Supplementary Fig. 3). For 
both experiments, visual results show that the quality of the restoration decreases as 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐 
and 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 increase (Supplementary Fig. 3b, d). The higher the 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐 or 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 values are, the 
blurriest the mitochondria's boundaries and their cristae. This is also confirmed by the evolution 
of the metrics as a function of 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐 (Supplementary Fig. 3a) and by the evolution of 𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚 
and 𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 as a function of 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 (Supplementary Fig. 3c). Surprisingly, the evolution of 
the PSNR and NRMSE as a function of 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 have a bell-shape with a maximum and a 
minimum, respectively, for values of 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 close to 3.25 pixels. We thus recommend using 
DeepCristae on microscopy images with blur and noise levels at worst equal to our training 
conditions (𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐 = 4 and 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 = 3.25 pixels). Beyond this, the quality of the restoration can 
drastically decrease, especially for blur, and for too high values of these parameters 
DeepCristae could reveal hallucinated cristae shapes. 

Moreover, it is important to guarantee that under well-controlled conditions of use 
(mitochondria width, image blur and noise), DeepCristae is hallucination-free and stable. By 
stable we mean that different training leads to consistent predictions. To demonstrate that 
these requirements have been met, we performed three experiments. First, we trained 10 
DeepCristae neural networks with different training data, each generated with our patch 
generation method applied to the 24 training images of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (Fig. 4g-l). For each training, the 
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resulting model was applied to the 9 test images of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and the aforementioned metrics were 
computed. The average metrics obtained over the 10 trainings are close to the ones obtained 
with our model and the standard deviations are very low, showing consistency between 
predictions (Fig. 4l). By visually analyzing the predictions, the color map of the standard 
deviation (Fig. 4g) as well as looking at normalized intensity line profiles along mitochondria 
(Fig. 4h-k), we observe that the 10 trainings agree overall on the presence or absence of 
cristae but diverge in their intensity and their precise boundaries. In this experiment, all 
networks were initialized with the same weights, confirming that our patch sampling method is 
robust and leads to homogeneous learning. A second similar experiment was carried out. Ten 
trainings were performed from one dataset but with 10 different weights’ initializations 
(Supplementary Fig. 2c-h). This experiment indicates that the same dataset leads to 
homogeneous learning, meaning that the randomness of initialization does not play a key role 
in the learning process. Finally, to qualitatively assess the performance of DeepCristae on real 
data, we acquired 5 pairs of real 2D STED images. Each pair contains one low-resolution (LR) 
and one high-resolution (HR) STED image, acquired as quickly as possible (~30 s), to 
minimize the displacements and deformations of mitochondria between the two acquisitions 
(Supplementary Note 1.2.1). The HR STED images were deconvolved using the RL algorithm 
to enhance mitochondria cristae and are considered as “ground truths” (GTs). The LR STED 
images were resized to have an average mitochondrial width of 15.64 pixels (391 nm), in line 
with the conclusions drawn above, and were then given as input to DeepCristae. The obtained 
predictions were qualitatively compared to the GTs to control their consistency. Four ROIs, 
from two of the five pairs of real STED images and corresponding predictions, were selected 
in regions where small mitochondrial displacements were observed to better appreciate the 
restoration (Fig. 4a-f). For each ROI, a comparison of normalized intensity profiles between 
the input LR image, DeepCristae restored image and the ground truth image is performed. A 
consistency between the cristae restored by DeepCristae and the ones present in the ground 
truths is observed overall, and no meaningful “hallucination” is observed. 

DeepCristae enables to restore 2D+time STED images 

While 2D STED nanoscopy enables to resolve mitochondria cristae and was here helpful to 
develop DeepCristae, live STED acquisition encompasses a number of hurdles. It includes 
relatively long-time frames between images, even when a photostable probe was used (Fig. 
5a, b), limiting the temporal overview of the mitochondrial dynamics in the same plane. 
Moreover, STED imaging may rapidly induce photo-bleaching, which makes ultrastructural 
details progressively dimmed. More problematic, repeated STED imaging rapidly induces 
morphological deterioration of live mitochondria, illustrated by their swelling in the latest time 
points (Fig. 5a, b). This swelling effect was quantified here for HR STED by measuring the 
lateral widths of 7 distinct mitochondria over the 10 time points (Fig. 5d) in the image series 
(Fig. 5a, b). The swelling appears between the 5th and the 7th frames.  

In order to improve the frame rate of 2D+time STED imaging while limiting the photodamages 
on mitochondria, one may adjust the STED imaging protocols (Supplementary Note 1). 
Accordingly, we built another live STED dataset, first to give an indication on how long, with 
STED acquisition in lower depletion conditions, we can image before the mitochondria are 
damaged and second, to control the efficiency of DeepCristae restoration over time. In what 
follows, these low-resolution (LR) STED images were referred to as Fast STED images. This 
goes at the depend of xy resolution (Fig. 5c, left bottom triangles in image series) for both the 
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lateral width of mitochondria and the cristae width (Fig. 5d, Fast STED and Fig. 5e, RAW, 
respectively). Applying DeepCristae restoration on these latest series clearly revealed cristae 
morphology (Fig. 5c right top triangle in image series). As expected, LR (or Fast) 2D+time 
STED images show little changes in mitochondria lateral widths in time, in contrast to HR 
STED (early and late time points in Fig. 5d) but a degraded resolution in the cristae widths 
(from a mean (𝜇𝜇) of ~90nm in HR STED to ~120 nm in Fast STED with 𝜎𝜎 = ± 47 nm). Applying 
DeepCristae allows recovery of a resolution lower than 100 nm and drastically reduces the 
variability of the measurement. The mean crista-to-crista distance, measured as peak-to-peak 
intervals (Fig. 5f), widely depends on the cristae density along the mitochondria network. Here, 
in RPE1 cell, it varies from 50 nm to more than 500 nm in early time points in HR STED (𝜇𝜇 
=319 nm, 𝜎𝜎 = ± 247 nm) while the heterogeneity increases in late time points (from 130 nm up 
to 1.6 µm), consistently with the observable swelling of the mitochondria. In Fast STED, the 
cristae intervals measurements were non-significant. However, after DeepCristae restoration 
the mean crista-to-crista distance was estimated at ~142 nm (𝜎𝜎 = ± 46 nm) (Fig. 5f, g). 
Differences in these crista-to-crista measurements with similar studies on HeLa or Cos7 cells 
for instance, will be further discussed. DeepCristae restored the individual cristae at 81 nm of 
resolution (𝜎𝜎 = ± 9 nm) at FWHM (Full Width at Half Maximum), as compared to the 
approximately 50 nm obtained in other studies4. DeepCristae provides a useful way to improve 
live STED nanoscopy by improving the resolution and decreasing the frame rates (3 to 6s 
versus 13s), yet with no observable photodamage as illustrated here by measuring the swelling 
of mitochondria. 

