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Abstract

Spectral analysis of dispersed two-phase flows is highly desirable to reveal the

interplay of the various flow scales, much larger or much smaller than the size

of the dispersed bodies. This is a challenging task as the matching conditions

at the body interfaces generate singularities in the fields describing the two-

phase mixture. The nature of these singularities and their consequences on

the spectra are theoretically analyzed for bubble or droplet flows. Results of

direct numerical simulations are reported and spatial spectra of the mixture

velocity, the flow forces and their power are examined. The regular part of

the spectral densities of energy production, dissipation and transfers between

scales are separated from their singular part. The resulting spectral energy

balance, free of the footprint of the singularities, is found in agreement with

coarse-grained simulations where the interfaces are filtered out before solving

the Navier-Stokes equations. These results pave the way for the spectral analysis

of more complex turbulent dispersed flows.
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1. Introduction1

The dynamics of dispersed multiphase flows are controlled by the interactions2

between a population of bodies - either droplets, bubbles or solid particles - and3

a fluid phase in which they are randomly distributed. The bodies have a great4

impact on flow fluctuations either by modulating a pre-existing shear-induced5

turbulence (Balachandar and Eaton, 2010; Brandt and Coletti, 2022) or by6

directly inducing agitation through their motion relative to the fluid (Risso,7

2018). Spectral analysis is a powerful tool to understand turbulence, since two-8

point correlations give access to the flow structure. Applied to multiphase flows,9

it should reveal the interplay between scales and lead to a better modeling. In10

particular, our objective is to determine the spectral density of the power of all11

the forces that contribute to the energy balance, distinguishing between rate of12

production, dissipation and transfer between scales. However, the question of13

how to achieve this in the presence of numerous sharp interfaces between the14

carrier and dispersed phases is not trivial.15

Since the pioneering work of Lance and Bataille (1991), many experimen-16

tal works have reported one-dimensional spectra of the liquid phase velocity in17

bubbly flows. Different methods were used to deal with the interruptions by the18

bubbles: removing the parts of the signal belonging to the gas phase and filling19

the gaps by a smooth function (Lance and Bataille, 1991), retaining only parts20

of the signals between two bubbles which are not interrupted (Mart́ınez Mercado21

et al., 2010; Mendez-Diaz et al., 2013; Roghair et al., 2011; Prakash et al., 2016;22

Alméras et al., 2017), measuring the flow just behind a rising bubble swarm23

(Riboux et al., 2010). A few numerical studies have proposed spectral analysis24

of the velocity field of the carrying phase in order to make direct comparisons25

with experiments (Roghair et al., 2011). However, spectra obtained from Di-26

rect Numerical Simulations (DNS) of dispersed two-phase flows are generally27

calculated by considering the entire flow field without distinguishing between28

carrying and dispersed phases (Tryggvason et al., 2002; Lucci et al., 2010; Dodd29

and Ferrante, 2016; Pandey and Ramadugu, 2020; Innocenti et al., 2021; Pandey30
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et al., 2022; Crialesi-Esposito et al., 2022).31

The question of whether the spectral analysis should take into account the32

entire flow mixture or only the carrying phase deserves to be discussed. In this33

work, we focus on numerical simulations where the flow is known everywhere and34

consider the case of a statistically homogeneous dispersed flow in a large periodic35

domain, which is well suited to a spectral description in the k-wavenumber36

domain.37

We examine first the option of building spectra of the continuous phase only,38

and immediately set aside the method of filling the region occupied by the dis-39

persed phase by an arbitrary smooth field. Considering a region of the flow that40

is never crossed by an interface ensures that the field of any physical quantity41

is smooth. However, the surface of the bodies are now boundaries from which42

momentum and energy are supplied to the system under study. All the local43

statistical quantities, such as velocity variance, energy dissipation rate, pres-44

sure gradient or inertial forces, depend on the distance to those boundaries. In45

such a heterogeneous flow, an average spatial spectrum S(k) cannot represent46

a meaningful spectral density of any of these fields. This would make no more47

sense than constructing a spatial spectrum from the velocity along a line per-48

pendicular to a wall in a channel flow. An attempt to overcome this limitation49

has been done by Freund and Ferrante (2019) who analyzed DNS results of a50

droplet laden flow. They used wavelets, a tool developed to deal with inho-51

mogeneous fields by allowing the construction of spectra, S(x,k), that depend52

also on the location x. For each wavenumber, the domain was decomposed53

into three regions in contact but without intersections: an intermediary region54

I crossed by the interfaces, a region C fully located in the continuous phase55

and a region D fully located in the droplets. Vector x was only used to deter-56

mine to which region belongs a given point and three spectra, SI(k), SC(k) and57

SD(k), one for each region, were calculated. Since the spectra depend only on58

k, they still face the inconsistency of describing highly heterogeneous fields. A59

more sophisticated use of wavelets preserving the double dependency in x and60

k could lead to a relevant description, but has yet to be developed for the study61

3



of dispersed multiphase flows. In this work, we stay with the conclusion that,62

in the context of a homogenized description based on spectra depending only63

on the wavenumber, it is not relevant to consider the flow field of the carrying64

phase only.65

The remaining option is to consider the flow of the entire mixture. Since66

it is statistically homogeneous, the use of the Fourier transform is appropriate.67

However, the fields of the physical quantities under investigation experience68

singularities at the interfaces between the phases. These singularities are due69

to the presence of jumps across the interface of some physical properties, such70

as density and viscosity, and to surface tension. They are of several kinds,71

such as the discontinuities of the velocity derivatives or the Dirac delta function72

that describes the pressure gradient. These singularities may have a strong73

footprint on the spectra. In particular, they can generate oscillations, which74

were very early reported on the velocity spectra of dispersed two phase flows75

with large bubbles (Tryggvason et al., 2002) or solid particles (Lucci et al., 2010).76

These oscillations are associated with the Gibbs phenomenon, familiar in signal77

processing, and well exemplified by the sine cardinal function, which is the78

Fourier transform of a gate. Their signature also contains a power-law decay at79

large wavenumbers, which must not be confused with a dynamical phenomenon80

(Risso, 2011). The spectra of any flow-field quantity contains a regular part81

that describes the smooth variations in the bulk phases and a singular part that82

accounts for interfacial singularities.83

In what follows, we focus on droplets or bubbles in a fluid, which means that84

the dynamics of the two phases are described by the Navier-Stokes equations85

and the interface by an interfacial tension. A similar analysis could be carried86

out for solid particles in a fluid, but it is out of the scope of the present work.87

Our objective is to examine the consequences of the presence of interfacial sin-88

gularities on spectra. The singular part of a spectrum is sometimes qualified89

as spurious, since it complicates the physical interpretation. However, in the90

context of the analysis of the mixture fields, it is a part of the mathematical91

solution of the physical problem. The possibility of separating the regular and92
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singular part is a central question that motivates this work.93

