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Agents that cause disease alter the cell metabolism of their hosts. Cells with 

an altered metabolism produce particular profiles of biomolecules, which are 

different from those of healthy cells. Such differences may be  detected by 

olfaction. Historically, physicians used olfactory cues to diagnose sickness by 

smelling the breath or the urine of patients. However, other species have been 

shown to possess excellent olfactory abilities. Dogs, for instance, have been 

frequently used as biodetectors of human diseases, including cancer, viral 

and bacterial infections. Other mammalian species, such as rats, have been 

trained to perform similar tasks, but their disease detection abilities remain 

poorly explored. Here, we focus on the overlooked potential of invertebrate 

species and we review the current literature on olfactory detection of diseases 

by these animals. We discuss the possible advantages of exploring further the 

abilities of invertebrates as detection tools for human disease.
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1. Introduction

Early detection of diseases is very often critical. Typically, the earlier a condition is 
diagnosed, the better are the chances of recovery. Diseases are characterised by an altered 
cell metabolism that can cause malfunction or loss of function in an organ with 
repercussions on the whole organism. An altered metabolism will produce specific patterns 
of volatile organic compounds (VOCs), which are different from those produced by a 
healthy organism and which can then be used as biomarkers for detecting the condition. 
Some pathogens, such as bacteria, also produce specific VOC patterns (Ratiu et al., 2019). 
In the laboratory, detection and identification of these VOCs can be performed using 
high-end chemical analysis. The most common technique includes the use of Solid-Phase 
Micro-Extraction (SPME) and Gas-Chromatography coupled with Mass Spectrometry 
(GC–MS) (Filipiak and Bojko, 2019). SPME fibres are composed of polymers that have 
strong affinity for specific compounds, allowing them to be adsorbed (binding process) by 
the fibre. The fibre is typically exposed to the empty space above the studied sample placed 
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in a closed container (head space), allowing VOCs to bind to the 
fibre. The VOCs are later desorbed in a GC–MS. In the GC part, 
compounds will migrate through a column and will be separated 
according to their volatility or affinity with the stationary phase 
within the column. The identification of the compounds is made 
thanks to the MS, where the compounds are fragmented by 
ionisation, producing a unique pattern (mass spectrum) for each 
chemical compound. These analytical methods are very effective, 
but expensive and require well trained specialists.

Specific VOC patterns can also be  perceived by natural 
detectors through olfaction. Since antiquity, the human nose has 
been used as a diagnostic tool in the practise of medicine to detect 
diseases such as diabetes (via the fruity smell of ketones in the 
breath) or diphtheria (putrid odour) (Bijland et al., 2013). Some 
individuals, so called “super smellers,” can detect volatiles emitted 
by human patients with Parkinson disease (Trivedi et al., 2019). 
Other species that also have excellent olfactory abilities may 
be trained to detect and identify suspect samples using standard 
olfactory conditioning protocols. Through training, some species 
can thus learn to indicate to the experimenter which samples 
contain the VOCs of interest by way of behavioural changes, 
whereas for other species the presence of a healthy or sick sample 
will be revealed by observing physiological modifications in the 
tested animal.

The literature on the use of non-human animals as 
biodetectors has been extensively reviewed, particularly for 
vertebrates (Oh et al., 2014; Pirrone and Albertini, 2017; Jendrny 
et al., 2021; Juge et al., 2022). Here, we focus on the overlooked 
potential of invertebrates as olfactory biodetectors. We therefore 
do not review the literature on vertebrates but we only briefly 
mention dogs and some other mammals, as case studies for 
comparison with invertebrates.

2. Use of animal olfactory 
detection abilities

2.1. Dogs

Currently, the most broadly used species for VOC detection 
is the dog (Canis lupus familiaris) (Guest and Otto, 2020). Dogs 
have been domesticated for millennia and were first trained for 
hunting and protection. Now, canine olfactory detection abilities 
are used to detect drugs (Francis et al., 2019), explosives (Furton 
and Myers, 2001), or disease in livestock (Welch, 1990). These 
abilities rely on dogs’ sharp sense of smell and on the fact that they 
can be conditioned to respond to specific samples via associative 
learning. During the conditioning, a stimulus (e.g., a typical drug 
odour) is associated with a reward (e.g., a treat or a toy). The 
individual associates the stimulus and the reward and will then 
look for the learned odour if it is motivated for the reward. Dogs 
are efficient biodetectors, and a success rate above 90% (percentage 
of correct responses) is often required before allowing the dog to 
operate in the field (Welch, 1990; Furton and Myers, 2001; Francis 