DeepCristae restore 3D+time images of mitochondria cristae by using intermediate 
high-resolution and diffraction limited microscopy 

STED nanoscopy is not the only high-resolution microscopy adapted to resolve internal 
mitochondria ultrastructures in live cells. Indeed, a number of works using adaptation of SIM 
approaches have been published over the last few years16,42, some combined with 
conventional deep learning methods20,22,39. Yet, the best compromise between Fast and 3D 
imaging still remains an issue. We next investigated the performance of DeepCristae 
prediction on intermediate HR microscopies chosen for their 3D optical slicing performance. 
Spinning disk confocal equipped with a Live-SR module (or SDSRM for Spinning Disk Super 
Resolution Microscopy) is one of those well-disseminated systems equivalent to SIM. It 
improves the xy resolution by a factor of ~2 (~120-130 nm at 488 nm, ~140 nm at 561 nm)43 
while giving access to the depth (z-axis) of the sample and the live imaging of mitochondria 
(time t) without severe photo-bleaching and phototoxicity. The use of the Live-SR is therefore 
motivated here by both the study of these four dimensions and the ability of our model to 
correctly perform cristae reconstruction via multiple microscope imaging modalities. 
DeepCristae efficiently revealed cristae organization in single 2D Live-SR images acquired 
within 30 ms (Fig. 6a, upper images) and thus in 3D (Fig. 6a, lower images, MIP on 14 planes, 
with a stack time ~800 ms), giving access to the overall mitochondria network in the live cell 
at a fast rate. In this respect, it outperforms HR STED imaging and even Fast (LR) 2D-STED 
imaging after DeepCristae restoration (compared to Fig. 5c). Cristae width comparative 
estimation (Fig. 6b) shows the improvement in resolution obtained after DeepCristae 
restoration on single plane Live-SR images (Raw =149 ± 64 nm when measurable; 
DeepCristae =87 ± 11 nm). These results are close to the expected widths of circumvoluted 
cristae tubules (50 to 100 nm) obtained by other methods derived from SIM imaging22. We 
then tested DeepCristae restoration on LLSM44 imaging which is not an HR microscopy by 
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itself (at least in the dithered mode) but gives the best compromise in terms of fast 3D 
acquisition with minimal photon dose illumination and consequently low photo-damage of the 
mitochondria over time. Surprisingly, although with intrinsic limited and non-isotropic 
resolutions (PSF xy=300 nm and z=600-700 nm in our system) and a particular geometrical 
acquisition mode, cristae were however detectable in some mitochondria after realignment 
and a Richardson Lucy (RL) deconvolution. The resulting images were here considered as 
“Raw” data (Fig. 6c, 2D upper panel, left image). Applying DeepCristae to them (Fig 6c, 2D 
upper panel, right image and composite zoomed area for comparison) improves the cristae 
resolution (Raw = 339 ± 248 nm, when measurable; DeepCristae= 94 ± 15 nm) and strongly 
reduces the variance of paired measurements (Fig. 6d). One of the obvious advantages of 
LLSM over confocal imaging is to allow continuity between single image planes over large 
stacks coupled to an extended depth of focus, as illustrated here by the 3D rendering as an 
oblique projection (Fig. 6c, 3D). Moreover, LLSM is particularly adapted to long range/high 
frequency imaging on whole living cells, which, coupled to low photon dose illumination, makes 
it one of the best imaging systems, if not the best, for the highly light-sensitive organelles that 
are the mitochondria. Applying DeepCristae adds information on cristae ultrastructural 
organization in the whole mitochondria network of the cell. Finally, Fast 3D Live-SR and LLSM 
time series (Fig 6e, f) were treated for DeepCristae restoration. Cristae ultrastructural features 
can be observed, while the mitochondrion network undergoes well known dynamic 
modifications such as fusion or fission processes (Fig. 6e, f, panels of composite zoomed area 
in both time series; left “RAW '' and right “DeepCristae”; Movies S1 and S2). Images are of 
better quality after restoration of Live-SR compared to LLSM images. However, it should be 
noted the gain in acquisition parameters for the latter in these experiments, with 75 slices per 
stack and a double channel stack time=1.3 s versus 14 planes per stack and double channel 
stack time= 3.9 s for Live-SR. DeepCristae restoration was also tested with an AiryScan 5 
LSM 980. It provided similar improvements, although for a 15 planes stack time of about 30s 
and with more artifacts appearing after DeepCristae, the nature of which most probably lies in 
the way the reconstruction of the AiryScan images was carried out from the values determined 
automatically by the commercial software (Supplementary Fig. 5). 