This paper is organized as follows. Section 2 presents the dynamics equa-94

tions of the mixture flow and examines the nature of the different interfacial95

singularities. Section 3 analyzes the spectral signatures of basic singularities96

caused by droplet or bubble interfaces. Section 4 reports results of direct nu-97

merical simulations and discusses the spectral density of the velocity, of the98

terms of the Navier-Stokes equations and of the terms of the energy balance.99

Section 5 compares with results of coarse-grained simulations, where interfacial100

singularities are filtered out before solving the Navier-Stokes equations. Sec-101

tion 6 summarizes the main findings and concludes.102

2. Equations of motion of a two-phase mixture and field singularities103

In this section, we examine the nature of the singularities encountered by104

the fields describing the flow, which are due to the presence of fluid interfaces.105

We decided to analyze the spectral distribution of the entire mixture. For106

this reason, we write the equations of motion of the fluids as a single set of107

partial differential equations for the velocity u and pressure P , which is valid108

throughout both phases. This means that the matching of the dynamic condi-109

tions between the two phases at the interfaces have to be inserted within the110

Navier-Stokes equations for the mixture. Because that matching involves jumps111

of stresses through the interfaces, the use of generalized functions (Gelfand and112

Shilov, 1964), known as distributions, is required. Note that this approach is113

known as one-fluid sharp interface methods in the context of numerical simula-114

tions of two-phase flow (Kataoka, 1986; Lalanne et al., 2015).115

We consider a population of fluid particles, either drops or bubbles, dispersed116

in another fluid. The two fluids are immiscible and form a two-phase mixture,117

without phase change. The interfaces between the phases are massless, of zero118

thickness and entirely characterized by a surface tension σ. The density and119

viscosity of the two fluids are different, but constant in each phase. In the120

following, the carrier phase, dispersed phase and interfaces are distinguished by121

5



x∥1

x∥2

u∥1

u∥2

u⟂

x⟂

Figure 1: Local coordinates nearby an interface

the subscripts c, d and s, respectively. We introduce the indicator function, χ,122

which is equal to one in the dispersed phase and to zero in the carrying phase.123

The density ρ and the viscosity µ of the mixture can be written:124

ρ = ρc + (ρd − ρc)χ , (1)

µ = µc + (µd − µc)χ . (2)

In the context of continuum mechanics, in the absence of phase change, the125

velocity field is continuous. The mass conservation is126

∂tρ +∇.(ρu) = Dtρ+ ρ∇.u = 0 . (3)

Because ρ is constant in each phase and no fluid particle crosses interfaces,127

the material derivative (Dt = ∂t + u.∇) of the density is zero and the velocity128

field is divergence-free: ∇.u = 0. This result has further consequences for the129

differentiability of u. Let’s consider a portion of the interface and name x∥1 and130

x∥2 the local coordinates along the interface, and x⊥ the coordinate orthogonal131

to it (fig. 1). Since u is continuous across the interface, the four strain-rate132

components ∂∥ξuη (with ξ and η equal to 1 or 2) are equal on both sides of the133

interface and thus have no discontinuity. Then, considering that ∇.u = 0, we134

get that the normal strain rate ∂⊥u⊥ = −∂∥1u∥1 − ∂∥2u∥2 is continuous too.135

Thus, the only derivatives of u that can present a discontinuity are the shear-136

rate components ∂⊥u∥ξ, the regularity of which is prescribed by the shear-stress137
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matching across the interface and will be discussed later.138

The momentum equations are formally written as the classic Navier-Stokes139

equations with a non-constant viscosity in which surface tension is taken into140

account by adding an interfacial force:141

−ρDtu−∇P + ρg +∇.(2µS) + Fσ = 0 , (4)

where S = 1
2 (∇u+∇uT ) is the strain-rate tensor. The interfacial force is written142

as143

Fσ = −σ∇S .n∇χ+∇Sσ

∫
xs

δ3D(∥x− xs∥)dS, (5)

where n is unit normal to the interface pointing outward from the dispersed144

phase, ∇S is the two-dimensional gradient operator on the interface, xs is any145

point on the interface S and δ3D(∥x− xs∥) = δ(x− xs)δ(y − ys)δ(z − zs) with146

δ the Dirac delta function. The surface divergence ∇S .n of the normal vector147

is twice the mean curvature κ of the interface and the gradient of the indicator148

function can also be written in terms of the Dirac delta function as149

∇χ = −n

∫
xs

δ3D(∥x− xs∥)dS . (6)

The first term of eq. 5 corresponds to the interfacial jump of the normal stress150

due to the capillary pressure: −2σκ. The second term accounts for the interfa-151

cial jump of the shear stress due to the Marangoni effect: ∂∥ξσ.152

Let us examine the nature of the singularities of various fields of interest. A153

field V can be decomposed in a regular singularity-free part Vreg and interfacial154

jumps [V
(p)
irreg] of its successive derivatives of order p:155

V (x) = Vreg(x) +

pmax∑
p≥pmin

[V
(p)
irreg(x = xs)], with pmin ≥ −1 . (7)

The integer pmin is the order of the lowest derivative that is discontinuous, which156

characterizes the strongest singularity of V . The sum may continue to infinity157

or stop at a finite value pmax, which then characterizes the less sharp singularity.158

At this point, it is worth mentioning that the regularity of the solutions of the159

Navier-Stokes equations is a very hard mathematical issue, which is still an160
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Regular part p ≥ 1 p = 0 p = −1

(continuous) Heaviside type Dirac type

Buoyancy: ρg ✓ ✓

Inertia: −ρDtu ✓ ✓

Interfacial force: Fσ ✓

Pressure gradient: −∇P ✓ ✓ ✓ ✓

Viscous diffusion: ✓ ✓ ✓ ✓

∇.(2µS) ifµc ̸= µd

or∇Sσ ̸= 0

Table 1: Interfacial discontinuities (eq. 7) involved in each terms of the momentum equations

(eq. 4). A check mark means that the corresponding discontinuity-type is present.

open question even in the case of a single-phase flow (Onsager, 1949; Duchon161

and Robert, 2000; Dubrulle, 2019). As the aim of the present work is to examine162

the practical consequences of the presence of fluid interfaces on the spectra of163

the fields, we shall concentrate on the lower values of p, which correspond to the164

more severe singularities with the strongest consequences. Note that pmin = 1165

corresponds to a field that is continuous whereas its derivative experiences a166

jump across the interface. Handling values of p that are less than unity means167

that we consider the word ’derivative’ in a broader sense. Indeed, we have to168

deal with the cases where the function itself is discontinuous (pmin = 0) or is169

the derivative of a discontinuous function (pmin = −1). For instance, χ, as170

well as ρ and µ, is a pure step function of Heaviside type, characterized by171

pmin = pmax = 0.172

Table 1 lists the type of discontinuities which are expected to be involved in173

the various terms of the momentum equations, according to the decomposition174

defined by eq. 7. For the balance to be satisfied, every singularity appearing in175

one term of the momentum equations must cancel out with singularities of the176

same order in the other terms. In other words, the sum of the terms in each177

column must be zero. We examine now the volume forces of the momentum178
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equations one by one.179

The buoyancy force ρg is the product of the density and the acceleration of180

gravity; it is thus of pure Heaviside type. Check marks are therefore present181

only in the columns corresponding to the regular part and the p = 0 singularity.182