et al., 2019). The downside of this high threshold is that several 
months to years of constant individual training are needed to 
reach it, which can incur high costs for training and maintenance 
of these dogs. In addition, during this long training time, dogs 
form a strong attachment to their handler and cannot be optimally 
operated by others. Not only the dogs need to be trained, but to 
properly train dogs, handlers also require intensive training, 
involving additional time and costs.

2.2. Other mammals

Dogs are not the sole species used for olfactory detection tasks. 
Elephants (Loxodonta africana) can also detect the volatiles emitted 
by explosives (Miller et al., 2015). They can be quickly trained in 
controlled conditions (only 24 conditioning trials), and become 
efficient with a success rate around 90%. Indeed, these pachyderms 
have a strong sense of smell, with a high number of olfactory 
receptors (around 2000 – for comparison, dogs have around 800 
receptors and mice around 1,200, Miller et al., 2015). However, as 
the authors of this study stated, they do not advocate using 
elephants directly in the field (due to the explosive risk linked to 
the size and weight of elephants), but these animals may be useful 
for screening samples brought to them. To solve this mine 
triggering problem, smaller species, like the African giant pouched 
rat, Cricetomys gambianus, have been considered (Edwards et al., 
2015). Rats have the advantage of being too small to trigger mines, 
and as they do not form an emotional link with humans, different 
handlers can optimally use them. Rats have been shown to clear a 
minefield faster than humans, and with a 100% detection rate: no 
explosives could be  found afterwards by humans using metal 
detectors. Rats are also cheap to train and to maintain. A 
non-governmental agency, APOPO, uses these trained rats to clear 
and rehabilitate fields in Mozambique (Edwards et al., 2015).

2.3. Invertebrates

In search of species that are smaller, cheaper and easier to 
train, researchers have tested the ability of invertebrates, and 
particularly of insects to detect explosives. Indeed, many insects 
can fly, are easy and cheap to maintain, and hundreds of 
individuals can be rapidly trained to detect a specific set of volatile 
compounds (Giurfa and Sandoz, 2012).

Honey bees’ learning abilities are well known. Bees can 
be trained in the controlled environment of a laboratory using the 
appetitive conditioning of the proboscis extension response (PER, 
Takeda, 1961; Bitterman et al., 1983). When the antennae of a 
hungry bee are touched with sucrose solution, the animal 
reflexively extends its proboscis to suck the sucrose. Neutral odours 
do not trigger this response in naive animals. However, if an odour 
is presented together with the sucrose solution, an association is 
formed and, after conditioning, the presentation of the odour alone 
triggers the PER. Using TNT vapour (a molecule present in ~90% 
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of explosives) as stimulus, bees were able to react to concentrations 
as low as 11 ppt (Taylor-mccabe et  al., 2008). Although the 
parameters of the conditioning protocol can be perfectly controlled 
within the laboratory, bringing the suspicious samples (in the case 
of explosives) to a building may be risky.

For this reason, bees were brought directly to the field to 
be trained to explosive VOCs. Sugar feeders were placed outside 
of a hive, with the VOCs of interest next to it, allowing bees to feed 
and associate odour and reward, as well as to bring this 
information to the hive and recruit naive nestmates within the 
hive (Rodacy et al., 2002). Once on a minefield, bees will fly and 
land near underground bombs (Bromenshenk et al., 2003). Since 
they are equipped with a tag, researchers are able to visualise 
hotspots of bees gathering around explosives on a map. Bees 
cannot trigger bombs, and can search for explosives in an area 
several kilometres wide with ease (although following the bees on 
this wide surface is not trivial). The disadvantages of such 
approaches are that bees will not explore the area at night and 
during bad weather. It is also unclear whether bees will screen the 
whole field or will focus on the strongest VOC sources and ignore 
others (Bromenshenk et al., 2003).