DeepCristae restoration allows to decipher mitochondria cristae morphodynamics 
during inter organelles interactions  

The most documented membrane-membrane interactions involving mitochondria are the 
endoplasmic reticulum (ER)–mitochondria contacts, whose functions have been continuously 
expanded since the 1990s45,46. In addition to the ER, mitochondria contact 
vacuoles/lysosomes, peroxisomes, lipid droplets, endosomes, the Golgi, the plasma 
membrane (PM) and melanosomes47. The number of these interactions as well as their 
duration drastically vary from one type to the other, as they depend on the respective 
membrane surface of the specific organelles within the cell and their contact time48. Their 
detection may thus require fast and/or long-range 3D imaging. As already mentioned, even 
high-resolution approaches which are well adapted to decipher ultrastructural features of 
mitochondria such as cristae, generally fail to capture their dynamic evolution in the 3D space 
of the whole cell at multiple time scales. This can be critical, if one wants to study inter-
organelle membrane interactions and their effects. We next initiate the investigation of 
endosome/lysosome-mitochondria dynamic interactions by addressing specifically the 
ultrastructural behavior of the cristae during these contacts. This was done by imaging multiple 
3D+time double fluorescence series in Live-SR (represented as a single stack MIP in Fig. 7a, 
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top left) or LLSM (represented as a single stack MIP in Fig. 7c, top left), where the membranes 
of the endo-lysosomal pathway were continuously labeled (Supplementary Note 1.1). 
DeepCristae restoration was applied on both MIP datasets (respectively, Fig. 7 a, c, bottom 
left). A number of mitochondria dynamic events correlated with endosomal structure behaviors 
were captured. Only a few of them are here extracted as thumbnail time series (Fig. 7b, d) of 
zoomed area (colored insets in Fig. 7a, c) from the Live-SR and LLSM acquisitions, 
respectively. Among others, the formation of endo-lysosomes contacts sites with mitochondria 
(Fig. 7b, blue and green), positioning of endo-lysosomes relative to fission sites of 
mitochondria (Fig. 7b, blue and red), very long confinement of endo-lysosomes within the 
mitochondria network (Fig. 7b, orange) and image series of endo-lysosomes appearing to pull 
a small mitochondria from one to another elongated tubules of mitochondria (Fig. 7b, red). 
DeepCristae restoration on the space-time localization of these events can also be evaluated 
dynamically (Movie S3). Similar events are followed with LLSM, such as the fission of 
mitochondria at a contact site with an endo/lysosome vesicle (Fig. 7d, orange) and long 
confinement of an endo/lysosome vesicle within the mitochondria network (Fig. 7d, green). 
The main advantage of the LLS modality (fast frame rate, low photon illumination of the sample 
coupled to whole cell 3D acquisition) is the improvement of the time resolution of the data 
series (or long-range acquisition). Consequently, fast events involving endo-lysosome 
contacts with mitochondria are easier to capture and these dynamics are precisely deciphered. 
For instance, one may extract first (Fig. 7c, blue inset), probably a fusion process (Fig. 7d, 
from time point 105 to time point 119; ∆𝑡𝑡 = 13 𝑠𝑠), and second a fission process (Fig. 7d, from 
time point 192 to time point 198; ∆𝑡𝑡 = 6 𝑠𝑠; Movie S4). At each time point, DeepCristae-restored 
mitochondria and denoised/deconvoluted endo-lysosomes double-labeled images 
(Supplementary Note 1) are paired to non-treated images (right and left panel, respectively, of 
thumbnails time series in Fig. 7b, d). While cristae resolution in LLSM does not reach that 
obtained with Live-SR, DeepCristae restoration brings values closer together (Fig. 6b, d). In 
all situations and for both intermediate HR (Live-SR) and diffracted limited (LLSM) imaging 
modalities, DeepCristae restoration provides ultrastructural information on the positioning, 
density, and dynamics of mitochondria cristae. We then wanted to quantitatively assess how 
the dynamic architecture of the mitochondria internal membrane during endo/lysosomes-
mitochondria interaction could be revealed with DeepCristae. We focused on the fission 
process. To do so, we first selected 21 distinct 3D+time image series from the Live-SR 
datasets, in which mitochondria fission was monitored. Intensity line plots were measured 
along mitochondria on some time points framing the fission event. This was done on both 
DeepCristae-restored and unrestored individual time points in a “blind” manner, meaning 
without looking in the second channel depicting the location of endo-lysosomes 
(Supplementary Fig. 6a). Measurements of “peak to peak” intervals between cristae, were only 
possible in the DeepCristae restored images and show an increased density after fission 
occurs (Supplementary Fig. 6b, dark circles). Interestingly, by overlaying the second channel 
in a second step, 60% (13 over 20) of these selected time series showed proximity if not direct 
contact at the site where mitochondria fission is observed (Supplementary Fig. 6b, red circles; 
6c for statistics). While still preliminary and not deciphering the exact nature of the endosomal 
compartments involved (i.e., PMDR labels the overall endo-lysosomal pathway), this illustrates 
how DeepCristae would represent an asset to quantitatively study the dynamic architecture of 
the mitochondria internal membrane during diverse dynamic processes or in particular 
physiological or constrained conditions. 
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Discussion  

Mitochondrial membrane architecture is essential for the many functions of mitochondria. In 
particular, mitochondria cristae are the main site of energy production and are dynamic 
ultrastructures remodeling upon various cellular stimuli and natural processes (apoptosis1; 
aging49). Therefore, understanding the structure and dynamics of cristae is vital for 
comprehending mitochondrial function and its implications in cellular physiology and diseases. 
High-resolution microscopy coupled with robust mitochondrial probes7,9 are key recent 
developments that started to reveal the fine details of mitochondrial cristae structure and 
organization, overcoming the limitations of conventional microscopy. However, imaging at high 
spatial and temporal resolution remains a challenge. 
 
DeepCristae exploits the power of deep learning to reveal cristae in images taken with low 
photon illumination, enabling clearer visualization and analysis of mitochondria cristae in living 
cells without interfering with the natural behavior of mitochondria. While it has been trained on 
a dedicated dataset that was created from real high-resolution 2D STED images, we have 
shown that it operates for a wide range of optical resolutions, from diffraction-limited to 
intermediate high-resolution microscopy, providing researchers with a powerful tool to study 
cristae dynamics without compromising their structural integrity or functionality.  