Since a fluid particle never crosses an interface and the velocity is continuous,183

its acceleration Dtu is expected to be regular. However, because it involves the184

density, the nature of the singularity of the inertial force ρDtu is the same as185

that of the buoyancy force.186

Eqs. 5-6 show that Fσ is of pure Dirac type and associated with pmin =187

pmax = −1. A check mark is therefore present only in the p = −1 column. Note188

that this is the only term without a regular part, as it is not defined outside the189

interfaces.190

The pressure gradient has generally both Heaviside and Dirac singularities.191

This is easy to show by considering the elementary case of an interface of con-192

stant σ between two fluids at rest in a constant gravity field: for example a193

droplet pending at the tip of a capillary tube. Eq. 4 simplifies to194

∇P = −ρg − 2σκ∇χ , (8)

where the pressure gradient has to balance both the Heaviside-type buoyancy195

force and the Dirac-type interfacial force. The first corresponds to the jump in196

the hydrostatic pressure: ∂Pd/∂z−∂Pc/∂z = −(ρd−ρc)g. The second accounts197

for the Laplace pressure jump: Pd − Pc = −2κσ.198

As regards the viscous force, ∇.(2µS), the fact that the viscosity, which is199

discontinuous, appears under a differential operator immediately suggests the200

presence of a Dirac-type singularity. However, it is interesting to analyze its201

significance by distinguishing again between the tangential and normal direc-202

tions, and by considering its two possible origins, namely: a viscosity jump or203

a Marangoni stress.204

As we have shown before, ∂⊥u⊥ is continuous across the interface. Therefore,205

the jump of the normal viscous stress through the interface is equal to 2(µd −206

µc)∂⊥u⊥. This means that the existence of a viscosity difference between the207
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phases is sufficient to generate a finite jump in the viscous stress, which leads208

the viscous volume force in the momentum equation to include a Dirac-type209

contribution. The matching of the normal stresses at interface is written210

2(µd − µc)∂⊥u⊥ + (Pd − Pc) + 2κσ = 0 , (9)

which shows that even in the case of vanishing surface tension, a jump in viscos-211

ity is sufficient to generate a pressure jump. On the other hand, when ∇Sσ ̸= 0,212

the Marangoni stress is responsible for a jump in the tangential shear stress.213

Finally, it thus turns out that the viscous volume force contains a Dirac-type214

singularity (pmin = −1) if either µd − µc ̸= 0 or ∇Sσ ̸= 0. Since the pressure215

gradient involves a Heaviside-type discontinuity (p = 0), we can expect that the216

viscous force also does so to satisfy the equilibrium of the normal stresses at217

the interface under flow conditions. Then, as we see no reason why the second218

derivative of viscous stress should be the same on both sides of the interface in219

the general case, we have added check marks in the p ≥ 1 columns of pressure220

gradient and viscous force.221

To end this section, we conclude with the velocity field. We have already222

shown that all partial derivatives of u are continuous except the shear-rate223

components ∂⊥u∥ξ. Therefore, if µd − µc = 0 and ∇Sσ = 0, the continuity of224

the shear stress ensures that of the shear-rate, so all the velocity derivatives are225

continuous and u is characterized by pmin ≥ 2. Otherwise, in the general case,226

pmin = 1.227

3. Spectral signatures of basic singularities caused by droplet or bub-228

ble interfaces229

In this section we examine the spectral signature of singularities of various230

orders p. The energy density spectrum EV of a scalar field V (x) is defined as231

follows. First, we take the three dimensional Fourier transform of V (x):232 “V (k) =

∫
eik.xV (x)dx . (10)
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Second, we multiply it by its complex conjugate (*) and sum over shells Aw of233

constant ∥k∥:234

EV (k) =

∫
∥w∥=k

“V (w).“V ∗(w)dAw , (11)

(depending on whether V is a scalar or a vector, the operation “.” is a multi-235

plication of numbers or a scalar product).236

3.1. Analytical results for spherical interfaces237

We introduce the indicator function Hsphere of a ball (interior of a sphere)238

as a reference Heaviside-type field, and the indicator function δsphere of a sphere239

(surface of a ball) as a Dirac-type field. These fields are respectively representa-240

tive of the density and the interfacial force of a two-phase mixture of spherical241

droplets. Their Fourier transforms are242 “Hsphere(k) =
4π

∥k∥3
(sin(R∥k∥)−R∥k∥cos(R∥k∥)) (12)

and243

δ̂sphere(k) =
4πR

∥k∥
sin(R∥k∥) (13)

where R is the sphere radius (Gelfand and Shilov, 1964). Their spectra are244

EHsphere
(k) =

(4π)2

k4
(sin(Rk)−Rk cos(Rk))

2
, (14)

and245

Eδsphere
(k) = (4πR)2sin2(Rk) . (15)

The spectra of the two cases present oscillations of period kb = π/R, correspond-246

ing to sin2(Rk). On the one hand, the oscillations of Eδsphere keep constant phase247

and amplitude for all k. On the other hand, EHsphere
behaves as R6k2 at small248

k and as k−2cos2(Rk) at large k, which means it cancels out for both k = 0 and249

k = ∞.250
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Figure 2: Numerical spectra of three-dimensional scalar fields of various singularity orders:

pmin = −1 (red), pmin = 0 (green), pmin = 1 with J1 = 1 (blue), pmin = 2 with J2 = 10

(orange). The straight lines correspond to k−2−2pmin .

3.2. Numerical results for spherical interfaces251

We have numerically computed the spectra of basic singular scalar fields252

Vpmin
, characterized by a value pmin from 0 to 2, defined as follows:253

V−1(X ) = δ(X ) , (16)

V0(X ) = (1−H(X )) , (17)

V1(X ) = (X 2 − 1)((J1/2 + 1)X 2 − 1) (1−H(X )) , (18)

V2(X ) = (X 2 − 1)2((J2/8− 1)X 2 + 1)(1−H(X )) , (19)

where H is the classic Heaviside function (equal to zero for x ≤ 1 and to one254

for x > 1), X is the normalized distance from the center xc of the sphere:255

X = ∥x − xc∥/R. V−1 and V0 correspond to δsphere and Hsphere. Then, it is256

easy to check that V1 and V2 have the expected level of singularity provided J1257

and J2 are finite. Indeed, both are regular inside the sphere and zero outside,258

while at the interfaces: V1 = 0 and V ′
1 undergoes a jump J1; V2 = V ′

2 = 0259

and V ′′
2 undergoes a jump J2. (In contrast with δsphere and Hsphere, V1 and260
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V2 do not correspond to a pure singularity of order p =1 or 2, which means261

that pmax ̸= pmin.) These four fields have been mapped on a three-dimensional262

regular grid of spacing ∆ = R/25, which implies that numerical interfaces have a263

non zero thickness. Then, the spectrum of each of them is computed numerically264

by making use of the discrete Fourier transform.265

Fig. 2 shows the spectra of V−1, V0, V1 and V2 as functions of the wavenumber266

k normalized by kb. The numerical spectrum of δsphere is in agreement with the267

analytical result (eq.15), except at large k where the numerical approximation of268

the delta function becomes rough. However, the numerical spectrum of Hsphere269

remains accurate beyond k = 10kb, so we can trust as well the numerical spectra270