Combining the advantages of both techniques described 
above, the tobacco hornworm moth (Manduca sexta) was shown 
to be able to detect explosives VOCs in the field, after an initial 
appetitive conditioning with controlled parameters (e.g., number 
of training trials, stimulation time, inter-trial interval, King et al., 
2004). In this study, the authors focused on moths’ appetitive 
response (similar to PER above) and used electrophysiology to 
measure muscular activity when the animals extend their 
proboscis. Trained moths extended their proboscis to the 
explosive odour, while naive moths did not. The difference 
between the behaviours of the two groups indicated the presence 
of explosives VOCs. Moths can be placed in a portable device, 
allowing researchers to use these insects directly in the field, which 
ensures that the whole field is scanned.

These different studies show that, similarly to mammals, 
insects can be  trained individually (King et  al., 2004; Taylor-
mccabe et al., 2008) or in groups (Rodacy et al., 2002), and are able 
to detect VOCs both in the laboratory (Taylor-mccabe et al., 2008) 
and directly in the field (Bromenshenk et al., 2003; King et al., 
2004). This adaptivity makes insects (and invertebrates in general), 
promising tools for the detection of VOCs of interest.

3. Olfaction and disease

3.1. Mammals

Animals’ sense of smell has not only been used for the 
detection of explosives or drugs. Recently, the possible detection 
of human diseases by dogs was investigated and this species was 
proven to be  able to detect bacteria outbreaks in a hospital 
(Bomers et al., 2014), patients with epileptic seizure (Catala et al., 
2019), or more recently patients infected by COVID-19 (Jendrny 

et al., 2020). However, one of the most studied diseases in the 
olfactory detection field is cancer, as it is the second most common 
cause of death in humans, with nearly 10 million people dying 
from the disease each year (WHO, 2020). Studies using dogs as 
cancer detectors have produced very diverse results. Since the first 
medical study reporting the ability of dogs to detect cancer 
(Williams and Pembroke, 1989), the first use of urine as sample 
(Willis et al., 2004), or the use of exhaled breath (McCulloch et al., 
2006), dozens of studies have been performed, and some reported 
an excellent detection rate above 90% (Yoel et al., 2015; Junqueira 
et al., 2019; Thuleau et al., 2019), while others revealed a detection 
rate below 33% (Schallschmidt et al., 2015; Murarka et al., 2019, 
reviewed in Pirrone and Albertini, 2017). Such high variability can 
be explained by the different types and qualities of the samples 
used (blood, urine, cells, breath), the personality of the dogs, the 
abilities of the handlers and the training protocols. This last point 
is probably the most important, but most studies are elusive about 
the exact number of conditioning trials applied to the dogs, the 
inter-trial interval, the presentation order of the samples, and 
other critical details needed for proper replication.

Mice were also tested to detect the cancer state of conspecifics 
(Matsumura et al., 2010; Kokocinska-Kusiak et al., 2020; Gouzerh 
et  al., 2022b) and humans (Sato et  al., 2017). For instance, in 
choice tests in a Y-maze, 14 mice showed impressive abilities, by 
detecting the cancer state (pre or post operation) of patients with 
bladder cancer 100% of the time. Rodents can also detect 
tuberculosis, with a high efficiency (sensitivity from 70.8% to 
86.6% and a specificity of 36.4% to 89.1% depending on the 
studies) (Fiebig et al., 2020).

3.2. The nematode Caenorhabditis elegans

The nematode Caernorhabditis elegans is about 1 mm long, has 
a nervous system including only about 300 neurons, but shows 
impressive olfactory abilities. Nematodes were tested for their 
ability to detect the odour of Mycobacterium tuberculosis, the 
bacteria responsible for tuberculosis (Neto et al., 2016). Previously 
identified biomarkers (Syhre and Chambers, 2008) found in the 
olfactory signature of the bacteria were used as stimuli (methyl 
nicotinate, methyl p-anisate, methyl phenylacetate, and 
o-phenylanisole). Nematodes were not conditioned to associate 
any odour with a reward, as they naturally express attraction or 
repulsion to different chemical compounds. Groups of nematodes 
were placed in the centre of a circular arena which was divided in 
four quadrants with an odorant in each quadrant to test for their 
olfactory preference. A control odour (known for being neither 
attractive nor repulsive) was placed in two opposite quadrants, 
whereas the tested compound was put in the two vacant quadrants. 
After 1 h, the number of nematodes present in each quadrant was 
counted, and a preference index was calculated to measure the 
attraction or repulsion induced by the tested odorant. For some of 
the tested compounds, nematodes were reacting to a concentration 
as low as 0.1 ng/μL and showed a linear reaction (the more 
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concentrated, the more attractive/repulsive). Interestingly, for one 
of these compounds (methyl phenylacetate), nematodes showed 
repulsion at high concentration, and attraction when the 
concentration was low. Although compounds used here are single 
odorants and not a complex olfactory signature, the authors 
discussed the possibility of using automatic tracking to rapidly 
obtain a diagnosis of tuberculosis (Neto et al., 2016). Another 
study used the same circular arena apparatus to detect the 
presence of sepsis in urine of patients, and C. elegans nematodes 
were shown to be spontaneously attracted to the odour of sick 
patients (Tee et al., 2019).

