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A B S T R A C T

Spectral analysis of dispersed two-phase flows is highly desirable to reveal the interplay of the various flow
scales, much larger or much smaller than the size of the dispersed bodies. This is a challenging task as the
matching conditions at the body interfaces generate singularities in the fields describing the two-phase mixture.
The nature of these singularities and their consequences on the spectra are theoretically analyzed for bubble or
droplet flows. Results of direct numerical simulations are reported and spatial spectra of the mixture velocity,
the flow forces and their power are examined. The regular part of the spectral densities of energy production,
dissipation and transfers between scales are separated from their singular part. The resulting spectral energy
balance, free of the footprint of the singularities, is found in agreement with coarse-grained simulations where
the interfaces are filtered out before solving the Navier–Stokes equations. These results pave the way for the
spectral analysis of more complex turbulent dispersed flows.
1. Introduction

The dynamics of dispersed multiphase flows are controlled by the
interactions between a population of bodies – either droplets, bubbles
or solid particles – and a fluid phase in which they are randomly
distributed. The bodies have a great impact on flow fluctuations either
by modulating a pre-existing shear-induced turbulence (Balachandar
and Eaton, 2010; Brandt and Coletti, 2022) or by directly inducing
agitation through their motion relative to the fluid (Risso, 2018).
Spectral analysis is a powerful tool to understand turbulence, since
two-point correlations give access to the flow structure. Applied to
multiphase flows, it should reveal the interplay between scales and lead
to a better modeling. In particular, our objective is to determine the
spectral density of the power of all the forces that contribute to the
energy balance, distinguishing between rate of production, dissipation
and transfer between scales. However, the question of how to achieve
this in the presence of numerous sharp interfaces between the carrier
and dispersed phases is not trivial.

Since the pioneering work of Lance and Bataille (1991), many
experimental works have reported one-dimensional spectra of the liq-
uid phase velocity in bubbly flows. Different methods were used to
deal with the interruptions by the bubbles: removing the parts of the
signal belonging to the gas phase and filling the gaps by a smooth
function (Lance and Bataille, 1991), retaining only parts of the signals
between two bubbles which are not interrupted (Martínez Mercado
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et al., 2010; Mendez-Diaz et al., 2013; Roghair et al., 2011; Prakash
et al., 2016; Alméras et al., 2017), measuring the flow just behind a
rising bubble swarm (Riboux et al., 2010). A few numerical studies have
proposed spectral analysis of the velocity field of the carrying phase
in order to make direct comparisons with experiments (Roghair et al.,
2011). However, spectra obtained from Direct Numerical Simulations
(DNS) of dispersed two-phase flows are generally calculated by con-
sidering the entire flow field without distinguishing between carrying
and dispersed phases (Tryggvason et al., 2002; Lucci et al., 2010; Dodd
and Ferrante, 2016; Pandey et al., 2020; Innocenti et al., 2021; Pandey
et al., 2022; Crialesi-Esposito et al., 2022).

The question of whether the spectral analysis should take into
account the entire flow mixture or only the carrying phase deserves
to be discussed. In this work, we focus on numerical simulations where
the flow is known everywhere and consider the case of a statistically
homogeneous dispersed flow in a large periodic domain, which is well
suited to a spectral description in the k-wavenumber domain.

We examine first the option of building spectra of the continuous
phase only, and immediately set aside the method of filling the re-
gion occupied by the dispersed phase by an arbitrary smooth field.
Considering a region of the flow that is never crossed by an interface
ensures that the field of any physical quantity is smooth. However, the
surface of the bodies are now boundaries from which momentum and
vailable online 10 May 2024
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energy are supplied to the system under study. All the local statistical
quantities, such as velocity variance, energy dissipation rate, pressure
gradient or inertial forces, depend on the distance to those boundaries.
In such a heterogeneous flow, an average spatial spectrum 𝑆(𝐤) cannot
represent a meaningful spectral density of any of these fields. This
would make no more sense than constructing a spatial spectrum from
the velocity along a line perpendicular to a wall in a channel flow.
An attempt to overcome this limitation has been done by Freund and
Ferrante (2019) who analyzed DNS results of a droplet laden flow. They
used wavelets, a tool developed to deal with inhomogeneous fields by
allowing the construction of spectra, 𝑆(𝐱,𝐤), that depend also on the lo-
cation 𝐱. For each wavenumber, the domain was decomposed into three
regions in contact but without intersections: an intermediary region 𝐼
crossed by the interfaces, a region 𝐶 fully located in the continuous
phase and a region 𝐷 fully located in the droplets. Vector 𝐱 was only
used to determine to which region belongs a given point and three
spectra, 𝑆𝐼 (𝐤), 𝑆𝐶 (𝐤) and 𝑆𝐷(𝐤), one for each region, were calculated.
Since the spectra depend only on 𝐤, they still face the inconsistency
of describing highly heterogeneous fields. A more sophisticated use of
wavelets preserving the double dependency in 𝐱 and 𝐤 could lead to
a relevant description, but has yet to be developed for the study of
dispersed multiphase flows. In this work, we stay with the conclusion
that, in the context of a homogenized description based on spectra
depending only on the wavenumber, it is not relevant to consider the
flow field of the carrying phase only.

The remaining option is to consider the flow of the entire mixture.
Since it is statistically homogeneous, the use of the Fourier transform
is appropriate. However, the fields of the physical quantities under
investigation experience singularities at the interfaces between the
phases. These singularities are due to the presence of jumps across the
interface of some physical properties, such as density and viscosity, and
to surface tension. They are of several kinds, such as the discontinuities
of the velocity derivatives or the Dirac delta function that describes
the pressure gradient. These singularities may have a strong footprint
on the spectra. In particular, they can generate oscillations, which
were very early reported on the velocity spectra of dispersed two
phase flows with large bubbles (Tryggvason et al., 2002) or solid
particles (Lucci et al., 2010). These oscillations are associated with the
Gibbs phenomenon, familiar in signal processing, and well exemplified
by the sine cardinal function, which is the Fourier transform of a gate.
Their signature also contains a power-law decay at large wavenumbers,
which must not be confused with a dynamical phenomenon (Risso,
2011). The spectra of any flow-field quantity contains a regular part
that describes the smooth variations in the bulk phases and a singular
part that accounts for interfacial singularities.

In what follows, we focus on droplets or bubbles in a fluid, which
means that the dynamics of the two phases are described by the Navier–
Stokes equations and the interface by an interfacial tension. A similar
analysis could be carried out for solid particles in a fluid, but it is
out of the scope of the present work. Our objective is to examine the
consequences of the presence of interfacial singularities on spectra. The
singular part of a spectrum is sometimes qualified as spurious, since it
complicates the physical interpretation. However, in the context of the
analysis of the mixture fields, it is a part of the mathematical solution
of the physical problem. The possibility of separating the regular and
singular part is a central question that motivates this work.

This paper is organized as follows. Section 2 presents the dynamics
equations of the mixture flow and examines the nature of the different
interfacial singularities. Section 3 analyzes the spectral signatures of
basic singularities caused by droplet or bubble interfaces. Section 4 re-
ports results of direct numerical simulations and discusses the spectral
density of the velocity, of the terms of the Navier–Stokes equations and
of the terms of the energy balance. Section 5 compares with results of
coarse-grained simulations, where interfacial singularities are filtered
out before solving the Navier–Stokes equations. Section 6 summarizes
2

the main findings and concludes.
Fig. 1. Local coordinates nearby an interface.

2. Equations of motion of a two-phase mixture and field singular-
ities

In this section, we examine the nature of the singularities encoun-
tered by the fields describing the flow, which are due to the presence
of fluid interfaces.

We decided to analyze the spectral distribution of the entire mix-
ture. For this reason, we write the equations of motion of the fluids
as a single set of partial differential equations for the velocity 𝐮 and
pressure 𝑃 , which is valid throughout both phases. This means that
the matching of the dynamic conditions between the two phases at the
interfaces have to be inserted within the Navier–Stokes equations for
the mixture. Because that matching involves jumps of stresses through
the interfaces, the use of generalized functions (Gelfand and Shilov,
1964), known as distributions, is required. Note that this approach is
known as one-fluid sharp interface methods in the context of numerical
simulations of two-phase flow (Kataoka, 1986; Lalanne et al., 2015).