While there are other deep learning approaches available for revealing cristae 
ultrastructure21,22,38,39, DeepCristae offers unprecedented advantages. First, thanks to a well -
defined training loss dedicated to the restoration of mitochondria signals, it outperforms state-
of-the-art methods. Secondly, it not only makes it possible to visualize and restore cristae 
dynamics in 2D STED nanoscopy with minimal illumination and without damaging 
mitochondria but more importantly, it extends these capabilities to other high-resolution 
imaging techniques such as Live-SR, SIM and AiryScan, more suited to such 3D dynamics. 
Finally, DeepCristae can be applied to advanced microscopy techniques such as LLSM, 
enabling fast and long-duration 3D+time acquisitions within the diffraction-limited range. This 
versatility makes DeepCristae a unique and valuable solution for studying cristae dynamics 
across a range of spatial and temporal scales. 

Overall, our results show that fluorescence microscopy combined with DeepCristae enables 
long-term/fast dynamic observation of cristae behavior and organization with high quality. To 
illustrate the contribution of our approach to biological phenomena that are likely to involve the 
functional structure of mitochondria, we have chosen to focus on inter-organelle interactions 
and their consequences. While mitochondria-associated ER membranes, the biochemical 
composition of the contact sites and diverse physiological and disease-related functions have 
been extensively studied over the decades50,51, it is increasingly recognized that other 
organelle contacts have a vital role in diverse cellular functions52. More recently, there has 
been growing interest in quantifying other membrane interactions with mitochondria and their 
cell distribution in space and time48, in particular within the endo-lysosomal pathway and their 
contribution to the fission/fusion process of the mitochondria network53. Here, while confirming 
the coincidence of contacts between the endo-lysosomal membrane and mitochondria, we 
enlightened the change of cristae density during fission (Supplementary Fig. 6). This density 
as well as complex cristae arrangements depends on cell types and metabolic activities4,54, 
not talking of obvious modifications induced by environmental conditions. Until now, to provide 
a dynamic view of individuals and groups of cristae required 3D nanoscopy or linear SIM16, 
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which are not always compatible with the time frame required to capture the event of interest. 
In this respect, DeepCristae might be an asset to compare the cristae dynamics in different 
cell types and in these various conditions.  

However, as with any image restoration method, scientists may be concerned by the 
robustness of DeepCristae to accurately restore mitochondria cristae and not hallucinate them. 
This is why we investigated the stability and limits of our method. First, we consider the RL 
algorithm in our proof-of-concept as it may be considered as the baseline algorithm for image 
deconvolution in fluorescence microscopy. The behavior of this algorithm is well established, 
including the “night sky” artifacts when iterated. The GTs shown in the manuscript may be 
improved if we consider more sophisticated deconvolution algorithms. We also worked out 
different conditions of use to be respected to guarantee good quality and truthfulness of the 
results. It is important to feed DeepCristae with images containing mitochondria whose 
average width in pixels is close to the one seen during the training. Concerning the microscope 
settings, it is better to ensure that the level of noise and blurring in the input images is 
equivalent to or better than the one present in the training data (which was quite high in our 
training). Under these conditions of use, across all our experiments and through different 
microscopy modalities, no hallucination was observed: a consistency between line profiles 
along mitochondria between raw and restored data was always observed. 

Like cytoskeletal elements, the mitochondrial ultrastructure is a key element for comparing the 
performance of new super-resolution microscopy techniques. In terms of applications, 
DeepCristae makes it possible to track the evolution of mitochondrial cristae morphology over 
time, during interactions with other membrane components of the cell, or under extracellular 
conditions that mimic various pathological or stress situations. 

Methods 

In this section, we present the main features of DeepCristae. We first present the dataset we 
created from real 2D STED images to train the network. Then, we overview our network 
architecture and present the novel learning loss function, which prioritizes the restoration of 
specific pixels. We finally detail the image patch-sampling steps, which is a crucial stage in the 
model pipeline. 

Generation of the 2D STED dataset - 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. As mitochondria are living organelles, mostly 
organized as a quite fast-moving network in RPE1 cells (Supplementary Note 1.1), the 
acquisition of a pair of high and low-resolution images at the exact same time point is 
impossible. To train and quantitatively validate DeepCristae, we thus created a dataset, called 
𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, from 33 acquired high resolution (HR) 2D STED images (25 x 25 nm) that we denote 
𝑆𝑆𝐻𝐻𝐻𝐻 (Fig. 1 a-d). More information on the acquisition of the images 𝑆𝑆𝐻𝐻𝐻𝐻 are available in 
Supplementary Note 1.2.1.  

First, we degraded the images 𝑆𝑆𝐻𝐻𝐻𝐻 to obtain low resolution (LR) images of mitochondria, 
denoted 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿, that will serve as input to the neural network. To that end, we first applied a 
Gaussian filter of standard deviation 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 = 3.25 pixels to the images 𝑆𝑆𝐻𝐻𝐻𝐻 in order to 
approximate the blurring effect due to the point spread function of the microscope. Then, we 
added a Poisson-Gaussian noise (𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐 = 4.0 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠), consistently with noises observed in 
real STED images. The parameters 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 and 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐 were set to create pertinent input data 
that mimic real LR STED images (Supplementary Note 1.2.1). 
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Second, as our goal is to learn how to restore LR images to better reveal the mitochondria 
cristae, we paired the LR STED images 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿with their restored counterpart 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝐺𝐺. These 
ground truths are obtained by deconvolving the real HR images 𝑆𝑆𝐻𝐻𝐻𝐻 with the Richardson-Lucy 
algorithm29,30, enhancing the mitochondria cristae. Other deconvolution algorithms were tried, 
such as SPITFIR(e)32 or Wiener31, but the results obtained after training were not as good. 

Finally, the dataset 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is made of 24 training images and 9 test images. To further increase 
the size of the training set, data augmentation and patch sampling (later described in Methods) 
are performed on the pair of LR images 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 and ground truths 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝐺𝐺. The dataset is first 
augmented by applying three different rotations to the images (90°, 180° and 270°). Then, a 
shrink transform, and horizontal and vertical flips are successively applied to 25% of the 
augmented dataset, randomly selected. The final training set is made of 1824 patches of size 
128×128 pixels, whose 20% are used for the validation set (summary in Supplementary Table 
1). 