This attraction/repulsion behaviour in nematodes was also 
used for testing cancer detection. Samples from different origins 
were used: from human cell lines and tissues (Hirotsu et al., 2015) 
to body fluids such as urine from humans (Hirotsu et al., 2015; 
Kusumoto et  al., 2020; Asai et  al., 2021; Lanza et  al., 2021; 
Thompson et al., 2021), but also from mice (Ueda et al., 2019). 
These different studies did not focus on a single cancer type, but 
rather explored the abilities of the nematodes to detect several 
types of cancer, such as breast (e.g., Lanza et al., 2021), pancreatic 
(e.g., Asai et al., 2021), or prostate cancer (e.g., Thompson et al., 
2021). Here again, researchers found that nematodes were 
attracted to sick samples, and could thus be used to diagnose 
cancer with a high efficiency. Over the 25 tests using urine from 
cancer patients (Hirotsu et al., 2015), nematodes were attracted to 
it 95% of the time (only one test was not successful). In this 
seminal study, the nematodes also showed repulsion to 95% of 
control samples (207/218), leading to an accuracy (calculated as 
the proportion of true positive and true negative results over the 
total number of tests) of 95% (in this case; 24 207

25 218

+
+

). Similar 
remarkable accuracy rates were also reported in recent studies 
testing more samples: 86% for breast cancer (Lanza et al., 2021), 
73% for pancreatic cancer (Kobayashi et al., 2021) or 81% for 
prostate cancer (Thompson et al., 2021).

Since no conditioning is involved in the nematodes’ choices, 
it is unclear why they show attraction/repulsion to particular 
compounds. Also, as these studies showed, different dilutions of 
the same samples could elicit opposite behaviours (attraction or 
repulsion) in the same species, which should be  carefully 
documented. Nevertheless, the quest for disease biomarkers could 
help find the best animal species with higher natural abilities to 
detect compounds of interest. The production of mutants eliciting 
a behaviour only in the presence of specific biomarkers is also a 
possibility. The VOCs related to diseases with a single origin (e.g., 
tuberculosis originating from a bacteria) were already described 
and tested (Neto et al., 2016), however, for more complex diseases 
with multiple possible origins (e.g., cancer), standardised studies, 
using the same experimental protocols, are needed (Gouzerh 
et al., 2022a) to identify the specific VOCs that could be used 
during choice tests. Nevertheless, the use of animals naturally 
expressing specific behaviours toward healthy/sick samples should 
be further explored, as this could lead to rapid detection assays, 
avoiding a disadvantage of using conditioned individuals: the 
conditioning time (Figure 1). It is also important to note that this 

method is available for the public in Japan for a cost of ~100$ (di 
Luccio et al., 2022).

3.3. The fruit fly: Drosophila 
melanogaster

Amongst insects, the fruit fly Drosophila melanogaster is one 
of the most studied species, and its ability to detect cancer samples 
has also been investigated (Strauch et al., 2014). Similar to the 
studies using nematodes, individuals were not trained to specific 
cancer VOCs. Instead, researchers used in vivo calcium imaging 
to record neural activity patterns (from olfactory receptor 
neurons) on the fly antenna. They analysed the antenna responses 
to the VOCs emanating from cancer cell line samples and cancer-
free cell lines. The authors found that the VOCs of different cell 
lines produce different and specific neuronal activation patterns. 
Using multidimensional analysis, the samples could later 
be  classified as cancerous or healthy based on the evoked 
activation patterns (Strauch et al., 2014).