We consider a population of fluid particles, either drops or bubbles,
dispersed in another fluid. The two fluids are immiscible and form a
two-phase mixture, without phase change. The interfaces between the
phases are massless, of zero thickness and entirely characterized by
a surface tension 𝜎. The density and viscosity of the two fluids are
different, but constant in each phase. In the following, the carrier phase,
dispersed phase and interfaces are distinguished by the subscripts 𝑐, 𝑑
nd 𝑠, respectively. We introduce the indicator function, 𝜒 , which is

equal to one in the dispersed phase and to zero in the carrying phase.
The density 𝜌 and the viscosity 𝜇 of the mixture can be written:

𝜌 = 𝜌𝑐 + (𝜌𝑑 − 𝜌𝑐 )𝜒 , (1)
𝜇 = 𝜇𝑐 + (𝜇𝑑 − 𝜇𝑐 )𝜒 . (2)

In the context of continuum mechanics, in the absence of phase
change, the velocity field is continuous. The mass conservation is

𝜕𝑡𝜌 + ∇.(𝜌𝐮) = 𝐷𝑡𝜌 + 𝜌∇.𝐮 = 0 . (3)

Because 𝜌 is constant in each phase and no fluid particle crosses
interfaces, the material derivative (𝐷𝑡 = 𝜕𝑡 + 𝐮.∇) of the density is zero
and the velocity field is divergence-free: ∇.𝐮 = 0. This result has further
consequences for the differentiability of 𝐮. Let us consider a portion
of the interface and name 𝑥∥1 and 𝑥∥2 the local coordinates along the
interface, and 𝑥⊥ the coordinate orthogonal to it (Fig. 1). Since 𝐮 is
continuous across the interface, the four strain-rate components 𝜕∥𝜉𝑢𝜂
(with 𝜉 and 𝜂 equal to 1 or 2) are equal on both sides of the interface
and thus have no discontinuity. Then, considering that ∇.𝐮 = 0, we
get that the normal strain rate 𝜕⊥𝑢⊥ = −𝜕∥1𝑢∥1 − 𝜕∥2𝑢∥2 is continuous
too. Thus, the only derivatives of 𝐮 that can present a discontinuity are
the shear-rate components 𝜕⊥𝑢∥𝜉 , the regularity of which is prescribed
by the shear-stress matching across the interface and will be discussed

later.
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Table 1
Interfacial discontinuities (Eq. (7)) involved in each terms of the momentum equations
(Eq. (4)). A check mark means that the corresponding discontinuity-type is present.

Regular part 𝑝 ≥ 1 𝑝 = 0 𝑝 = −1
(continuous) Heaviside type Dirac type

Buoyancy: 𝜌𝐠 ✓ ✓

Inertia: −𝜌𝐷𝑡𝐮 ✓ ✓

Interfacial force: 𝐅𝜎 ✓

Pressure gradient: −∇𝑃 ✓ ? ✓ ✓

Viscous diffusion: ✓ ? ✓ ✓

∇.(2𝜇𝐒) if𝜇𝑐 ≠ 𝜇𝑑
or∇𝑆𝜎 ≠ 0

The momentum equations are formally written as the classic Navier–
tokes equations with a non-constant viscosity in which surface tension
s taken into account by adding an interfacial force:

𝜌𝐷𝑡𝐮 − ∇𝑃 + 𝜌𝐠 + ∇.(2𝜇𝐒) + 𝐅𝜎 = 0 , (4)

here 𝐒 = 1
2 (∇𝐮+∇𝐮𝑇 ) is the strain-rate tensor. The interfacial force is

ritten as
𝝈 = −𝜎∇𝑆 .𝐧∇𝜒 + ∇𝑆𝜎 ∫𝐱𝐬

𝛿3𝐷(‖𝐱 − 𝐱𝐬‖)𝑑𝑆, (5)

where 𝐧 is unit normal to the interface pointing outward from the
dispersed phase, ∇𝑆 is the two-dimensional gradient operator on the
interface, 𝐱𝐬 is any point on the interface 𝑆 and 𝛿3𝐷(‖𝐱 − 𝐱𝐬‖) =
𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠) with 𝛿 the Dirac delta function. The surface
divergence ∇𝑆 .𝐧 of the normal vector is twice the mean curvature 𝜅
of the interface and the gradient of the indicator function can also be
written in terms of the Dirac delta function as

∇𝜒 = −𝐧∫𝐱𝐬
𝛿3𝐷(‖𝐱 − 𝐱𝐬‖)𝑑𝑆 . (6)

The first term of Eq. (5) corresponds to the interfacial jump of the
normal stress due to the capillary pressure: −2𝜎𝜅. The second term ac-
counts for the interfacial jump of the shear stress due to the Marangoni
effect: 𝜕∥𝜉𝜎.

Let us examine the nature of the singularities of various fields of
interest. A field 𝑉 can be decomposed in a regular singularity-free part
𝑉𝑟𝑒𝑔 and interfacial jumps [𝑉 (𝑝)

𝑖𝑟𝑟𝑒𝑔] of its successive derivatives of order
𝑝:

𝑉 (𝐱) = 𝑉𝑟𝑒𝑔(𝐱) +
𝑝𝑚𝑎𝑥
∑

𝑝≥𝑝𝑚𝑖𝑛

[𝑉 (𝑝)
𝑖𝑟𝑟𝑒𝑔(𝐱 = 𝐱𝐬)], with 𝑝𝑚𝑖𝑛 ≥ −1 . (7)

The integer 𝑝𝑚𝑖𝑛 is the order of the lowest derivative that is discontin-
uous, which characterizes the strongest singularity of 𝑉 . The sum may
continue to infinity or stop at a finite value 𝑝𝑚𝑎𝑥, which then charac-
terizes the less sharp singularity. At this point, it is worth mentioning
that the regularity of the solutions of the Navier–Stokes equations is
a very hard mathematical issue, which is still an open question even
in the case of a single-phase flow (Onsager, 1949; Duchon and Robert,
2000; Dubrulle, 2019). As the aim of the present work is to examine
the practical consequences of the presence of fluid interfaces on the
spectra of the fields, we shall concentrate on the lower values of 𝑝,
which correspond to the more severe singularities with the strongest
consequences. Note that 𝑝𝑚𝑖𝑛 = 1 corresponds to a field that is con-
tinuous whereas its derivative experiences a jump across the interface.
Handling values of 𝑝 that are less than unity means that we consider
the word ‘‘derivative’’ in a broader sense. Indeed, we have to deal with
the cases where the function itself is discontinuous (𝑝𝑚𝑖𝑛 = 0) or is the
derivative of a discontinuous function (𝑝𝑚𝑖𝑛 = −1). For instance, 𝜒 , as
well as 𝜌 and 𝜇, is a pure step function of Heaviside type, characterized
by 𝑝𝑚𝑖𝑛 = 𝑝𝑚𝑎𝑥 = 0.

Table 1 lists the type of discontinuities which are expected to be
3

involved in the various terms of the momentum equations, according
to the decomposition defined by Eq. (7). For the balance to be satisfied,
every singularity appearing in one term of the momentum equations
must cancel out with singularities of the same order in the other terms.
In other words, the sum of the terms in each column must be zero. We
examine now the volume forces of the momentum equations one by
one.

The buoyancy force 𝜌𝐠 is the product of the density and the accel-
eration of gravity; it is thus of pure Heaviside type. Check marks are
therefore present only in the columns corresponding to the regular part
and the 𝑝 = 0 singularity.

Since a fluid particle never crosses an interface and the velocity is
continuous, its acceleration 𝐷𝑡𝐮 is expected to be regular. However,
because it involves the density, the nature of the singularity of the
inertial force 𝜌𝐷𝑡𝐮 is the same as that of the buoyancy force.

Eqs. (5)–(6) show that 𝐅𝜎 is of pure Dirac type and associated with
𝑝𝑚𝑖𝑛 = 𝑝𝑚𝑎𝑥 = −1. A check mark is therefore present only in the 𝑝 = −1
column. Note that this is the only term without a regular part, as it is
not defined outside the interfaces.

The pressure gradient has generally both Heaviside and Dirac singu-
larities. This is easy to show by considering the elementary case of an
interface of constant 𝜎 between two fluids at rest in a constant gravity
field: for example a droplet pending at the tip of a capillary tube. Eq. (4)
simplifies to

∇𝑃 = −𝜌𝐠 − 2𝜎𝜅∇𝜒 , (8)

where the pressure gradient has to balance both the Heaviside-type
buoyancy force and the Dirac-type interfacial force. The first corre-
sponds to the jump in the hydrostatic pressure: 𝜕𝑃𝑑∕𝜕𝑧 − 𝜕𝑃𝑐∕𝜕𝑧 =
−(𝜌𝑑−𝜌𝑐 )𝑔. The second accounts for the Laplace pressure jump: 𝑃𝑑−𝑃𝑐 =
−2𝜅𝜎.