Network architecture. We used the network proposed by Weigert et al.19 as the backbone of 
the CNN architecture, itself built upon the U-Net55. It has a contracting path and an expansive 
path, each one consisting of 3 sequential downsampling and upsampling blocks, respectively. 
Each block of the first path is skip-connected to the associated one of the expansive paths. 
The contracting path consists of two successive 3×3 convolutions, each followed by a Rectified 
Linear Unit (ReLU), and a 2×2 max pooling operation with stride 2 for downsampling. Every 
depth in the expansive path consists of a 2×2 up-sampling of the feature map, concatenated 
with the corresponding feature map from the contracting path, followed by two 3×3 
convolutions with a ReLU activation function. At the final layer, one 1×1 convolution is used. 
The output results from an additive assembly between the input of the neural network and the 
last layer's output. The network (Fig. 1f) outputs the same size restored images.  

Design of the training loss. We present our new loss, the Similarity Component Prioritization 
(SCoP) loss, that has been designed to better restore mitochondria cristae. Most losses and 
metrics used to train networks or to evaluate the quality of restorations compute the score on 
the whole image, giving the same weight to any pixel. For example, the MAE computes the 
mean absolute error between the prediction and the target image, while the SSIM, despite not 
basing the calculation on pixels-to-pixels difference, computes the similarity among all the 
pixels of both images. Instead, our purpose is to focus on informative pixels corresponding to 
target structures in images. Indeed, the dark and noisy background occupies most of 
fluorescence images, which alters the learning. To overcome this issue, we introduce SCoP, 
a novel loss which adaptively prioritizes the restoration of mitochondria pixels. 

Our SCoP loss is built upon the structural dissimilarity (DSSIM) measure. Consider (𝑝𝑝, 𝑗𝑗) the 
spatial coordinates of a given pixel and a patch of size (𝑁𝑁,𝑁𝑁). The loss formula between a 
target image 𝑦𝑦 and its prediction 𝑦𝑦� is given by  

 𝑁𝑁𝑆𝑆𝑆𝑆𝑃𝑃(𝑦𝑦,𝑦𝑦�) =
1
𝑁𝑁2���

1 − 𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑠𝑠,𝑠𝑠�
𝑚𝑚𝑐𝑐𝑚𝑚(𝑝𝑝, 𝑗𝑗)

2
�
𝛾𝛾𝑖𝑖,𝑗𝑗𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑚𝑚=1

, (1) 

Where 𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑠𝑠,𝑠𝑠�
𝑚𝑚𝑐𝑐𝑚𝑚 is the map of the local structural similarity (SSIM) values for corresponding 

pixels between the images 𝑦𝑦 and 𝑦𝑦�. Each SSIM value ranges in [-1,1], where -1 (1, 
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respectively) testifies of a bad (very good similarity, respectively) between 𝑦𝑦(𝑝𝑝, 𝑗𝑗) and 𝑦𝑦�(𝑝𝑝, 𝑗𝑗). 
The parameter 𝛾𝛾𝑚𝑚,𝑗𝑗 prioritizes the restoration of specific regions of interest. In our case, we 
chose 𝛾𝛾𝑚𝑚,𝑗𝑗 = 1 if the pixel (𝑝𝑝, 𝑗𝑗) belongs to a mitochondrion, 4 otherwise. In this way, we 
encourage the network to focus on restoring mitochondria pixels and reduce the influence of 
a poorly restored background on the loss. Determining whether a pixel belongs to the 
background or to a mitochondrion can be performed automatically (using our method 
described in Methods “Image patch sampling for the training step - Thresholding”) or manually 
by using any binary segmentation provided by the user. 

Data normalization. Our training images of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 have different ranges of intensity values. To 
homogenize them, we normalized the input data and their corresponding ground truth to a 
common distribution of intensity values with the percentile normalizer. This normalization also 
has the advantage to exclude outliers, which are very frequent in microscopy imaging due to 
noise and luminance. The percentile normalization of an image 𝑆𝑆 is defined as 

 𝑆𝑆𝑠𝑠𝑚𝑚𝑐𝑐𝑚𝑚 =
𝑆𝑆 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑆𝑆,  𝑝𝑝𝑏𝑏𝑚𝑚𝑙𝑙)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑆𝑆,  𝑝𝑝ℎ𝑚𝑚𝑖𝑖ℎ� − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑆𝑆,𝑝𝑝𝑏𝑏𝑚𝑚𝑙𝑙)
 , (2) 

where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑆𝑆,𝑝𝑝) is the p-th percentile of 𝑆𝑆. We used 𝑝𝑝𝑏𝑏𝑚𝑚𝑙𝑙 = 2 and 𝑝𝑝ℎ𝑚𝑚𝑖𝑖ℎ = 99.8. This step is 
also performed during the inference step on any input data. 

Image patch sampling for the training step. Our model is trained on the dataset 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
containing 24 images (96 after data augmentation) of different sizes. In order to homogenize 
and increase the training dataset, we performed patch sampling. We sampled each input 
training image 𝑆𝑆 ∈ 𝑁𝑁𝑊𝑊×𝐿𝐿, defined over the grid 𝛺𝛺 of size 𝑊𝑊 × 𝐿𝐿, within 𝑁𝑁𝐼𝐼 = � 𝑊𝑊

128
� ∗ � 𝐿𝐿

128
� patches 

of size 128×128. As our images contain more background pixels than mitochondria pixels, grid 
or simple random patch sampling will end in too many empty patches. This can degrade the 
training of our model. Instead, we perform a random sampling focusing on the regions of 
interest, the mitochondria. Our pipeline (Supplementary Fig. 1) is described as follows.  