of V1 and V2 in the considered range of wavenumbers.271

The conclusions obtained from the analytical expressions of Eδsphere and272

EHsphere
can be generalized to larger values of pmin. All spectra show oscil-273

lations of period kb and a final power-law decay. At wavenumbers much smaller274

than 1/R, they all show a similar pattern and behave as k2 as k tends towards275

zero. At large k, the spectrum behaves as k−2p−2 sin2(R∥k∥+ϕ). At this stage,276

two main conclusions can be drawn. On the one hand, the decay is controlled277

by the order of the singularity: the more regular the function, the lower pmin,278

the faster the decay. On the other hand, the period of the oscillations and the279

wavenumber where the singularity spectrum is maximum are controlled by the280

droplet size, whatever the nature of the discontinuity.281

The power-law decay generated by an interface singularity of a field should282

not be confused with the power-law subrange exhibited by a regular physical283

field, such as the inertial k−5/3 of single-phase flow turbulence or the k−3 of284

bubble-induced agitation (Lance and Bataille, 1991; Risso, 2018). Such physi-285

cal subranges always have a cutoff at a certain wavenumber: the Kolmogorov286

microscale in the case of turbulence (Pope, 2000), the size of smaller bubble287

disturbances in the model of bubble-induced spectrum by Risso (2011). A sin-288

gularity power-law never stops and always exceeds the regular part of a physical289

signal at large wavelengths.290

At scales close to the size of a droplet, the question of which one dominates291
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Figure 3: Numerical spectra of the indicator function of oblate ellipsoidal balls (pmin = 0,

Heaviside type) of various aspect ratios a/b.

in a physical signal between the regular part or the singularity has no general292

answer and must be examined in each specific situation.293

3.3. Effects of deviation from sphericity and of interface thickness294

In real situations, droplets or bubbles are often not spherical. Also, spatial295

resolution is finite, which means that a fluid interface can never be described296

by a surface of zero thickness. In particular, numerical simulations based on297

the sharp-interface formulation have to deal with finite-size meshes that contain298

the two phases. In this section, we examine the consequences on the spectrum299

of a singularity of the drop non-sphericity, defined by an aspect ratio a/b, and300

of a finite interface thickness, ϵs. In what follows, R is defined as the radius of301

a sphere of the same volume and all calculations have been performed on the302

same mesh as that used in the previous section.303

We begin with the case of the Heaviside singularity (pmin = 0). Figure. 3304

shows numerical spectra EV0
obtained by considering an oblate ellipsoidal in-305

terface with a/b = 1.35 and 2, which is still sharp (ϵs = 0), together with306
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Type) with smooth interface of various thicknesses ϵs.

the theoretical result (eq. 15) and the numerical result for a sphere (fig. 2).307

Deformation clearly dampens oscillations, and the greater a/b, the lower the308

oscillation amplitude. This is easily understood by noting that, for an ellip-309

soid, the distance 2β between two diametrically opposed points on the interface310

varies between 2a and 2b depending on the direction considered. The three-311

dimensional spectrum therefore mixes oscillations of various periods π/β, which312

cannot remain in phase as k increases, causing them to cancel each other out.313

The same phenomenon should occur if we consider a population of drops of314

different sizes, with the variation of R from drop to drop substituting for the315

variation of 2β with direction. However, this process has no effect on the base-316

line of the spectrum, the decays of which remains the same.317

Figure. 4 presents numerical EV0
obtained by considering a spherical in-318

terface of finite thickness. The interface has been smoothly extended over a319

thickness ϵs by replacing the Heaviside function in eq. 17 by an error function:320

V0(X ) = 1− {erf[(X − 1)/ϵs]}/2. For ϵs = R/100, the interface thickness is321
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Figure 5: Numerical spectra of the indicator function of spheres (pmin = −1, Dirac type) of

various thicknesses ϵs.

below the grid resolution ∆ = R/25, and the numerical result is the same as322

that of fig. 3, and in agreement with the theory. The effect of ϵs becomes visible323

when it becomes larger than ∆. A finite thickness affects the small scales by324

increasing the final decay of the spectrum, without having any effect on the325

oscillations. However, it has no impact on the scales that are much larger than326

ϵs. This means that a very strong localized gradient of a regular field, such as327

that of the velocity in a large-Reynolds number boundary layer of thickness ϵBL328

around a drop, would generate a similar spectral signature as a velocity jump329

at scales much larger than ϵBL. We can also wonder whether singularities as-330

sociated with intermittency (Le Berre et al., 2023) could also affect turbulence331

spectra in a similar way.332

Now, we examine the case of the Dirac singularity (pmin = −1). The Dirac333

delta function in 16 is replaced by finite boxcar function of height ϵs and width334

1/ϵs. Figure 5 shows the numerical spectra for spherical interfaces of various335

thicknesses, while fig. 6 shows the same results for oblate ellipsoids of aspect336

ratio a/b = 2. The conclusions are the same as for the Heaviside singular-337
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Figure 6: Numerical spectra of the indicator function of an oblate ellipsoids (pmin = −1,

Dirac type, a/b = 2) with a smooth interface of various thicknesses ϵs.

ity. Increasing the interface thickness causes a faster decay of the spectrum338

at large wavenumber. Increasing the deformation generates a damping of the339

oscillations.340

3.4. Spectral signatures of singularities in physical cases341

We showed in the previous section (2) that a finite jump in the fluid prop-342

erties (density or viscosity) across the interface or a non-zero interfacial ten-343

sion causes singularities in the fields that characterize the flow. In the present344

section (3), we examined the signature of basic singularities of various orders345

corresponding to fluid interfaces of droplets. For spherical drops having all the346

same radius R, the spectrum of the interface singularities is maximum close to347

kb = π/R, shows oscillations of period kb and decays at small scales as k−2p−2.348

For polydisperse or deformed drops the oscillations may be absent, while the349

baseline of the singularity spectrum is still present.350

A real physical field is more complex, since it includes a contribution from351

the regular part that accounts for the dynamics in the bulk phases, in addition352
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to singular contributions that account for the interfaces. Is it possible to dis-353

tinguish between the regular and the singular parts? First of all, we may try to354

attribute the presence of oscillations as sin2(kR+ ϕ) to the singular part. This355

first approach has two limitations. On the one hand, for drops moving at large356

Reynolds number relative to the carrying phase, oscillations may be due to the357

presence of a dynamic boundary layer at the drop surface. On the other hand,358

spectra calculated from DNS of highly deformed drops with a broad size dis-359

tribution immersed in a turbulent field by Crialesi-Esposito et al. (2022) show360

no oscillations, for the reason explained above. Secondly, we can rely on small361

scales to detect the singular part. In principle, the singular part undergoes a362

never-ending power-law decay as k approaches infinity. It must therefore even-363

tually emerge from the regular part, which has a physical cutoff, corresponding364

to the Kolmogorov microscale in a turbulent flow. However, the dissipative365

range is most of the time not resolved, which means that we need to detect the366

singular contribution at larger scales.367

At this stage, it is therefore difficult to anticipate a general method for368

distinguishing the regular part from the singular part, which would probably369

have to be done on a case-by-case basis. Furthermore, even if such a distinction370

can be made, the question of its physical relevance remains open.371

4. Direct numerical simulations of bubble-induced agitation372

In the previous section, we examined the theoretical consequences of basic373

jump conditions on the spectrum of some reference fields. We are now interested374