As regards the viscous force, ∇.(2𝜇𝐒), the fact that the viscosity,
which is discontinuous, appears under a differential operator imme-
diately suggests the presence of a Dirac-type singularity. However,
it is interesting to analyze its significance by distinguishing again
between the tangential and normal directions, and by considering its
two possible origins, namely: a viscosity jump or a Marangoni stress.

As we have shown before, 𝜕⊥𝑢⊥ is continuous across the interface.
Therefore, the jump of the normal viscous stress through the interface
is equal to 2(𝜇𝑑 − 𝜇𝑐 )𝜕⊥𝑢⊥. This means that the existence of a viscosity
difference between the phases is sufficient to generate a finite jump in
the viscous stress, which leads the viscous volume force in the momen-
tum equation to include a Dirac-type contribution. The matching of the
normal stresses at interface is written

2(𝜇𝑑 − 𝜇𝑐 )𝜕⊥𝑢⊥ + (𝑃𝑑 − 𝑃𝑐 ) + 2𝜅𝜎 = 0 , (9)

which shows that even in the case of vanishing surface tension, a jump
in viscosity is sufficient to generate a pressure jump. On the other hand,
when ∇𝑆𝜎 ≠ 0, the Marangoni stress is responsible for a jump in the
tangential shear stress. Finally, it thus turns out that the viscous volume
force contains a Dirac-type singularity (𝑝𝑚𝑖𝑛 = −1) if either 𝜇𝑑 − 𝜇𝑐 ≠ 0
or ∇𝑆𝜎 ≠ 0. Since the pressure gradient involves a Heaviside-type
discontinuity (𝑝 = 0), we can expect that the viscous force also does so
to satisfy the equilibrium of the normal stresses at the interface under
flow conditions. Then, as we have no argument for deciding whether or
not the second (and higher) derivative of the viscous stress should be
the same on both sides of the interface, we have added question marks
in the 𝑝 ≥ 1 columns of pressure gradient and viscous force.

To end this section, we conclude with the velocity field. We have
already shown that all partial derivatives of 𝑢 are continuous except the
shear-rate components 𝜕⊥𝑢∥𝜉 . Therefore, if 𝜇𝑑 −𝜇𝑐 = 0 and ∇𝑆𝜎 = 0, the
continuity of the shear stress ensures that of the shear-rate, so all the
velocity derivatives are continuous and 𝐮 is characterized by 𝑝𝑚𝑖𝑛 ≥ 2.

Otherwise, in the general case, 𝑝𝑚𝑖𝑛 = 1.
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3. Spectral signatures of basic singularities caused by droplet or
bubble interfaces

In this section we examine the spectral signature of singularities of
various orders 𝑝 encountered in multiphase flows. For a more general
iscussion of spectral analysis of signal with singularities, the reader is
eferred to Broer and Takens (1993), Bacry et al. (1993), Pikovsky et al.
1995). The energy density spectrum 𝐸𝑉 of a scalar field 𝑉 (𝐱) is defined

as follows. First, we take the three dimensional Fourier transform of
𝑉 (𝐱):

𝑉 (𝐤) = ∫ 𝑒𝑖𝐤.𝐱𝑉 (𝐱)𝑑𝐱 . (10)

Second, we multiply it by its complex conjugate (*), sum over shells
𝑤 of constant ‖𝐤‖ and take the average:

𝑉 (𝑘) = ⟨∫
‖𝐰‖=𝑘

𝑉 (𝐰).𝑉 ∗(𝐰)𝑑𝑤⟩ , (11)

depending on whether 𝑉 is a scalar or a vector, the operation ‘‘.’’ is a
ultiplication of numbers or a scalar product).

.1. Analytical results for spherical interfaces

We introduce the indicator function sphere of a ball (interior of a
phere) as a reference Heaviside-type field, and the indicator function
sphere of a sphere (surface of a ball) as a Dirac-type field. These fields
re respectively representative of the density and the interfacial force
f a two-phase mixture of spherical droplets. Their Fourier transforms
re

̂sphere(𝐤) =
4𝜋
‖𝐤‖3

(sin(𝑅‖𝐤‖) − 𝑅‖𝐤‖ cos(𝑅‖𝐤‖)) (12)

and

𝛿sphere(𝐤) =
4𝜋𝑅
‖𝐤‖

sin(𝑅‖𝐤‖) (13)

here 𝑅 is the sphere radius (Gelfand and Shilov, 1964). Their spectra
re

sphere
(𝑘) =

(4𝜋)2

𝑘4
(sin(𝑅𝑘) − 𝑅𝑘 cos(𝑅𝑘))2 , (14)

and

𝐸𝛿sphere (𝑘) = (4𝜋𝑅)2sin2(𝑅𝑘) . (15)

The spectra of the two cases present oscillations of period 𝑘𝑏 = 𝜋∕𝑅,
corresponding to sin2(𝑅𝑘). On the one hand, the oscillations of 𝐸𝛿sphere
keep constant phase and amplitude for all 𝑘. On the other hand, 𝐸sphere
behaves as 𝑅6𝑘2 at small 𝑘 and as 𝑘−2cos2(𝑅𝑘) at large 𝑘, which means
it cancels out for both 𝑘 = 0 and 𝑘 = ∞.

3.2. Numerical results for spherical interfaces

We have numerically computed the spectra of basic singular scalar
fields 𝑉𝑝𝑚𝑖𝑛 , characterized by a value 𝑝𝑚𝑖𝑛 from −1 to 2, defined as
follows:

𝑉−1() = 𝛿() , (16)
𝑉0() = () , (17)
𝑉1() = (2 − 1)((𝐽1∕2 + 1)2 − 1)() , (18)
𝑉2() = (2 − 1)2((𝐽2∕8 − 1)2 + 1)() , (19)

where (𝜉) is the classic Heaviside function (equal to zero for 𝜉 < 0
and to one for 𝜉 > 0),  is the normalized distance from the surface of
the sphere:  = 1 − ‖𝐱 − 𝐱𝐜‖∕𝑅. 𝑉−1 and 𝑉0 correspond to 𝛿sphere and
sphere. Then, it is easy to check that 𝑉1 and 𝑉2 have the expected level
of singularity provided 𝐽1 and 𝐽2 are finite. Indeed, both are regular
inside the sphere and zero outside, while at the interfaces: 𝑉1 = 0 and

′ ′ ′′
4

𝑉1 undergoes a jump 𝐽1; 𝑉2 = 𝑉2 = 0 and 𝑉2 undergoes a jump 𝐽2. w
(In contrast with 𝛿sphere and sphere, 𝑉1 and 𝑉2 do not correspond to
a pure singularity of order 𝑝 = 1 or 2, which means that 𝑝𝑚𝑎𝑥 ≠ 𝑝𝑚𝑖𝑛.)
These four fields have been mapped on a three-dimensional regular grid
of spacing 𝛥 = 𝑅∕25, which implies that numerical interfaces have a
non zero thickness. Then, the spectrum of each of them is computed
numerically by making use of the discrete Fourier transform.

Fig. 2 shows the spectra of 𝑉−1, 𝑉0, 𝑉1 and 𝑉2 as functions of the
wavenumber 𝑘 normalized by 𝑘𝑏. The numerical spectrum of 𝛿sphere
is in agreement with the analytical result (Eq. (15)), except at large
𝑘 where the numerical approximation of the delta function becomes
rough. However, the numerical spectrum of sphere remains accurate
beyond 𝑘 = 10𝑘𝑏, so we can trust as well the numerical spectra of 𝑉1
and 𝑉2 in the considered range of wavenumbers.

The conclusions obtained from the analytical expressions of 𝐸𝛿sphere
and 𝐸sphere

can be generalized to larger values of 𝑝𝑚𝑖𝑛. All spectra show
oscillations of period 𝑘𝑏 and a final power-law decay. At wavenumbers
much smaller than 1/R, they all show a similar pattern and behave
as 𝑘2 as 𝑘 tends towards zero. At large 𝑘, the spectrum behaves as
𝑘−2𝑝−2 sin2(𝑅‖𝐤‖+𝜙). At this stage, two main conclusions can be drawn.
On the one hand, the decay is controlled by the order of the singularity:
the more regular the function, the lower 𝑝𝑚𝑖𝑛, the faster the decay.
On the other hand, the period of the oscillations and the wavenumber
where the singularity spectrum is maximum are controlled by the
droplet size, whatever the nature of the discontinuity.