● Anscombe transform. To detect the areas of interest, we need to enhance the 
mitochondria signal with respect to the noise. To do this, we first remove the Poisson-Gaussian 
noise in STED images. This is achieved by applying an Anscombe transform, which enables to 
stabilize noise variance and to approximately convert Poisson-Gaussian noise into white Gaussian 
noise with a constant variance. The Anscombe transform of an image 𝑆𝑆 is given by 

 𝑆𝑆𝐴𝐴𝑠𝑠𝑠𝑠𝑐𝑐(𝑝𝑝, 𝑗𝑗) = 2�
3
8

+ 𝑆𝑆(𝑝𝑝, 𝑗𝑗),∀(𝑝𝑝, 𝑗𝑗) ∈ 𝛺𝛺 . (3) 

● Z-score. Then, we compute the Z-score map defined as 

 𝑍𝑍(𝑝𝑝, 𝑗𝑗) =
𝑆𝑆𝐴𝐴𝑠𝑠𝑠𝑠𝑐𝑐(𝑝𝑝, 𝑗𝑗)  −  �̂�𝜇∈

𝜎𝜎�∈
,∀(𝑝𝑝, 𝑗𝑗) ∈ 𝛺𝛺 , (4) 

where �̂�𝜇𝜖𝜖 and 𝜎𝜎�𝜖𝜖 are the estimated mean and standard deviation of the Gaussian noise 𝜖𝜖, 
respectively. Since most of the pixels in 𝑆𝑆 belong to the background, we consider �̂�𝜇𝜖𝜖 =
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𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚�{𝑆𝑆(𝑝𝑝, 𝑗𝑗)}(𝑚𝑚,𝑗𝑗)𝜖𝜖𝜖𝜖�. For 𝜎𝜎�𝜖𝜖, we use a robust estimator derived from the Median Absolute 
Deviation (MAD) such that 𝜎𝜎�𝜖𝜖 = 1.4826 ⋅ 𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚�{ |𝑝𝑝(𝑝𝑝, 𝑗𝑗)|}(𝑚𝑚,𝑗𝑗)𝜖𝜖𝜖𝜖�, where 𝑝𝑝(𝑝𝑝, 𝑗𝑗) =
2𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚,𝑗𝑗) − 𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚+1,𝑗𝑗)− 𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚,𝑗𝑗+1)

√6
, ∀(𝑝𝑝, 𝑗𝑗)𝜖𝜖𝛺𝛺, are the pseudo-residuals. In fact, under the 

hypothesis of having a white Gaussian noise and that the noise-free image is piecewise 
smooth in a local neighborhood, we have that 𝜎𝜎�𝜖𝜖2 = 𝑁𝑁[𝑝𝑝2(𝑝𝑝, 𝑗𝑗)].  

● Thresholding. The higher the Z-score in Eq. (4), the higher the pixel value is above the 
mean of the measured noise and therefore the pixel (𝑝𝑝, 𝑗𝑗) is considered as a pixel of interest. 
We apply a threshold c, in a way that any pixel (𝑝𝑝, 𝑗𝑗)𝜖𝜖 𝛺𝛺 such that 𝑍𝑍(𝑝𝑝, 𝑗𝑗) > 𝑝𝑝 is considered as 
a mitochondria pixel. We denote this set as 𝛺𝛺𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚. The threshold is automatically adapted for 
each training image. Starting from a fixed high value of 30, while 𝛺𝛺𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚 does not contain a 
minimum of 10% mitochondrial information (i.e., #𝛺𝛺𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚 < 10% #𝛺𝛺, where #𝛺𝛺 and #𝛺𝛺𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚 
denote the number of pixels in the sets 𝛺𝛺 and 𝛺𝛺𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚, respectively), we subtract 5 from the 
threshold value. This creates a binary mask on which we apply a median to remove the 
surrounding noise. This automatic procedure avoids cumbersome manual annotations. Note 
that this mask can also be used to compute the parameter 𝛾𝛾𝑚𝑚,𝑗𝑗 in our loss (see Eq. (1)). 

● ROIs selection. From 𝛺𝛺𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚, we randomly choose 𝑁𝑁𝐼𝐼 different pixels to be the center of 
ROIs of size 128×128 pixels. Thus, the more pixels of mitochondria a ROI contains, the more 
likely it is to be chosen. The following conditions have to be respected: i) the ROI centers 
should not belong to the borders of the image; ii) to avoid redundancy, a minimum distance of 
60 pixels is established between each pairwise ROI center. The resulting ROIs are finally used 
to create the patches from the normalized training data (see above “Data normalization”). 

Network evaluation. In addition to a quantitative comparison to the state-of-the-art methods 
and experiments to show the reliability of our method (Results), an ablation study was also 
performed (Supplementary Fig. 4; Supplementary Note 2.3) to highlight the individual 
contribution of key components of our method. More details about the evaluation metrics and 
the implementation details of DeepCristae are also given in Supplementary Note 2.1 and 
Supplementary Note 2.2.1, respectively.  

Other Methods and Materials 

Cell culture and biological materials, fluorescence labeling, all used microscopy techniques, 
image acquisition protocols and quantitative measurements are detailed in the Supplementary 
Note 1. PKMITO dyes are commercially available at Spirochrome (Stein-am-Rhein, 
Switzerland) and Genvivo Biotech (Nanjing, China) 

Data availability 

Data can be accessed in the following private link: 
https://figshare.com/s/39819e2b1a84a7afdb7d 

Code availability  

DeepCristae source code used in this publication is open-source and published under the BSD 
3-Clause "Original" or "Old" License. Source code will be available shortly through GitHub. 
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Figures 

 

 