in analyzing their practical effects on the spectrum of physical fields, such as375

the mixture velocity and the volume forces involved in the momentum balance.376

Since the spectrum of interface discontinuities is significant for wavelengths of377

the order of the drop size R and smaller, it has negligible consequences when378

most of the energy is contained at scales much larger than R, as in the case379

of droplets or bubbles smaller than the Kolmogorov microscale in a turbulent380

field. On the other hand, the case of a swarm of rising bubbles in an otherwise381
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quiescent fluid is particularly impacted, since the energy of the fluctuations is382

generated by the bubbles at scales close to R.383

The fluid velocity in both phases can hardly be measured in experiments.384

Most of the time, only the velocity field of the outer phase is measured in two-385

phase dispersed flows. In addition, the flow in the close vicinity of bubbles386

or droplets is often removed because of spurious measurements. On the other387

hand, DNS using sharp interface methods provide exhaustive information on all388

physical fields at any location. In what follows, we analyze in detail the results389

of DNS of a homogeneous swarm of bubbles rising at high Reynolds number.390

4.1. Presentation of the simulations391

Bubbles having all the same size are initially homogeneously distributed392

over a triperiodic cubic domain and then rise under the action of buoyancy.393

After an initial transient, the flow statistics cease to evolve in time. All sub-394

sequent results are obtained in this statistically steady state. The simulations395

are carried out with the open-source TRUST/TrioCFD code, which uses of a396

front-tracking method to solve the continuity and Navier-Stokes equations in397

the sharp-interface form (3, 4) across the entire domain, including both the gas398

and liquid phases. The code has been described in detail and validated for high-399

Reynolds-number bubbly flow with parameters similar to those of the present400

work in du Cluzeau et al. (2019, 2022).401

The physical parameters are: µc = µd = 3.73 × 10−4 Pa.s, ρc = 1.1713 ×402

103 kg/m3, ρd = 87.545 kg/m3, σ = 18.05 × 10−3 N/m, d = 2R = 10−3 m,403

g = 9.81m/s2. This gives an Archimedes number Ar =
ρcd

√
(1−ρd/ρc)gd

µc
≈ 300404

and a Bond number Bo = (ρc − ρd)gd
2/σ ≈ 0.6, corresponding to slightly405

deformed bubbles in a flow regime dominated by inertia. The density ratio,406

ρd/ρc ≈ 1/13, and viscosity ratio, µd/µc = 1, are outside the range expected for407

bubbly flow at common room temperature and pressure. Note also that surface408

tension is kept constant. These conditions have been chosen to simplify the409

entanglement of the various singularities in the analysis of the spectrum of the410

various terms. In particular, the theoretical analysis suggests that a viscosity411
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Figure 7: Snapshot showing the vertical velocity in a vertical plane (α = 6%, refined mesh)

ratio equal to unity should ensure a more regular velocity and, together with a412

constant σ, to a more regular viscous force.413

The simulations are performed on a 4323 regular mesh in a cubic domain414

of side L = 31.7 × 10−3 m or L = 15.85 × 10−3 m. In the larger domain, the415

mesh-grid spacing is thus ∆ = 73.5× 10−6 m, while in the smaller domain it is416

∆ = 36.77× 10−6 m.417

Two gas volume fractions have been considered: α = 0.03 and 0.06. A418

snapshot of the flow is shown in fig. 7. The case α = 0.03 has been solved419

on the larger domain (L = 32d) with the lower resolution (∆ = d/14). It420

gives the following overall statistics for the two-phase mixture: average bubble421

relative velocity ur = 0.17m/s, half the variance of the mixture velocity Km =422

5.4 × 10−2 u2
r and dissipation rate per unit volume ϵm = 7.45 × 10−3 ρcu

3
r/d.423

The average bubble Reynolds number, Weber number and aspect ratio are:424

Re = ρcdur

µc
= 528, We =

ρcdu
2
r

σ = 1.83 and a/b = 1.39.425
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The case α = 0.06 has been solved on both the larger domain (L = 32d,426

∆ = d/14) and the smaller domain with a better resolution (L = 16d, ∆ =427

d/27). The lower resolution gives: ur = 0.150m/s, Km = 11.2 × 10−2 u2
r,428

ϵm = 18.5 × 10−3 ρcu
3
r/d, Re = 470, We = 1.45 and a/b = 1.33. The greater429

resolution gives: ur = 0.147m/s, Km = 11.8×10−2 u2
r, ϵm = 22.0×10−3 ρcu

3
r/d,430

Re = 462, We = 1.40 and a/b = 1.37. Rigorously, even our finest resolution is431

not enough to exactly capture the boundary layer around the bubbles at such432

a Reynolds number (Innocenti et al., 2021), which explains small differences433

between the two resolutions. In the literature, such a limitation is encountered434

in many numerical simulations involving a large number of dispersed particles.435

This is not a serious limitation for the aim of the present work, which is to436

analyze the spectral signature of interface discontinuities, as we shall see later437

when comparing the results of our coarse and refined meshes.438

4.2. Spectrum of density and velocity439

In a numerical simulation, even in the case where the mesh grid is fitted440

to follow the interface, the fields are described with a finite resolution ∆. The441

consequences for the spectrum have been discussed in section 3.3 where an442

interface of finite thickness has been considered. A coarser resolution leads to a443

faster decrease in the spectral footprint of the singularities. In addition, with the444

front tacking method used here, the two-dimensional mesh that describes the445

interface differs from the three-dimensional one on which is discretized the bulk446

flow. In a cell containing both phases, the values of the density and viscosity447

are interpolated between those of the two phases. This is also the case with448

common other sharp-interface methods, such as VOF or Level-Set. The effect449

of a region where the mixture is described by a fluid with intermediate properties450

can hardly be anticipated, but it may redistribute the singularities between the451

different terms of the momentum balance in a way that probably depends on452

the numerical scheme.453

Let us consider first the spectra of two simpler fields: the density ρ, which454

is only impacted by the finite resolution, and the velocity u, which is affected455
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by both the finite resolution and by the way the continuity and Navier-Stokes456

equations are solved. Note that the spectra are normalized by using kb and their457

variance ⟨(.)2⟩, in order to ease comparison between the two volume fractions.458