The power-law decay generated by an interface singularity of a
field should not be confused with the power-law subrange exhibited
by a regular physical field, such as the inertial 𝑘−5∕3 of single-phase
flow turbulence or the 𝑘−3 of bubble-induced agitation (Lance and
Bataille, 1991; Risso, 2018). Such physical subranges always have a
cutoff at a certain wavenumber: the Kolmogorov microscale in the case
of turbulence (Pope, 2000), the size of smaller bubble disturbances in
the model of bubble-induced spectrum by Risso (2011). A singularity
power-law never stops and always exceeds the regular part of a physical
signal at large wavelengths.

At scales close to the size of a droplet, the question of which one
dominates in a physical signal between the regular part or the singu-
larity has no general answer and must be examined in each specific
situation.

3.3. Effects of deviation from sphericity and of interface thickness

In real situations, droplets or bubbles are often not spherical. Also,
spatial resolution is finite, which means that a fluid interface can never
be described by a surface of zero thickness. In particular, numerical
simulations based on the sharp-interface formulation have to deal with
finite-size meshes that contain the two phases. In this section, we
examine the consequences on the spectrum of a singularity of the drop
non-sphericity, defined by an aspect ratio 𝑎∕𝑏, and of a finite interface
thickness, 𝜖𝑠. In what follows, 𝑅 is defined as the radius of a sphere of
the same volume and all calculations have been performed on the same
mesh as that used in the previous section.

We begin with the case of the Heaviside singularity (𝑝𝑚𝑖𝑛 = 0).
Fig. 3 shows numerical spectra 𝐸𝑉0 obtained by considering an oblate
ellipsoidal interface with 𝑎∕𝑏 = 1.35 and 2, which is still sharp (𝜖𝑠 =
0), together with the theoretical result (Eq. (15)) and the numerical
result for a sphere (Fig. 2). Deformation clearly dampens oscillations,
and the greater 𝑎∕𝑏, the lower the oscillation amplitude. This is easily
understood by noting that, for an ellipsoid, the distance 2𝛽 between
two diametrically opposed points on the interface varies between 2𝑎
and 2𝑏 depending on the direction considered. The three-dimensional
pectrum therefore mixes oscillations of various periods 𝜋∕𝛽, which
annot remain in phase as 𝑘 increases, causing them to cancel each
ther out. Fig. 3 also shows the spectrum computed by considering
pherical interfaces of random radii uniformly distributed between 𝑅
nd 3𝑅. One sees that a similar damping of the oscillations occurs

hen one considers a population of drops of different sizes, with the
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Fig. 2. Numerical spectra of three-dimensional scalar fields of various singularity orders: 𝑝𝑚𝑖𝑛 = −1 (red), 𝑝𝑚𝑖𝑛 = 0 (green), 𝑝𝑚𝑖𝑛 = 1 with 𝐽1 = 1 (blue), 𝑝𝑚𝑖𝑛 = 2 with 𝐽2 = 10
(orange). The dashed straight lines correspond to 𝑘−2−2𝑝𝑚𝑖𝑛 , with the exponent written on right side. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 3. Numerical spectra of the indicator function of oblate ellipsoidal balls (𝑝𝑚𝑖𝑛 = 0, Heaviside type) of single size with various aspect ratios 𝑎∕𝑏 or spherical balls with random
sizes. The dashed line corresponds to 𝑘−2𝑝𝑚𝑖𝑛−2.
variation of 𝑅 from drop to drop substituting for the variation of 2𝛽
with direction. In any case, this process has no effect on the baseline
of the spectrum, the decays of which remains the same.

Fig. 4 presents numerical 𝐸𝑉0 obtained by considering a spherical
interface of finite thickness. The interface has been smoothly extended
over a thickness 𝜖𝑠 by replacing the Heaviside function in Eq. (17) by
an error function: 𝑉0() = 1 − {erf[( − 1)∕𝜖𝑠]}∕2. For 𝜖𝑠 = 𝑅∕100,
the interface thickness is below the grid resolution 𝛥 = 𝑅∕25, and the
numerical result is the same as that of Fig. 3, and in agreement with the
theory. The effect of 𝜖𝑠 becomes visible when it becomes larger than 𝛥.
A finite thickness affects the small scales by increasing the final decay
of the spectrum, without having any effect on the oscillations. However,
it has no impact on the scales that are much larger than 𝜖𝑠. This means
that a very strong localized gradient of a regular field, such as that of
the velocity in a large-Reynolds number boundary layer of thickness
𝜖𝐵𝐿 around a drop, would generate a similar spectral signature as a
velocity jump at scales much larger than 𝜖𝐵𝐿. We can also wonder
whether singularities associated with intermittency (Le Berre et al.,
2023) could also affect turbulence spectra in a similar way.

Now, we examine the case of the Dirac singularity (𝑝𝑚𝑖𝑛 = −1). The
Dirac delta function in Eq. (16) is replaced by finite boxcar function
5

of height 𝜖𝑠 and width 1∕𝜖𝑠. Fig. 5 shows the numerical spectra for
spherical interfaces of various thicknesses, while Fig. 6 shows the same
results for oblate ellipsoids of aspect ratio 𝑎∕𝑏 = 2. The conclusions
are the same as for the Heaviside singularity. Increasing the interface
thickness causes a faster decay of the spectrum at large wavenumber.
Increasing the deformation generates a damping of the oscillations.

3.4. Spectral signatures of singularities in physical cases

We showed in the previous section (Eq. 2) that a finite jump in the
fluid properties (density or viscosity) across the interface or a non-zero
interfacial tension causes singularities in the fields that characterize the
flow. In the present section, we examined the signature of basic singu-
larities of various orders corresponding to fluid interfaces of droplets.
For spherical drops having all the same radius 𝑅, the spectrum of the
interface singularities is maximum close to 𝑘𝑏 = 𝜋∕𝑅, shows oscillations
of period 𝑘𝑏 and decays at small scales as 𝑘−2𝑝−2. For polydisperse or
deformed drops the oscillations may be absent, while the baseline of
the singularity spectrum is still present.

A real physical field is more complex, since it includes a contri-
bution from the regular part that accounts for the dynamics in the
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Fig. 4. Numerical spectra of the indicator function of spherical balls (𝑝𝑚𝑖𝑛 = 0, Heaviside Type) with smooth interface of various thicknesses 𝜖𝑠. The dashed line corresponds to
𝑘−2𝑝𝑚𝑖𝑛−2.

Fig. 5. Numerical spectra of the indicator function of spheres (𝑝𝑚𝑖𝑛 = −1, Dirac type) of various thicknesses 𝜖𝑠. The dashed line corresponds to 𝑘−2𝑝𝑚𝑖𝑛−2.

Fig. 6. Numerical spectra of the indicator function of an oblate ellipsoids (𝑝𝑚𝑖𝑛 = −1, Dirac type, 𝑎∕𝑏 = 2) with a smooth interface of various thicknesses 𝜖𝑠. The dashed line
corresponds to 𝑘−2𝑝𝑚𝑖𝑛−2.
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bulk phases, in addition to singular contributions that account for the
interfaces. Is it possible to distinguish between the regular and the
singular parts? First of all, we may try to attribute the presence of
oscillations as 𝑠𝑖𝑛2(𝑘𝑅+𝜙) to the singular part. This first approach has
two limitations. On the one hand, for drops moving at large Reynolds
number relative to the carrying phase, oscillations may be due to the
presence of a dynamic boundary layer at the drop surface. On the
other hand, spectra calculated from DNS of highly deformed drops with
a broad size distribution immersed in a turbulent field by Crialesi-
Esposito et al. (2022) show no oscillations, for the reason explained
above. Secondly, we can rely on small scales to detect the singular
part. In principle, the singular part undergoes a never-ending power-
law decay as 𝑘 approaches infinity. It must therefore eventually emerge
from the regular part, which has a physical cutoff, corresponding to the
Kolmogorov microscale in a turbulent flow. However, the dissipative
range is most of the time not resolved, which means that we need to
detect the singular contribution at larger scales.

At this stage, it is therefore difficult to anticipate a general method
for distinguishing the regular part from the singular part, which would
probably have to be done on a case-by-case basis. Furthermore, even if
such a distinction can be made, the question of its physical relevance
remains open.