The technique used in this study is an expensive one that 
requires highly trained personnel to be operated (Figure 1), and 
as the authors stated, this study was a proof of concept. However, 
they propose to integrate odorant receptors to artificial systems 
(i.e., electronic noses) to improve the sensitivity of the existing 
systems. Fruit flies are also studied for their learning abilities and 
many neurogenetic tools are available in this insect, so that 
learning assays involving cancer odours are possible, as would 
be the use of specific mutants detecting particular VOCs.

3.4. The honey bee Apis mellifera

Honey bees (Apis mellifera) are a prominent insect model for 
the study of olfactory perception learning and memory (Menzel 
and Giurfa, 2001; Sandoz, 2011; Paoli and Galizia, 2021). 
Compared to the plethora of olfactory learning studies in this 
insect, very few studies were dedicated to disease detection. Using 
PER conditioning, the researchers tested whether lung cancer cell 
line odours could be  associated with a reward (Schallschmidt 
et al., 2015). Bees underwent 10 training trials followed by two 
memory tests. At the end of the training, bees did not discriminate 
cancer cells from the control (culture medium alone). However, 
in this study the number of trained bees was low (n = 14) compared 
to the majority of associative learning studies in this model, which 
typically test at least 30 individuals for each condition (Giurfa and 
Sandoz, 2012). Moreover, in the same study (Schallschmidt et al., 
2015), the researchers trained dogs using the same cancer samples, 
and the dogs were also unable to differentiate these cancer samples 
from the control. This result is intriguing, since as we reported 
above dogs are known to detect cancer biomarkers (review in 
Pirrone and Albertini, 2017). Therefore, the poor performance 
shown by bees in this study cannot be taken as an inability of this 
species to be used as a biodetector for cancer. It could be explained 
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by possible problems with sample origin or sample preparation. 
Further studies on bee cancer detection abilities thus need to 
be conducted.

Bees were successfully trained to detect the odour of 
tuberculosis (Suckling and Sagar, 2011) (see also the detection 
abilities of nematodes; Neto et  al., 2016). Three chemical 
biomarkers emitted by this pathogen were previously identified, 
and used as odour stimuli. During PER conditioning, different 
groups of bees were trained to a single concentration of one of 
these odorants, and were then tested using different concentrations 
of the trained odorant with a dilution factor going from 10−6 to 
101. For two of the compounds tested, bees started responding 
when the concentration was above 10 pg., which is equivalent to a 
magnitude of 10−4 (Suckling and Sagar, 2011). This fits with honey 
bees’ well known olfactory detection abilities (Sandoz, 2011; Paoli 
and Galizia, 2021). In this study, bees were trained using single 
biomarker compounds. Future studies should use samples of 
biological origin to assess bees’ detection abilities in a more 
realistic situation, e.g., by using human samples.

Recently, honeybees were trained to detect the odour of the 
virus SARS-Cov-2  in infected mink (Neovison vison) samples 
(Kontos et al., 2022). Throat swabs were collected from healthy 
and infected individuals, and placed into culture medium 
(DMEM). Filter paper strips were then soaked with these solutions 
and used as odour stimuli. Using the PER method, bees were 
trained to associate the infected sample with a reward (sugar 
solution), and the healthy sample with a punishment (quinine 
solution). After 18 conditioning trials (nine rewarded, nine 
punished), bees were able to discriminate the infected samples 
from healthy ones. Researchers estimate that 10 bees would 
be enough to obtain a success score above 90%, which is equivalent 
to the available antigen tests.

One of the disadvantages of using honey bees is the need for 
an apiary and experienced beekeepers to successfully rear them. 
On the other hand, the advantage of using bees is that their 
olfactory learning abilities are well documented, and comparisons 
between studies are facilitated due to the use of a well described 
and broadly used protocol, PER conditioning (Bitterman et al., 
1983; Giurfa and Sandoz, 2012; Figure  1). Multiplication of 
researches using bees with this standardised protocol should 
facilitate cross-validation and replication of results from different 
teams, thus adding more weight to the published results.