Figure 8 shows the spectrum of the density for the three different simulations459

and the analytical solution EHsphere
(eq. 14). Whatever the volume fraction or460

the resolution, the spectrum shows oscillations as sin2(Rk) in agreement with461

the analytical solution. Oscillation amplitudes are smaller due to departure462

from sphericity. Cases α = 3% and α = 6% at the coarser resolution match at463

all wavenumbers and agree at large scales with the case at finer resolution. The464

coarser cases show a decay in agreement with the theoretical k−2 up to k = 3kb,465

while the finer case follows it up to 6kb, showing that halving the mesh spacing466

actually halves the scale from which the interface begins to be seen as less sharp467

than it should be. Regarding the density, the numerical spectrum behaves as468

predicted by the theory.469

Figure 9 shows the spectrum Eu of the velocity. The spectra of the three470

cases are very similar, featuring oscillations with a period kb. We note only471

differences at very large scales due to finite domain size, and at very small scales472

close to the Nyquist wavenumber. This indicates that the velocity spectrum is473

very robust to changes in resolution. The spectrum reaches a maximum near kb,474

followed by a k−3 subrange, which is known as a signature of the bubble-induced475

agitation (Risso, 2018). Then, it shows a steeper decay as k−4 for k > 3kb,476

followed by an even steeper one as k−n, with 4 < n < 5, for k > 6kb. Under477

present conditions, with no viscosity jump or interfacial tension gradient, the478

predictions for u are pmin = 2, which corresponds to a final decay as k−6. The479

fact that u is less regular than expected is probably a consequence of numerical480

approximations in the cells crossed by the interface.481

4.3. Spectrum of the terms of the momentum equations482

We examine now the spectra of the five terms involved in the momentum483

balance (4) from the DNS at α = 6% with either the coarse or the refined484

resolution: buoyancy (ρ− ρm)g, interfacial force Fσ, pressure gradient −∇P ,485
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Figure 10: Normalized spectrum E(ρ−ρm)g of buoyancy force at α = 6% (DNS results)

inertia −ρDtu and viscous diffusion ∇.(2µS). Note that ρm = (1−α)ρc+αρd is486

the average mixture density and we have chosen to include the mean hydrostatic487

pressure gradient ρmg in the buoyancy term so that it takes into account all the488

external forces acting on the two-phase system. In this section, all spectra are489

normalized using kb and the variance of (ρ− ρm)g. It is worth recalling that490

the spectrum is quadratic in the quantity considered, so that the balance of the491

five terms does not lead to a simple constraint on their spectra. When only two492

terms are in equilibrium, their spectrum is the same, but it is not as simple for493

more terms.494

Since g is constant, the spectrum of (ρ− ρm)g (fig. 10) is similar to that of495

ρ (fig. 8) and leads to the same conclusions.496

Figure 11 presents the spectra of Fσ and −∇P . At large scales, for wavenum-497

bers smaller than ≈ 2kb, both are independent of the mesh refinement. At small498

scales, the Dirac-type singularity introduced by interfacial tension gives a con-499

stant intensity. We indeed observe a plateau of the baseline before a cut-off due500

to the finite resolution, which appears at a smaller k at lower resolution. Still,501
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at small scales, the spectra of Fσ and −∇P are identical, which confirms that502

the Dirac-type singularities cancel out entirely between the interfacial force and503

the pressure gradients, in agreement with the equilibrium of normal stresses at504

the interface. The theoretical spectra EHsphere
and Eδsphere are also reported. It505

turns out that the oscillations of the pressure gradient are in phase with EHsphere
506

at large scales and with Eδsphere
at small scales, which underlines the fact that507

pressure undergoes both a jump in its value and its derivative across the in-508

terface. So far, the spectra of the forces are in agreement with the theoretical509

predictions of section 3.510

The spectra of the terms that explicitly involve the velocity, −ρDtu and511

∇.(2µS), shows a somewhat different picture (fig. 12). Both are independent of512

the mesh refinement and show no small-scale decay, a behavior associated with513

the presence of a Dirac-type singularity. This unexpected behavior of the forces514

involving velocity derivatives is consistent with the fact, noted earlier, that u515

is less regular than expected (pmin < 2). The small-scale plateaus reached by516

EρDtu and E∇.(2µS) are lower than those of E∇P and EFσ
, suggesting that a517

part of the Dirac-like singularity of the latter two is redirected to the former518

two due to the approximate numerical treatment near the interface.519

In summary, this section leads to the following conclusions. The spectral520

signature of the singularities is as predicted by theory for buoyancy, pressure521

gradient and interfacial force, but different for inertia and viscous force due to522

numerical approximations in the cells crossed by the interface. However, all523

spectra are remarkably independent of the mesh spacing, the effect of which524

is only significant at the small scales where the effect of singularities becomes525

dominant.526

4.4. Energy budget in the spectral domain527

The spectral energy balance of the kinetic energy of the two-phase mixture528

can be obtained in the same way as for a single-phase flow. The Fourier trans-529

form (eq. 10) of each term in the Navier-Stokes equation (eq. 4) is calculated,530

and contracted with the complex conjugate û∗ of the Fourier transform of the531
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velocity:532

+’µ∇2u.û∗︸ ︷︷ ︸
Dissipation

+⁄�(ρ− ρm)g.û∗︸ ︷︷ ︸
Production

−’ρDtu.û
∗︸ ︷︷ ︸

Inertia

−∇̂P .û∗︸ ︷︷ ︸
Pressure

+”Fσ.û
∗︸ ︷︷ ︸

Interfacial tension︸ ︷︷ ︸
Transfers

= 0 . (20)

Each term is a complex-valued field in the wavenumber vector k. We take its533

real part and integrate it over shells of constant k = ∥k∥ (eq. 11) to finally534

obtain a real-valued function of k. This means we will not be examining flow535

anisotropy in what follows.536

Note that according to the Plancherel’s theorem, each term T of the momen-537

tum equation satisfies the relation:
∫
T(x).u(x)dx3 =

∫ ’T(k).‘u(k)∗dk3, which538

means that the integral over the wavenumbers of each term of the spectral bal-539

ance 20 is equal to the average power of T. In particular, the first term can be540

expressed with the velocity spectrum as µk2Eu, and, its integral over k, noted541

−ϵ, is equal to the dissipation rate of kinetic energy. It can thus be interpreted542

as the spectral density of the dissipation rate.543

Since we are considering a statistical steady state, the integral over k of the544
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second term is equal to ϵ and corresponds to the rate of energy supplied to the545

system by external forces. The buoyancy term therefore represents the spectral546

density of the production rate of kinetic energy.547

The integral over k of each of the three remaining terms is zero, which means548

that inertia, pressure and interfacial forces do not contribute to the total amount549

of power, their role being to transfer energy between scales. Note that it is only550

true in steady state for the interfacial forces.551

Before examining the DNS results, it is useful to comment on a specificity552

of the inertia term when the densities of the two phases are different, as it553

was misinterpreted by one of the few previous works that dealt with such a554

situation (Pandey and Ramadugu, 2020). The inertia term can be split into555

two parts as −’ρDtu.û
∗ = −‘ρ∂tu.û∗ − ÷ρu.∇u.û∗. When density is constant,556

ρ can be taken out of the Fourier-transform operator and the first term of the557

right-hand-side can be re-written ∂t(
û.û∗

2 ), which is zero at steady state. On the558

other hand, when ρ is not constant, −‘ρ∂tu.û∗ does not vanishes at steady state559

and contributes to the transfer of energy between the scales. It is important560

to stress that while −’ρDtu.û
∗ is Galilean invariant (for ∥k∥ > 0), the two561

parts of its decomposition are not. This is not a problem when ρ is constant,562

since we can always choose the reference frame where the average velocity is563

zero. However, it means that this decomposition is irrelevant in the present564

case involving two phases with different densities moving at different velocities.565

Pandey and Ramadugu (2020) adopted a different perspective. They decided566

to decompose the fluid acceleration term into a Eulerian time derivative and a567

convective part in a way so that the former term vanishes in steady state. For568

each term T of the Navier-Stokes equations, they defined its spectral density569

as: T̂ .û∗ +“Tρ ∗
.ρ̂u. The Eulerian time-derivative term is now written ∂t(ρ̂u.û