4. Direct numerical simulations of bubble-induced agitation

In the previous section, we examined the theoretical consequences
of basic jump conditions on the spectrum of some reference fields. We
are now interested in analyzing their practical effects on the spectrum
of physical fields, such as the mixture velocity and the volume forces
involved in the momentum balance. Since the spectrum of interface
discontinuities is significant for wavelengths of the order of the drop
size 𝑅 and smaller, it has negligible consequences when most of the
energy is contained at scales much larger than 𝑅, as in the case of
droplets or bubbles smaller than the Kolmogorov microscale in a turbu-
lent field. On the other hand, the case of a swarm of rising bubbles in
an otherwise quiescent fluid is particularly impacted, since the energy
of the fluctuations is generated by the bubbles at scales close to 𝑅.

The fluid velocity in both phases can hardly be measured in exper-
iments. Most of the time, only the velocity field of the outer phase
is measured in two-phase dispersed flows. In addition, the flow in
the close vicinity of bubbles or droplets is often removed because of
spurious measurements. On the other hand, DNS using sharp interface
methods provide exhaustive information on all physical fields at any
location. In what follows, we analyze in detail the results of DNS of a
homogeneous swarm of bubbles rising at high Reynolds number.

4.1. Presentation of the simulations

Bubbles having all the same size are initially homogeneously dis-
tributed over a triperiodic cubic domain and then rise under the action
of buoyancy. After an initial transient, the flow statistics cease to
evolve in time. All subsequent results are obtained in this statistically
steady state. The simulations are carried out with the open-source
TRUST/TrioCFD code, which uses of a front-tracking method to solve
the continuity and Navier–Stokes equations in the sharp-interface form
(Eqs. (3), (4)) across the entire domain, including both the gas and
liquid phases. The code has been described in detail and validated for
high-Reynolds-number bubbly flow with parameters similar to those of
the present work in du Cluzeau et al. (2019), du Cluzeau et al. (2022).

The physical parameters are: 𝜇𝑐 = 𝜇𝑑 = 3.73×10−4 Pa s, 𝜌𝑐 = 1.1713×
103 kg∕m3, 𝜌𝑑 = 87.545 kg∕m3, 𝜎 = 18.05 × 10−3 N∕m, 𝑑 = 2𝑅 = 10−3 m,
𝑔 = 9.81m∕s2. This gives an Archimedes number 𝐴𝑟 = 𝜌𝑐𝑑

√

(1−𝜌𝑑∕𝜌𝑐 )𝑔𝑑
𝜇𝑐

≈
300 and a Bond number 𝐵𝑜 = (𝜌𝑐 − 𝜌𝑑 )𝑔𝑑2∕𝜎 ≈ 0.6, corresponding to
slightly deformed bubbles in a flow regime dominated by inertia. The
density ratio, 𝜌𝑑∕𝜌𝑐 ≈ 1∕13, and viscosity ratio, 𝜇𝑑∕𝜇𝑐 = 1, are outside
the range expected for bubbly flow at common room temperature and
7

Fig. 7. Snapshot showing the vertical velocity in a vertical plane (𝛼 = 6%, refined
mesh).

pressure. Note also that surface tension is kept constant. These con-
ditions have been chosen to simplify the entanglement of the various
singularities in the analysis of the spectrum of the various terms. In
particular, the theoretical analysis suggests that a viscosity ratio equal
to unity should ensure a more regular velocity and, together with a
constant 𝜎, to a more regular viscous force.

The simulations are performed on a 4323 regular mesh in a cubic
domain of side 𝐿 = 31.7 × 10−3 m or 𝐿 = 15.85 × 10−3 m. In the larger
domain, the mesh-grid spacing is thus 𝛥 = 73.5 × 10−6 m, while in the
smaller domain it is 𝛥 = 36.77 × 10−6 m.

Two gas volume fractions have been considered: 𝛼 = 0.03 and 0.06.
A snapshot of the flow is shown in Fig. 7. The case 𝛼 = 0.03 has been
solved on the larger domain (𝐿 = 32𝑑) with the lower resolution (𝛥 =
𝑑∕14). It gives the following overall statistics for the two-phase mixture:
average bubble relative velocity 𝑢𝑟 = 0.17m∕s, half the variance of the
mixture velocity 𝐾𝑚 = 5.4×10−2 𝑢2𝑟 and dissipation rate per unit volume
𝜖𝑚 = 7.45 × 10−3 𝜌𝑐𝑢3𝑟∕𝑑. The average bubble Reynolds number, Weber
number and aspect ratio are: 𝑅𝑒 = 𝜌𝑐𝑑𝑢𝑟

𝜇𝑐
= 528, 𝑊 𝑒 = 𝜌𝑐𝑑𝑢2𝑟

𝜎 = 1.83 and
𝑎∕𝑏 = 1.39.

The case 𝛼 = 0.06 has been solved on both the larger domain
(𝐿 = 32𝑑, 𝛥 = 𝑑∕14) and the smaller domain with a better resolution
(𝐿 = 16𝑑, 𝛥 = 𝑑∕27). The lower resolution gives: 𝑢𝑟 = 0.150m∕s, 𝐾𝑚 =
11.2 × 10−2 𝑢2𝑟 , 𝜖𝑚 = 18.5 × 10−3 𝜌𝑐𝑢3𝑟∕𝑑, 𝑅𝑒 = 470, 𝑊 𝑒 = 1.45 and 𝑎∕𝑏 =
1.33. The greater resolution gives: 𝑢𝑟 = 0.147m∕s, 𝐾𝑚 = 11.8 × 10−2 𝑢2𝑟 ,
𝜖𝑚 = 22.0×10−3 𝜌𝑐𝑢3𝑟∕𝑑, 𝑅𝑒 = 462, 𝑊 𝑒 = 1.40 and 𝑎∕𝑏 = 1.37. Rigorously,
even our finest resolution is not enough to exactly capture the boundary
layer around the bubbles at such a Reynolds number (Innocenti et al.,
2021), which explains small differences between the two resolutions.
In the literature, such a limitation is encountered in many numerical
simulations involving a large number of dispersed particles. This is not
a serious limitation for the aim of the present work, which is to analyze
the spectral signature of interface discontinuities, as we shall see later
when comparing the results of our coarse and refined meshes.
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Fig. 8. Normalized spectrum of the density (DNS results). The straight line shows the asymptotic evolution 𝑘−2𝑝𝑚𝑖𝑛−2, with 𝑝𝑚𝑖𝑛 = 0.
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4.2. Spectrum of density and velocity

In a numerical simulation, even in the case where the mesh grid
is fitted to follow the interface, the fields are described with a finite
resolution 𝛥. The consequences for the spectrum have been discussed in
Section 3.3 where an interface of finite thickness has been considered. A
coarser resolution leads to a faster decrease in the spectral footprint of
the singularities. In addition, with the front tracking method used here,
the two-dimensional mesh that describes the interface differs from the
three-dimensional one on which is discretized the bulk flow. In a cell
containing both phases, the values of the density and viscosity have to
be interpolated between those of the two phases, as it is also the case
with common other sharp-interface methods, such as VOF or Level-Set.
Here the density is determined as the arithmetic mean of the densities
of the two phases weighted by their volume fraction within the cell
considered. Since the viscosity is assumed constant, no interpolation is
required. The interfacial force is computed from the curvature of the
two-dimensional interface mesh. Then, 𝐅𝜎 is distributed over the cells
of the three-dimensional mesh that are located at a distance lower than
𝛥 from the interface. Therefore, the Dirac delta function is smoothed
over a width of approximately 2𝛥.

The effect of a region where the mixture is described by a fluid with
intermediate properties can hardly be anticipated, but it may redis-
tribute the singularities between the different terms of the momentum
balance in a way that probably depends on the numerical scheme.

Let us consider first the consequences of the numerical discretiza-
tion on the spectra of two basic fields: the density 𝜌, which is only
impacted by the finite resolution, and the velocity 𝑢, which is affected
by both the finite resolution and by the way the continuity and Navier–
Stokes equations are solved. Note that the spectra are normalized by
using 𝑘𝑏 and their variance ⟨(.)2⟩, in order to ease comparison between
the two volume fractions.

Fig. 8 shows the spectrum of the density for the three different
simulations and the analytical solution 𝐸sphere

(Eq. (14)). Whatever the
volume fraction or the resolution, the spectrum shows oscillations as
sin2(𝑅𝑘) in agreement with the analytical solution. Oscillation ampli-
tudes are smaller due to departure from sphericity. Cases 𝛼 = 3% and
𝛼 = 6% at the coarser resolution match at all wavenumbers and agree
at large scales with the case at finer resolution. The coarser cases show
a decay in agreement with the theoretical 𝑘−2 up to 𝑘 = 3𝑘𝑏, while the
finer case follows it up to 6𝑘 , showing that halving the mesh spacing
8

𝑏

actually halves the scale from which the interface begins to be seen
as less sharp than it should be. Regarding the density, the numerical
spectrum behaves as predicted by the theory.