Figure 1. Overview of DeepCristae. Training step: (a) Acquisition of 33 high-resolution (HR) 
2D STED images of live RPE1 cells stained with PKMITO-Orange, for mitochondria. From 
these HR images 𝑆𝑆𝐻𝐻𝐻𝐻 a dataset 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is obtained: (b) deconvolution of the HR images using a 
Richardson-Lucy algorithm to enhance the mitochondria cristae. The resulting images 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝐺𝐺 
are used as ground truths to train the network; (c) resolution degradation of the images 𝑆𝑆𝐻𝐻𝐻𝐻 by 
applying Gaussian filtering and by corrupting images with Poisson-Gaussian noise. The 
resulting images are denoted 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿. The obtained dataset 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is divided into 24 training 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2023. ; https://doi.org/10.1101/2023.07.05.547594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547594
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

images and 9 test images. To increase the size of the training set, the images 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 and 
ground truth 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝐺𝐺 are then augmented (d) and sampled in patches of size 128x128 pixels 
(e). We finally obtained 1824 pairs of ground truths (blue) and low-resolution input images 
(orange) to train our network (f). The training is performed by minimizing our SCoP loss, 
especially dedicated to restoring mitochondria pixels. Inference step: (g) Long-term and fast 
acquisition with low illumination of live mitochondria. Note that if the training was performed on 
degraded STED images, the inference can be made on other microscopy modalities (e.g., 
STED, Live-SR and LLSM). (h, i) Frame-by-frame restoration of the acquired sequence by our 
previously trained DeepCristae network, allowing observation of the mitochondrial cristae 
dynamics at high resolution. 
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Figure 2. DeepCristae outperforms state-of-the-art methods for restoring mitochondria 
cristae in low-resolution 2D STED images. (a) The image grid displays restoration results 
of 3 test images from the dataset 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 obtained with DeepCristae and three competitive deep 
learning methods: RCAN37, SRResNet35 and CARE19. GT: ground truth. Pixel size: 25 nm. 
Scale bar: 1 μm. White arrowheads indicate mitochondria with low contrast or in a noisy 
background restored by CARE; to be compared with DeepCristae column (b) Quantitative 
comparison of DeepCristae with conventional (Richardson-Lucy (RL)29,30, Wiener31, 
SPITFIR(e)32, ND-SAFIR23, 2D median filter (Median 2D) and deep learning (Noise2Void33, 
CARE19, RCAN37 and SRResNet35 ) image restoration methods. Metrics were computed on 
the 9 test images of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Note that all deep learning methods were trained using the same 
patches extracted from the training images of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Parameters used for conventional 
methods are indicated in Supplementary Note 2.2. 
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Figure 3. DeepCristae reveals mitochondria cristae from low resolution (LR) 2D STED 
images. RPE1 cells were labeled with PKMITO-Orange prior to high resolution (HR) 2D STED 
imaging. (a) Degradation of the HR image with a Gaussian filter (𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 = 3.25 pixels) and 
additive Poisson-Gaussian noise (𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐 = 4.0). The resulting image is part of the test dataset 
of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Pixel size: 25 nm. Scale bar: 3 μm. (b-e) Zoom in on the colored insets depicted in 
(a). Top, from left to right: thumbnails of the zoomed-in area on the LR image, the image 
restored by DeepCristae and the ground truth (GT) image, respectively. The GT was obtained 
by deconvolving the HR raw image with the RL algorithm to enhance mitochondria cristae. 
Bottom: comparison of normalized intensity line profiles along a mitochondrion between the 
three thumbnails. The yellow line indicated in the corresponding colored inset in (a) serves to 
identify the fluorescence profile. Note that GT shows undesired high-intensity pixels in the 
background due to noise amplification by the RL algorithm. Therefore, DeepCristae line 
profiles are sometimes smoother than the one of the ground truth, especially in (d) and (e). 
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Figure 4. Reliability of image restoration by DeepCristae. First experiment (a-f): 
assessment of the reliability of DeepCristae on real data by controlling the consistency 
between DeepCristae restoration and a real “ground truth”. RPE1 cells were labeled with 
PKMITO-Orange prior to low resolution (LR) and to high resolution (HR) 2D STED imaging, 
acquired successively. (a, d) Two LR STED images (Inputs) were given as input to 
DeepCristae for restoration and qualitatively compared to the corresponding HR STED 
images. Notes that the HR data were deconvolved using the Richardson-Lucy algorithm to 
enhance mitochondria cristae and are considered here as “ground truths” (GTs). Pixel size: 25 
nm. Scale bar: 1 μm. (b, c) and (e,f) Zoom in on the colored insets depicted in (a) and (d), 
respectively. Top, from left to right: thumbnails of the zoomed-in area on the LR image, the 
image restored by DeepCristae and the ground truth (GT) image, respectively. Bottom: 
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comparison of normalized intensity line profiles along a mitochondrion between the three 
thumbnails. The yellow line indicated in the corresponding colored inset in (a) and (d) serves 
to identify the fluorescence profile. Note that the line profiles were taken in regions where small 
mitochondrial displacements were observed. Despite an offset due to mitochondrial motion, a 
consistency between the cristae restored by DeepCristae and the ones present in the ground 
truths is observed overall. Second experiment (g-l): assessment of the reliability of 
DeepCristae by studying the consistency between its predictions obtained with different 
training. To that end, 10 DeepCristae neural networks were trained with different training data, 
each one generated with our patch generation method applied to the 24 training images of 
𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Note that for this experiment, all networks were initialized with the same weights. (g) 
From left to right: predictions of three DeepCristae networks on two test images of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the 
average prediction over the 10 trainings and the corresponding pixel-wise normalized standard 
deviation. Pixel size: 25 nm. Scale bar: 1 μm. (h-k) Comparison of normalized intensity line 
profiles along a mitochondrion in (g) between the 10 trainings. The yellow line indicated in the 
corresponding colored inset in (g) serves to identify the fluorescence profile. (l) Quantitative 
comparison of the 10 DeepCristae models. Metrics were computed on the 9 test images of 
𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.  
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Figure 5. DeepCristae reveals mitochondria cristae from low resolution 2D live STED. 
(a-c) 2D live STED imaging of RPE1 cells labeled with PKMITO-Orange. (a, b) Time series of 
10 images (Δt~13s) using 2D high-resolution (HR) STED (Supplementary Note 1: Materials 
and Methods). Pixel size is 50 x 50 nm in (a) and 25 x 25 nm in (b). Early and late time points 
are shown in a, the 4 first time points are shown in b. Phototoxic damage as illustrated by the 
swelling of the mitochondria. (c) Time series of 2D Fast STED, improving the time delay 
between time points (Δt~5.9 s) and reducing mitochondrial damage. Each thumbnail is 
diagonally divided for raw 2D Fast (LR) STED images (bottom-left part) and after DeepCristae 
treatment (top-right). To match the training mitochondria settings (see Results “Reliability and 
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limits of image restoration by DeepCristae”), a rescaling of 1.87 is applied to the LR image 
before DeepCristae inference. Scale Bars in a-c are: 2μm. (d) Lateral widths of 7 mitochondria 
measured at each time point (series of 10 time points) in HR STED and in Fast (LR) STED, 
before and after DeepCristae (line profiles as depicted as arrow heads in a t8 and b t2). Line 
profiles were fitted to a Gaussian model and FWHM was measured, as indicated in 
Supplementary Note 1: Materials and Methods. Data are expressed as mean ± SD. (e) Cristae 
widths measured as in d for 30 cristae on 20 mitochondria (from 4 distinct image series) in 
early and late time points of HR STED and 31 cristae in Fast (LR) STED, before (Raw; two 
measures above the ordinate scale) and after DeepCristae (line profiles as illustrated in a t8, 
b t4 and c t10). Data are expressed as mean ± SD. Student t-test: ** (p-val=0.0082), ***(p-
val=0.0003). (f) Distances between two cristae (Cristae intervals) measured in a peak-to-peak 
intensity from plot profiles (RAW Fast STED was not possible). Early: N=56 from 2 series; 
Late: N=80 in 2 series; DeepCristae: N=60 in 3 series, distributed in all time points. Data are 
expressed as mean ± SD. F-test: ****(p-val<0.0001). (g) Table with complete statistics 
including significance using Student- and Fisher-tests; ns= non-significant. 
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Figure 6. DeepCristae restoration enhances cristae width resolution in 3D and 3D+live 
imaging. (a) 2D plane (top) and 3D MIP (Maximum Intensity Projection of 14 planes) (bottom) 
of cell labeled with PKMITO-Orange, acquired with a SD microscope with a Live-SR module, 
before (left) and after DeepCristae (right). Thumbnails are zoomed areas corresponding to the 
insets (red and blue) and are composites of raw and DeepCristae images. Color scale bar 
indicates the bottom to top position of mitochondria (bottom right). (b) Cristae widths were 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2023. ; https://doi.org/10.1101/2023.07.05.547594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547594
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