∗),570

which is indeed zero in steady state. However, this comes at a high price, as the571

physical meaning of T/ρ terms is unclear, while the division by ρ strengthens572

singularities and their effect on the spectrum. What’s more, their mathematical573

relevance is uncertain, in particular regarding Fσ/ρ, which does not represent574

the interfacial stress jump and involves a ratio between the Dirac and Heaviside575
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distributions. We therefore see no advantage in adopting this approach and use576

the classic method defined by eq. 20.577

Figure 13 presents the spectral energy budget 20, where all spectra have578

been normalized using kb and ϵ. Oscillations with a period kb of significant579

amplitudes are visible on all terms, indicating that the singular parts are far580

from being negligible.581

The production term shows a large positive and almost symmetric peak582

around k = 0.75kb. Beyond k = 1.5kb, it becomes a secondary term dominated583

by oscillations of decaying amplitude. Between k = 0 and 1.5kb, production584

is balanced by dissipation, inertia and interfacial tension. In contrast with585

the turbulence of a single-phase flow, transfer here is ensured to a comparable586

extent by inertia and interfacial force, while the role of the pressure gradient587

remains negligible. However, the inertial and interfacial contributions exhibit588

very strong oscillations, causing them to change sign and making it difficult589

to understand them separately. The physical interpretation of the balance is590

simplified if inertia, interfacial force and pressure gradient are added together591

to construct the total transfer term, represented by the grey line in the figure.592

This makes clear the existence of two regimes, both corresponding to an energy593

transfer from large to small scales. Before the production peak (0 ≤ k ≤ 0.75kb),594

the energy supplied by the work of buoyancy is mainly balanced by the transfer595

term, which transports energy to smaller scales. After the dissipation peak (k ≥596

kb), the energy supplied from larger scales by the transfer term is dissipated.597

This picture is close to single-phase flow turbulence, with the notable difference598

that there is no scale separation between the peak of production and the peak of599

dissipation, which explains the absence of a k−5/3 inertial subrange. It should600

also be noted that there is no subrange where production and dissipation are in601

equilibrium, in contrast to what was postulated by Lance and Bataille (1991)602

to explain the existence of the k−3 subrange.603

The total transfer possesses another property, which is of major interest604

for the purpose of the present work. It has no oscillations., indicating that605

the singularities of its three components cancel each other out, leaving only the606
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regular part. Since the sum of the production and dissipation terms balances the607

transfer term, their singularities are the opposite of each other. It is therefore608

sufficient to identify the singular part of one of them to obtain two distinct,609

regular and singular spectral energy balances.610

Since buoyancy acts on the bubble scale, it does not supply energy at scales611

that are significantly smaller than R. Consequently, the regular part of the612

production spectrum must decay very fast after kb. The DNS spectrum plotted613

in log scale in fig. 14a shows that the decay after the peak is interrupted by614

strong oscillations on a power-law decaying baseline, which can be attributed615

to the singular part. The regular part of the production spectrum can thus616

be obtained by low-pass filtering of the DNS spectrum. This has been done617

in fig. 14a, where the blue line shows the production spectrum multiplied by a618

sharp filter, exp(−(k/kc)
4), with kc = 1.3kb. (Changing the cutoff wavenumber619

kc, slightly changes the result in the vicinity of kc, but has no effect beyond).620

The singular part (grey dashed line), obtained as the difference between the total621

spectrum and the regular part, combines several types of singularities since its622

oscillations slowly evolves from a cos2(kR) behavior to a sin2(kR) behavior, and623

its power decay from a slope −3 to −4.624

In contrast with production, the dissipation is only expected to experience a625

viscous cutoff at scales much smaller than the bubbles, so there is no easy way626

to distinguish between its singular and regular parts. Nevertheless, as noted627

above, its singular part is the opposite of that of the production spectrum and628

its regular part is obtained by subtracting it from the total dissipation spectrum.629

Figure 14b shows a log plot of the total dissipation spectrum, as well as its630

regular and singular parts obtained in that way. The regular part shows a clear631

k−1 evolution in the range from k = 0.8kb (just after the production peak) to632

2-3 kb.633

Provided the pressure gradient, inertia and interfacial contributions are con-634

sidered all together in a total transfer term, we eventually obtain two separate635

energy budgets, one for the regular part, the other for the singular part. The636

production (fig. 14a) and the dissipation (fig. 14b) involve both a regular and a637
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Figure 14: Normalized spectral density of the terms of the energy balance and energy spec-

trum. DNS at α = 6% and CGS at α = 7.5%. (a): Production, (b): Dissipation, (c):

Transfers, (d): Energy.

singular part, while the total transfer (fig. 14b) is regular.638

Finally, the singular and regular parts of the velocity spectrum are obtained639

by dividing the corresponding part of the dissipation spectrum by µk2. The640

regular part shows a k−3 evolution in the region where the dissipation spectrum641

shows a k−1 behavior.642

5. Comparison with Coarse-Grained simulations643

In this work, the Navier-Stokes equations have been directly solved without644

additional modelling and the effect of the singularities due to the presence of645

the interfaces have been filtered a posteriori out from the numerical results.646
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An opposite approach is to filter the flow in the region close to the interfaces647

before solving the Navier-Stokes equations. In this case, all fields are regular.648

Such coarse-grained simulations (CGS) were introduced by Riboux et al. (2013)649

to model the agitation generated by a flow through an array of fixed bubbles650

and extended to simulate freely moving bubbles by Le Roy De Bonneville et al.651

(2021). The case of a homogeneous swarm of rising bubbles has been extensively652

investigated by this method in Zamansky et al. (2023), where a detailed analysis653

of the spectral energy budget was provided. In this section, we compare these654

CGS spectra to the DNS spectra presented in the previous section.655

Here we briefly present the CGS simulations, focusing on elements that are656

useful for understanding the comparison with the DNS. A detailed description657

of the method is available in Le Roy De Bonneville et al. (2021); Zamansky658

et al. (2023). The carrying phase fills the entire domain without interruption.659

Its dynamics is described by the continuity and Navier-Stokes equations for660

an incompressible fluid of constant density and viscosity. The presence of the661

bubbles is accounted for in the Navier-Stokes equations by a forcing term fb→f ,662

fb→f (x, t) = −
Nb∑
b=1

Ff→bG(x− xb(t)) , (21)

where a Gaussian kernel,663

G(ξ) =
1

(2πσ2
G)