Fig. 9 shows the spectrum 𝐸𝑢 of the velocity. The spectra of the
three cases are very similar, featuring oscillations with a period 𝑘𝑏. We
note only differences at very large scales due to finite domain size, and
at very small scales close to the Nyquist wavenumber. This indicates
that the velocity spectrum is very robust to changes in resolution. The
spectrum reaches a maximum near 𝑘𝑏, followed by a 𝑘−3 subrange,
which is known as a signature of the bubble-induced agitation (Risso,
2018). Then, it shows a steeper decay as 𝑘−4 for 𝑘 > 3𝑘𝑏, followed by
an even steeper one as 𝑘−𝑛, with 4 < 𝑛 < 5, for 𝑘 > 6𝑘𝑏. Under present
conditions, with no viscosity jump or interfacial tension gradient, the
predictions for 𝑢 are 𝑝𝑚𝑖𝑛 = 2, which corresponds to a final decay as 𝑘−6.

he fact that 𝑢 is less regular than expected is probably a consequence
f numerical approximations in the cells crossed by the interface.

.3. Spectrum of the terms of the momentum equations

We examine now the spectra of the five terms involved in the
omentum balance (4) from the DNS at 𝛼 = 6% with either the

oarse or the refined resolution: buoyancy (𝜌 − 𝜌𝑚)𝐠, interfacial force
𝜎 , pressure gradient −∇𝑃 , inertia −𝜌𝐷𝑡𝐮 and viscous diffusion ∇.(2𝜇𝐒).
ote that 𝜌𝑚 = (1−𝛼)𝜌𝑐+𝛼𝜌𝑑 is the average mixture density and we have
hosen to include the mean hydrostatic pressure gradient 𝜌𝑚𝐠 in the
uoyancy term so that it takes into account all the external forces acting
n the two-phase system. In this section, all spectra are normalized
sing 𝑘𝑏 and the variance of (𝜌 − 𝜌𝑚)𝐠. It is worth recalling that the
pectrum is quadratic in the quantity considered, so that the balance
f the five terms does not lead to a simple constraint on their spectra.
hen only two terms are in equilibrium, their spectrum is the same,

ut it is not as simple for more terms.
Since 𝐠 is constant, the spectrum of (𝜌 − 𝜌𝑚)𝐠 (Fig. 10) is similar to

hat of 𝜌 (Fig. 8) and leads to the same conclusions.
Fig. 11 presents the spectra of 𝐅𝜎 and −∇𝑃 . At large scales, for

avenumbers smaller than ≈ 2𝑘𝑏, both are independent of the mesh
efinement. At small scales, the Dirac-type singularity introduced by
nterfacial tension gives a constant intensity. We indeed observe a
lateau of the baseline before a cut-off due to the finite resolution,
hich appears at a smaller 𝑘 at lower resolution. Still, at small scales,
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Fig. 9. Normalized spectrum of the velocity (DNS results). Note that the expected final decay is 𝑘−6 (𝑝𝑚𝑖𝑛 = 2) for the case without viscosity jump.
Fig. 10. Normalized spectrum 𝐸(𝜌−𝜌𝑚 )𝐠 of buoyancy force at 𝛼 = 6% (DNS results).
he spectra of 𝐅𝜎 and −∇𝑃 are identical, which confirms that the Dirac-
ype singularities cancel out entirely between the interfacial force and
he pressure gradients, in agreement with the equilibrium of normal
tresses at the interface. The theoretical spectra 𝐸sphere

and 𝐸𝛿sphere are
lso reported. It turns out that the oscillations of the pressure gradient
re in phase with 𝐸sphere

at large scales and with 𝐸𝛿sphere at small scales,
which underlines the fact that pressure undergoes both a jump in its
value and its derivative across the interface. So far, the spectra of the
forces are in agreement with the theoretical predictions of Section 3.

The spectra of the terms that explicitly involve the velocity, −𝜌𝐷𝑡𝐮
nd ∇.(2𝜇𝐒), show a somewhat different picture (Fig. 12). Both are
ndependent of the mesh refinement for 𝑘∕𝑘𝑏 < 3 for −𝜌𝐷𝑡𝐮 and 𝑘∕𝑘𝑏 <
4 for ∇.(2𝜇𝐒). The fact that they show no oscillations while showing no
decay in this range recalls the footprint of a Dirac-type singularity. As
demonstrated earlier, these terms should not present such a singularity.
That spectral behavior at small scales is therefore a consequence of the
approximation done by using a discrete description of the interface.
Even if we are not able to relate the spectra of these two quantities
to the detail of the numerical scheme, it is interesting to note that the
9

small-scale plateaus reached by 𝐸𝜌𝐷𝑡𝐮 and 𝐸∇.(2𝜇𝐒) are lower than those
of 𝐸∇𝑃 and 𝐸𝐅𝜎 , suggesting that a part of the Dirac-like singularity of
the latter two is redirected to the former two due to the approximate
numerical treatment near the interface.

In summary, this section leads to the following conclusions. The
spectral signature of the singularities is as predicted by theory for buoy-
ancy, pressure gradient and interfacial force, but different for inertia
and viscous force due to numerical approximations in the cells crossed
by the interface. However, all spectra are remarkably independent of
the mesh spacing, the effect of which is only significant at the small
scales where the effect of singularities becomes dominant.

4.4. Energy budget in the spectral domain

The spectral energy balance of the kinetic energy of the two-phase
mixture can be obtained in the same way as for a single-phase flow. The
Fourier transform (Eq. (10)) of each term in the Navier–Stokes equation

̂∗
(Eq. (4)) is calculated, and contracted with the complex conjugate 𝐮
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Fig. 11. Normalized spectra 𝐸∇𝑃 of pressure gradient, and 𝐸𝐅𝜎
of interfacial force at 𝛼 = 6% (DNS results).

Fig. 12. Normalized spectra 𝐸𝜌𝐷𝑡𝐮 of inertia, and 𝐸∇.(2𝜇𝐒) of viscous force at 𝛼 = 6% (DNS results).

Fig. 13. Normalized spectral density of the terms of the energy balance for the refined grid at 𝛼 = 6% (DNS results).
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⏟

of the Fourier transform of the velocity:

+𝜇∇2𝐮.𝐮̂∗
⏞⏞⏞⏟⏞⏞⏞⏟
Dissipation

+ ̂(𝜌 − 𝜌𝑚)𝐠.𝐮̂∗
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Production

−𝜌𝐷𝑡𝐮.𝐮̂∗
⏟⏞⏞⏟⏞⏞⏟

Inertia

−∇̂𝑃 .𝐮̂∗
⏟⏞⏟⏞⏟
Pressure

+𝐅𝜎 .𝐮̂∗
⏟⏟⏟

Interfacial tension
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Transfers

= 0 . (20)

Each term is a complex-valued field in the wavenumber vector 𝐤. We
take its real part and integrate it over shells of constant 𝑘 = ‖𝐤‖
(Eq. (11)) to finally obtain a real-valued function of 𝑘. This means we
will not be examining flow anisotropy in what follows.

Note that according to the Plancherel’s theorem, each term 𝐓
of the momentum equation satisfies the relation: ∫ 𝐓(𝐱).𝐮(𝐱)𝑑𝑥3 =
∫ 𝐓(𝐤).𝐮(𝐤)

∗
𝑑𝑘3, which means that the integral over the wavenumbers

of each term of the spectral balance (Eq. (20)) is equal to the average
power of 𝐓. In particular, the first term can be expressed with the
velocity spectrum as 𝜇𝑘2𝐸𝑢, and, its integral over 𝑘, noted −𝜖, is equal
to the dissipation rate of kinetic energy. It can thus be interpreted as
the spectral density of the dissipation rate.

Since we are considering a statistical steady state, the integral over
𝑘 of the second term is equal to 𝜖 and corresponds to the rate of energy
supplied to the system by external forces. The buoyancy term therefore
represents the spectral density of the production rate of kinetic energy.

The integral over 𝑘 of each of the three remaining terms is zero,
which means that inertia, pressure and interfacial forces do not con-
tribute to the total amount of power, their role being to transfer energy
between scales. Note that it is only true in steady state.