measured as in Fig. 5e; each individual measurement in DeepCristae restored images is 
compared to its equivalent in raw images except for 10 cristae, not measurable in Raw (N=60 
and N=60-10, respectively). Data are expressed as mean ± SD (DeepCristae=87 ± 1 nm; Raw 
=149 ± 64 nm; Student t-test, [****] p<0.0001). (c) One section plane (top) and 3D 
reconstructed MIP of 71 planes (bottom) of a cell acquired with a Lattice Light Sheet 
microscope (LLSM) in a dithered mode, before (left) and after DeepCristae (right). Thumbnails 
are zoomed areas corresponding to the insets (red and blue) and are composite of raw and 
Deepcristae restored images. Color scale bar indicates the bottom to top position of 
mitochondria (bottom right). (d) Cristae widths were measured as in Fig. 5e in DeepCristae 
restored images and compared to its Raw equivalents, when possible (N=60 and N=60-19, 
respectively). Data are expressed as mean ± SD (DeepCristae=94 ± 15 nm; Raw=339 ± 248 
nm; Student t-test, [****] p<0.0001). (e, f) 3D+time imaging using Live-SR (e) or LLSM (f). MIP 
of single time points are shown (left images). Insets indicated in red are zoomed in the 
thumbnails (right image series) to illustrate fusion or fission dynamics of mitochondria. The 
selected zoomed areas are shown at different time points before (left panel) and after (right 
panel) DeepCristae restoration. Time frames between stacks are 5.6s and 1.31s in double 
channel acquisition for Live-SR and LLSM, respectively. Scale bars = 5µm in full field image 
and =1µm in zoomed thumbnails. Before DeepCristae restoration, rescaling of 2.6 and of 4.16 
were first applied to each raw Live-SR and LLSM data, respectively (see Results “Reliability 
and limits of image restoration by DeepCristae”). 
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Figure 7. DeepCristae reveals 3D+time cristae morphology during endo/lysosome 
mitochondria interactions. RPE1 cells incubated 4 hours with Cell Mask PM Deep Red (red) 
were labeled with PKMITO-Orange (green) for the last 15 minutes. (a) A Maximum Intensity 
Projection (20 planes; Stack time=1.86s/channel, time point t1 over 60) image acquired with 
Live-SR microscopy is shown before (top) and after (bottom) DeepCristae restoration of the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2023. ; https://doi.org/10.1101/2023.07.05.547594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547594
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

mitochondria (green channel) as well as after denoising (ND-SAFIR) and RL deconvolution of 
the endo/lysosomes (red channel). Colored Insets indicate intracellular locations with dynamic 
events of interest. (b) Thumbnails show selected time points of zoomed area as indicated by 
insets in a. They are presented as paired images before (left panels) and after (right panels) 
DeepCristae restoration. Both time points (left panels) and time frames in seconds (right 
panels) are indicated for comparison with d. (c) 3D reconstruction (56 planes; stack 
time=0.49s/channel, time point t1 over 200) of data acquired with LLSM after deskewing and 
RL deconvolution is shown before (top) and after (bottom) DeepCristae restoration (green 
channel). Colored Insets indicate intracellular locations with a focus on dynamic events of 
interest. (d) shows thumbnails of zoomed areas indicated by insets in c. Note that for the “blue” 
area, an early time (T105-T119) and a late (T190-T200) time series are represented, showing 
mitochondria fusion and fission events, respectively. Orange arrows focus on local interactions 
between endo/lysosomes and mitochondria. Scale bars in (a, c) and (b, d) are equal to 5µm 
and 1µm, respectively. Note that in these experiments, before DeepCristae restoration, 
rescalings of 2.6 and of 4.16 were first applied to each raw Live-SR and LLSM data, 
respectively, to match the training mitochondria settings (see Results “Reliability and limits of 
image restoration by DeepCristae”. 
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