3/2
exp(−∥ξ∥2

2σ2
G

) , (22)

is used to distribute the force −Ff→b exerted on the fluid by each bubble b. The664

location xb of each bubble is calculated by solving Newton’s second law, where665

the force Ff→b exerted by the fluid included drag, added-mass, buoyancy and666

Tchen forces, calculated by using classic expressions involving both the bubble667

velocity and the fluid velocity at the bubble location. The main difference668

between the DNS and CGS approaches lies in the forcing added to the Navier-669

Stokes equations. In DNS, Fσ is localized at the interfaces, while, in CGS, fb→f670

is spread over a region of scale σG.671

The CGS simulations have been carried out in a triperiodic cubic domain672

of dimension L = 70d, on a regular mesh of spacing ∆ = d/15. The spatial673
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resolution is thus the same as that of the coarse DNS mesh, but the momentum674

supplied by the bubble is here filtered at a scale of the order of that of the675

bubble, since 2σG = 0.28d. The physical parameters are those of air bubbles of676

diameter d = 2.5mm rising in water. The results reported here correspond to a677

volume faction α = 7.5%, and a bubble Reynolds number Re = 760.678

The spectra are determined from the fluid pressure and velocity fields com-679

puted by the CGS. The spectral densities of energy (Eu) and dissipation (µ∇2u.û∗)680

are obtained exactly as in the DNS. The buoyancy force is applied to the bub-681

bles, which then transfer it to the fluid through the momentum forcing fb→f .682

The production spectrum is thus calculated from the work of the coupling force:683 ‘fb→f .û
∗. The spectral transfers are, as in a single-phase flow, ensured by iner-684

tia (−’ρDtu.û
∗) and pressure (−∇̂P .û∗), with a vanishing contribution of the685

pressure in homogeneous flow condition.686

Normalized CGS spectra have been reported in fig. 14 (red lines). Since ρ687

and µ are constant and the coupling force ‘fb→f is smooth, CGS spectra do not688

have a singular part. The agreement between CGS spectra and the regular part689

of DNS spectra is remarkable and constitutes a cross-validation of both. On the690

one hand, the spreading of the momentum transferred from the bubble to the691

fluid over a region of comparable size to that of the bubble is confirmed to be692

significantly relevant, not only at scales larger than the filtering threshold, but693

also at significantly smaller scales. On the other hand, this gives us confidence in694

the method used to separate the regular and singular parts of the DNS spectra.695

6. Conclusion696

The spectral analysis of dispersed two-phase flows is complicated by the697

presence of interfaces between the two phases, across which some quantities are698

discontinuous. This difficulty can be circumvented by considering subdomains699

containing only one of the two phases, but at the price of the severe limitation:700

transfers of momentum and energy between phases cannot be described, making701

it impossible to construct a spectral balance. Analyzing fields extending over702
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the entire domain is therefore a much more fruitful approach to understand the703

physical mechanisms underlying the dynamics of turbulent fluctuations.704

In the case of bubbles or droplets transported by a carrying phase, the com-705

bination of jumps of density, viscosity and stresses across the interface leads706

the various fields characterizing the dynamics of flow mixture to experience sin-707

gularities, which can be ordered from the less to the most regular by means708

of integer p: Dirac delta function (p = −1), Heaviside step function (p = 0),709

discontinuity of the first derivatives (p = 1), discontinuity of the second deriva-710

tives (p = 2)... It is important to stress that a given field has generally various711

interfacial singularities. For example, the pressure gradient generally contains a712

Dirac singularity caused by interfacial tension (κσ) and a Heaviside singularity713

caused by the jump in the gravity force (ρg). A field can be characterized by714

its most severe singularity, pmin. The velocity field is generally continuous but715

its derivatives are not, leading to pmin = 1.716

The spectrum of any field combines a regular part, which represents the717

smooth evolution outside the interface, and a singular part, which reflects inter-718

facial singularities. At large wavenumbers, the spectrum of a singularity of order719

p, follows a power-law decay as −2p− 2. Therefore there exists a wavenumber720

above which, the spectrum of a physical field is dominated by its singular part,721

and it ends up by being dominated by its most severe singularity, of order pmin.722

The wavenumbers where the singular part begins to become significant depends723

on the amplitude of the regular part relative to that of the singular part, and the724

way it evolves with k. When the interfaces are the surface of droplets or bubbles,725

the singular part of the spectrum reaches a maximum at a wavelength close to726

the droplet scale and follows a power-law at smaller scales. When the droplets727

are spheres of the same radius R, the spectrum of the singularities shows oscil-728

lations as sin2(Rk+ϕ), of period kb = π/R. These oscillations vanish when the729

droplets are deformed or their size distributions is broad.730

In a dispersed two-phase flow, the singular part of the spectra is therefore731

expected to be important for wavenumbers larger than kb. For instance, it732

is insignificant on the major part of the turbulent spectra in the case of a733
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turbulent flow laden with droplets of size smaller than the Kolmogorov micro-734

scale. However, it cannot be neglected when the droplet size is in the energetic735

wavelength range. In this work, we have investigated the case where its impact736

is the most important, a swarm of bubbles rising at a high Reynolds number,737

since the fluctuating energy is produced in a range around kb. In addition,738

we have considered almost spherical bubbles of a single diameter d, for which739

the oscillations of the spectrum at a period kb are a visible signature of the740

singular part. We also chose the same viscosity for the two phases to simplify741

the analysis.742

A homogeneous rising swarm, at volume fractions α = 3% and 6% and743

Reynolds number Re =500, has been computed by Direct Numerical Simula-744

tions using a front tracking of the interfaces, with a mesh grid spacing ∆ = d/14745

or d/27. The conclusions reached are independent of α and ∆. The numeri-746

cal spectra of the velocity and of all the terms of the momentum equations747

clearly show the signature of singularities of order p = −1 (Dirac type), p = 0748

(Heaviside type) and p ≥ 1 (continuous fields). Buoyancy, pressure gradient749

and interfacial forces show the singularities predicted by the theory. However,750

the two terms that explicitly imply velocity, namely inertia and viscous forces,751

are less regular than they should be. This indicates that, even though the mo-752

mentum balance is locally satisfied everywhere, the numerical treatment in the753

meshes that are crossed by an interface, redistributes the singularities between754

the different terms, leading to a less regular velocity field.755

The spectral power densities of all the forces contributing to the energy bal-756

ance were determined, in the same way as usually done in turbulence studies.757

This budget is made of five terms. The buoyancy term corresponds to the pro-758

duction of kinetic energy. The viscous term corresponds to the dissipation of759

kinetic energy into heat. The integral over the wavenumbers of the production760

term is the opposite of that of the dissipation term and equal to the dissi-761

pation rate of energy ϵ. The inertia, interfacial tension and pressure-gradient762

terms transfer energy between scales without contributing to the total amount763

of power. It turns out that the singular part cancels out when we add the three764
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transfer terms together, leading to a regular total transfer term. Then, taking765

advantage of the fact that the regular part of the production term decreases766

very sharply beyond kb, its singular and regular parts can be separated. Since767

the singular part of the dissipation term must balance the singular part of the768

production term, we end up with two separate budgets, one for the regular769

part, one for the singular part. These results have been compared with those770

of Coarse-Grained Simulations, in which the momentum transfer between the771

bubbles and the fluid are filtered before the Navier-Stokes equations are solved.772

The CGS spectra are found to be in remarkable agreement with the regular part773

of the DNS spectra, validating both approaches to obtain the regular part of774

the spectra.775

This work proves that it is relevant to analyze DNS spectra of bubbly flows776

computed by considering the fields over the entire domain. In the case of homo-777

geneous bubble-induced agitation, it has been possible to separate the regular778

and singular parts of the spectral energy budget thanks to the two following779

properties: (1) the singular parts of the transfer terms cancels out when we add780

them, and (2) the production term decay very sharply after kb. The question781

now is under which conditions these two properties are valid. In a future work,782

we shall address the case of coupled forced isotropic homogeneous turbulence783

and bubble-induced agitation.784
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