Before examining the DNS results, it is useful to comment on a
specificity of the inertia term when the densities of the two phases are
different, as it was misinterpreted by one of the few previous works
that dealt with such a situation (Pandey et al., 2020). The inertia
term can be split into two parts as −𝜌𝐷𝑡𝐮.𝐮̂∗ = −𝜌𝜕𝑡𝐮.𝐮̂∗ − 𝜌𝐮.∇𝐮.𝐮̂∗.
When density is constant, 𝜌 can be taken out of the Fourier-transform
operator and the first term of the right-hand-side can be re-written
𝜕𝑡(

𝐮̂.𝐮̂∗
2 ), which is zero at steady state. On the other hand, when 𝜌 is not

constant, −𝜌𝜕𝑡𝐮.𝐮̂∗ does not vanishes at steady state and contributes to
the transfer of energy between the scales. It is important to stress that
while −𝜌𝐷𝑡𝐮.𝐮̂∗ is Galilean invariant (for ‖𝐤‖ > 0), the two parts of
its decomposition are not. This is not a problem when 𝜌 is constant,
since we can always choose the reference frame where the average
velocity is zero. However, it means that this decomposition is irrele-
vant in the present case involving two phases with different densities
moving at different velocities. Pandey et al. (2020) adopted a different
perspective. They decided to decompose the fluid acceleration term into
a Eulerian time derivative and a convective part in a way so that the
former term vanishes in steady state. For each term 𝑇 of the Navier–

Stokes equations, they defined its spectral density as: 𝑇 .𝐮̂∗ + 𝑇̂
𝜌

∗

.𝜌𝐮.
The Eulerian time-derivative term is now written 𝜕𝑡(𝜌𝐮.𝐮̂∗), which is
indeed zero in steady state. However, this comes at a high price, as
the physical meaning of terms involving 𝐓∕𝜌 is unclear. Moreover, the
division by 𝜌 strengthens singularities and their effect on the spectrum.
What is more, their mathematical relevance is uncertain, in particular
regarding 𝐅𝝈∕𝜌, which does not represent the interfacial stress jump
and involves a ratio between the Dirac and Heaviside distributions. We
therefore see no advantage in adopting this approach and use the classic
method defined by Eq. (20).

Fig. 13 presents the spectral energy budget (Eq. (20)), where all
spectra have been normalized using 𝑘𝑏 and 𝜖. Oscillations with a period
𝑘𝑏 of significant amplitudes are visible on all terms, indicating that the
singular parts are far from being negligible.

The production term shows a large positive and almost symmetric
peak around 𝑘 = 0.75𝑘𝑏. Beyond 𝑘 = 1.5𝑘𝑏, it becomes a secondary
term dominated by oscillations of decaying amplitude. Between 𝑘 = 0
and 1.5𝑘𝑏, production is balanced by dissipation, inertia and interfacial
tension. In contrast with the turbulence of a single-phase flow, transfer
here is ensured to a comparable extent by inertia and interfacial force,
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while the role of the pressure gradient remains negligible. However, the
inertial and interfacial contributions exhibit very strong oscillations,
causing them to change sign and making it difficult to understand them
separately. The physical interpretation of the balance is simplified if
inertia, interfacial force and pressure gradient are added together to
construct the total transfer term, represented by the gray line in the fig-
ure. This makes clear the existence of two regimes, both corresponding
to an energy transfer from large to small scales. Before the production
peak (0 ≤ 𝑘 ≤ 0.75𝑘𝑏), the energy supplied by the work of buoyancy
is mainly balanced by the transfer term, which transports energy to
smaller scales. After the dissipation peak (𝑘 ≥ 𝑘𝑏), the energy supplied
from larger scales by the transfer term is dissipated. This picture is
close to single-phase flow turbulence, with the notable difference that
there is no scale separation between the peak of production and the
peak of dissipation, which explains the absence of a 𝑘−5∕3 inertial
subrange. It should also be noted that there is no subrange where
production and dissipation are in equilibrium, in contrast to what was
postulated by Lance and Bataille (1991) to explain the existence of the
𝑘−3 subrange. The same conclusion was recently reached by Zamansky
et al. (2024) who showed that the 𝑘−3 subrange corresponds to a
constant shear rate imposed by the bubble wakes and may be explained
by a mechanism of return to isotropy that takes place once energy
production by bubbles has ceased.

The total transfer possesses another property, which is of major
interest for the purpose of the present work. It has no oscillations.,
indicating that the singularities of its three components cancel each
other out, leaving only the regular part. Since the sum of the production
and dissipation terms balances the transfer term, their singularities are
the opposite of each other. It is therefore sufficient to identify the
singular part of one of them to obtain two distinct, regular and singular
spectral energy balances.

Since buoyancy acts on the bubble scale, it does not supply energy
at scales that are significantly smaller than 𝑅. Consequently, the regular
part of the production spectrum must decay very fast after 𝑘𝑏. The
DNS spectrum plotted in log scale in Fig. 14a shows that the decay
after the peak is interrupted by strong oscillations on a power-law
decaying baseline, which can be attributed to the singular part. The
regular part of the production spectrum can thus be obtained by low-
pass filtering of the DNS spectrum. This has been done in Fig. 14a,
where the blue line shows the production spectrum multiplied by
a sharp filter, exp(−(𝑘∕𝑘𝑐 )4), with 𝑘𝑐 = 1.3𝑘𝑏. (Changing the cutoff
wavenumber 𝑘𝑐 , slightly changes the result in the vicinity of 𝑘𝑐 , but has
no effect beyond). The singular part (gray dashed line), obtained as the
difference between the total spectrum and the regular part, combines
several types of singularities since its oscillations slowly evolves from
a cos2(𝑘𝑅) behavior to a sin2(𝑘𝑅) behavior, and its power decay from a
slope −3 to −4.

In contrast with production, the dissipation is only expected to
experience a viscous cutoff at scales much smaller than the bubbles,
so there is no easy way to distinguish between its singular and regular
parts. Nevertheless, as noted above, its singular part is the opposite
of that of the production spectrum and its regular part is obtained by
subtracting it from the total dissipation spectrum. Fig. 14b shows a log
plot of the total dissipation spectrum, as well as its regular and singular
parts obtained in that way. The regular part shows a clear 𝑘−1 evolution
in the range from 𝑘 = 0.8𝑘𝑏 (just after the production peak) to 2-3 𝑘𝑏.

Provided the pressure gradient, inertia and interfacial contributions
are considered all together in a total transfer term, we eventually obtain
two separate energy budgets, one for the regular part, the other for the
singular part. The production (Fig. 14a) and the dissipation (Fig. 14b)
involve both a regular and a singular part, while the total transfer
(Fig. 14b) is regular.

Finally, the singular and regular parts of the velocity spectrum are
obtained by dividing the corresponding part of the dissipation spectrum
by 𝜇𝑘2. The regular part shows a 𝑘−3 evolution in the region where the

−1
dissipation spectrum shows a 𝑘 behavior.
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Fig. 14. Normalized spectral density of the terms of the energy balance and energy spectrum. DNS at 𝛼 = 6% and CGS at 𝛼 = 7.5%. (a): Production, (b): Dissipation, (c): Transfers,
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5. Comparison with coarse-grained simulations

In this work, the Navier–Stokes equations have been directly solved
without additional modeling and the effect of the singularities due
to the presence of the interfaces have been filtered a posteriori out
rom the numerical results. An opposite approach is to filter the flow
n the region close to the interfaces before solving the Navier–Stokes
quations. In this case, all fields are regular. Such coarse-grained sim-
lations (CGS) were introduced by Riboux et al. (2013) to model the
gitation generated by a flow through an array of fixed bubbles and
xtended to simulate freely moving bubbles by Le Roy De Bonneville
t al. (2021). The case of a homogeneous swarm of rising bubbles
as been extensively investigated by this method in Zamansky et al.
2024), where a detailed analysis of the spectral energy budget was
rovided. In this section, we compare these CGS spectra to the DNS
pectra presented in the previous section.

Here we briefly present the CGS simulations, focusing on elements
hat are useful for understanding the comparison with the DNS. A
etailed description of the method is available in Le Roy De Bonneville
t al. (2021), Zamansky et al. (2024). The carrying phase fills the
ntire domain without interruption. Its dynamics is described by the
ontinuity and Navier–Stokes equations for an incompressible fluid of
onstant density and viscosity. The presence of the bubbles is accounted
or in the Navier–Stokes equations by a forcing term 𝐟𝑏→𝑓 ,

𝐟𝑏→𝑓 (𝐱, 𝑡) = −
𝑁𝑏
∑

𝑏=1
𝐅𝑓→𝑏𝐺(𝐱 − 𝐱𝐛(𝑡)) , (21)

where a Gaussian kernel,

𝐺(𝝃) = 1
(2𝜋𝜎2𝐺)

3∕2
exp(−

‖𝝃‖2

2𝜎2𝐺
) , (22)

s used to distribute the force −𝐅𝑓→𝑏 exerted on the fluid by each bubble
. The location 𝐱𝐛 of each bubble is calculated by solving Newton’s
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econd law, where the force 𝐅𝑓→𝑏 exerted by the fluid included drag, p
dded-mass, buoyancy and Tchen forces, calculated by using classic
xpressions involving both the bubble velocity and the fluid velocity
t the bubble location. The main difference between the DNS and CGS
pproaches lies in the forcing added to the Navier–Stokes equations. In
NS, 𝐅𝜎 is localized at the interfaces, while, in CGS, 𝐟𝑏→𝑓 is spread over
region of scale 𝜎𝐺.

The CGS simulations have been carried out in a triperiodic cubic
omain of dimension 𝐿 = 70𝑑, on a regular mesh of spacing 𝛥 = 𝑑∕15.
he spatial resolution is thus the same as that of the coarse DNS mesh,
ut the momentum supplied by the bubble is here filtered at a scale
f the order of that of the bubble, since 2𝜎𝐺 = 0.28𝑑. The physical
arameters are those of air bubbles of diameter 𝑑 = 2.5mm rising
n water. The results reported here correspond to a volume faction
= 7.5%, and a bubble Reynolds number 𝑅𝑒 = 760.

The spectra are determined from the fluid pressure and velocity
ields computed by the CGS. The spectral densities of energy (𝐸𝑢) and
issipation (𝜇∇2𝐮.𝐮̂∗) are obtained exactly as in the DNS. The buoyancy
orce is applied to the bubbles, which then transfer it to the fluid
hrough the momentum forcing 𝐟𝑏→𝑓 . The production spectrum is thus
alculated from the work of the coupling force: 𝐟𝑏→𝑓 .𝐮̂∗. The spectral
ransfers are, as in a single-phase flow, ensured by inertia (−𝜌𝐷𝑡𝐮.𝐮̂∗)
nd pressure (−∇̂𝑃 .𝐮̂∗), with a vanishing contribution of the pressure
n homogeneous flow condition.

Normalized CGS spectra have been reported in Fig. 14 (red lines).
ince 𝜌 and 𝜇 are constant and the coupling force 𝐟𝑏→𝑓 is smooth,
GS spectra do not have a singular part. The agreement between
GS spectra and the regular part of DNS spectra is remarkable and
onstitutes a cross-validation of both. On the one hand, the spreading
f the momentum transferred from the bubble to the fluid over a region
f comparable size to that of the bubble is confirmed to be significantly
elevant, not only at scales larger than the filtering threshold, but
lso at significantly smaller scales. On the other hand, this gives us
onfidence in the method used to separate the regular and singular

arts of the DNS spectra.
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6. Conclusion

The spectral analysis of dispersed two-phase flows is complicated
by the presence of interfaces between the two phases, across which
some quantities are discontinuous. This difficulty can be circumvented
by considering subdomains containing only one of the two phases, but
at the price of the severe limitation: transfers of momentum and energy
between phases cannot be described, making it impossible to construct
a spectral balance. Analyzing fields extending over the entire domain
is therefore a much more fruitful approach to understand the physical
mechanisms underlying the dynamics of turbulent fluctuations.

In the case of bubbles or droplets transported by a carrying phase,
the combination of jumps of density, viscosity and stresses across the
interface leads the various fields characterizing the dynamics of flow
mixture to experience singularities, which can be ordered from the
less to the most regular by means of integer 𝑝: Dirac delta function
(𝑝 = −1), Heaviside step function (𝑝 = 0), discontinuity of the first
derivatives (𝑝 = 1), discontinuity of the second derivatives (𝑝 = 2)... It
is important to stress that a given field has generally various interfacial
singularities. For example, the pressure gradient generally contains a
Dirac singularity caused by interfacial tension (𝜅𝜎) and a Heaviside
singularity caused by the jump in the gravity force (𝜌𝐠). A field can
be characterized by its most severe singularity, 𝑝𝑚𝑖𝑛. The velocity field
is generally continuous but its derivatives are not, leading to 𝑝𝑚𝑖𝑛 = 1.

The spectrum of any field combines a regular part, which represents
the smooth evolution outside the interface, and a singular part, which
reflects interfacial singularities. At large wavenumbers, the spectrum
of a singularity of order 𝑝, follows a power-law decay as −2𝑝 − 2.
Therefore there exists a wavenumber above which, the spectrum of
a physical field is dominated by its singular part, and it ends up by
being dominated by its most severe singularity, of order 𝑝𝑚𝑖𝑛. The
wavenumbers where the singular part begins to become significant
depends on the amplitude of the regular part relative to that of the
singular part, and the way it evolves with 𝑘. When the interfaces are
the surface of droplets or bubbles, the singular part of the spectrum
reaches a maximum at a wavelength close to the droplet scale and
follows a power-law at smaller scales. When the droplets are spheres of
the same radius 𝑅, the spectrum of the singularities shows oscillations
as sin2(𝑅𝑘+𝜙), of period 𝑘𝑏 = 𝜋∕𝑅. These oscillations vanish when the
droplets are deformed or their size distributions is broad.

In a dispersed two-phase flow, the singular part of the spectra is
therefore expected to be important for wavenumbers larger than 𝑘𝑏. For
instance, it is insignificant on the major part of the turbulent spectra
in the case of a turbulent flow laden with droplets of size smaller
than the Kolmogorov micro-scale. However, it cannot be neglected
when the droplet size is in the energetic wavelength range. In this
work, we have investigated the case where its impact is the most
important, a swarm of bubbles rising at a high Reynolds number, since
the fluctuating energy is produced in a range around 𝑘𝑏. In addition,
we have considered almost spherical bubbles of a single diameter 𝑑,
for which the oscillations of the spectrum at a period 𝑘𝑏 are a visible
signature of the singular part. We also chose the same viscosity for the
two phases to simplify the analysis.

A homogeneous rising swarm, at volume fractions 𝛼 = 3% and
6% and Reynolds number 𝑅𝑒 = 500, has been computed by Direct
Numerical Simulations using a front tracking of the interfaces, with
a mesh grid spacing 𝛥 = 𝑑∕14 or 𝑑∕27. The conclusions reached are
independent of 𝛼 and 𝛥. The numerical spectra of the velocity and of
all the terms of the momentum equations clearly show the signature of
singularities of order 𝑝 = −1 (Dirac type), 𝑝 = 0 (Heaviside type) and
𝑝 ≥ 1 (continuous fields). Buoyancy, pressure gradient and interfacial
forces show the singularities predicted by the theory. However, the two
terms that explicitly imply velocity, namely inertia and viscous forces,
are less regular than they should be. This indicates that, even though
the momentum balance is locally satisfied everywhere, the numerical
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treatment in the meshes that are crossed by an interface, redistributes
the singularities between the different terms, leading to a less regular
velocity field.

The spectral power densities of all the forces contributing to the
energy balance were determined, in the same way as usually done in
turbulence studies. This budget is made of five terms. The buoyancy
term corresponds to the production of kinetic energy. The viscous term
corresponds to the dissipation of kinetic energy into heat. The integral
over the wavenumbers of the production term is the opposite of that of
the dissipation term and equal to the dissipation rate of energy 𝜖. The
inertia, interfacial tension and pressure-gradient terms transfer energy
between scales without contributing to the total amount of power. It
turns out that the singular part cancels out when we add the three
transfer terms together, leading to a regular total transfer term. Then,
taking advantage of the fact that the regular part of the production term
decreases very sharply beyond 𝑘𝑏, its singular and regular parts can be
separated. Since the singular part of the dissipation term must balance
the singular part of the production term, we end up with two separate
budgets, one for the regular part, one for the singular part. These
results have been compared with those of Coarse-Grained Simulations,
in which the momentum transfer between the bubbles and the fluid are
filtered before the Navier–Stokes equations are solved. The CGS spectra
are found to be in remarkable agreement with the regular part of the
DNS spectra, validating both approaches to obtain the regular part of
the spectra.

This work proves that it is relevant to analyze DNS spectra of bubbly
flows computed by considering the fields over the entire domain. In the
case of homogeneous bubble-induced agitation, it has been possible to
separate the regular and singular parts of the spectral energy budget
thanks to the two following properties: (1) the singular parts of the
transfer terms cancels out when we add them, and (2) the production
term decay very sharply after 𝑘𝑏. The question now is under which
conditions these two properties are valid. In a future work, we shall
address the case of coupled forced isotropic homogeneous turbulence
and bubble-induced agitation.
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