3.5. The ant Formica fusca

Like honeybees, ants are social insects that live in groups and 
rely mostly on olfaction for communication. In recent years, ants 
have been increasingly used in olfactory learning studies 
(Guerrieri and d’Ettorre, 2010; Perez et al., 2015; Piqueret et al., 
2019; Czaczkes and Kumar, 2020; Wagner et al., 2022). Using a 
conditioning protocol, the detection abilities of Formica fusca ants 
were tested using cancer cell lines as the odour source (Piqueret 
et  al., 2022a). Human cancer cells were cultivated in cultured 

medium (DMEM) and, after 3 days, the supernatant was used as 
olfactory stimulus. Individual ants were trained to associate this 
odour with a sugar solution in a circular arena. After only three 
conditioning trials, the preference of the ants was tested between 
the learnt odour and a novel odour, in the absence of any reward. 
Ants were challenged with various discrimination tasks: first, they 
had to differentiate between a cell line and the culture medium 
alone; second, they had to discriminate a cancer cell line from a 
healthy cell line; and finally, ants had to choose between a first 
cancer cell line and a second cancer cell line originating from the 
same tissue (human breast). In all cases, ants were able to 
discriminate between the conditioned samples and the novel 
samples. The VOCs profile produced by a single cell line is 
composed of dozens of single compounds (Piqueret et al., 2022a), 
but it is less complex than the odour of a whole organism 
composed of a myriad of different cell types. Even when using 
complex body odours, Formica ants demonstrated their abilities 
to discriminate cancer-free individuals from sick ones (Piqueret 
et  al., 2022b). Human tumours were grafted on mice (Patient 
derived xenograft – PDX; Dobrolecki et al., 2016), and their urine 
served as odour stimuli. Half of the ants had to associate the odour 
of tumour-bearing mice with a sugar solution, while the other half 
learned that the odour of tumour-free mice was associated with 
the reward. After three conditioning trials using urine from three 
different mice, the preference of ants was tested using urine from 
novel mice (to control if ants learned the individual odours or the 
tumour odour itself). Ants showed a clear preference for the 
odour they were conditioned to, indicating that they could 
differentiate between urine odours from tumour-bearing and 
tumour-free mice. Together, these studies open the possibility of 
using ants in a non-invasive cancer detection protocol.

The use of ants has a number of advantages. The protocol used 
for the detection of cancer-related odours is relatively simple 
(Piqueret et al., 2019) and the conditioning and preference tests 
can be performed within 1 h. The species used (F. fusca) form 
long-lasting memories, and can be tested up to nine times for its 
olfactory preferences without requiring novel training. Recently, 
the first CRISPR/Cas-9 olfactory mutant lineages were established 
(Friedman et al., 2017; Trible et al., 2017) using another ant species 
(Ooceranea biroi) that have the particularity of being clonal. 
CRISPR/Cas-9 mutants were also developed in Harpegnatos 
saltator (Yan et al., 2017), Solenopsis invicta (Chiu et al., 2020), and 
Lasius niger (Konu et al., 2022). Similarly, honeybees (that can 
be used to detect disease – see previous point) had their own 
CRISPR/Cas-9 mutants developed as well (Roth et  al., 2019; 
Deǧirmenci et al., 2020; Chen et al., 2021).

Combined with the proper genes, it would be  in principle 
possible to produce entire colonies (of genetically identical 
individuals) expressing a natural attraction (or repulsion) 
behaviour to disease-related VOCs, cutting down the conditioning 
time. Lastly, a strong advantage of using ants is that they can 
be kept in the laboratory in simple artificial nests and do not 
require special care, allowing to consider their use by 
non-specialists (Figure 1).
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3.6. What comes next?

In this review, we discussed the potential of invertebrates for 
human disease detection using their ability to detect and learn the 
VOCs emitted by pathogens (Table  1). Invertebrates have the 
advantage of being small, easy to maintain and operate, as well as 
to be available in large numbers. Until now, only a few species have 
been tested for their olfactory abilities for disease detection. 
However, the species that have been tested were chosen for several 
reasons (Figure 1).

On the one hand, honey bees and ants are social insects and live 
in colonies that can be composed of thousands of insects. Apart from 
their use of olfactory cues while foraging for food, communication 
between nestmates is critical, and individuals can share learned 
information socially with other nestmates. During trophallaxis, two 
(or more) individuals exchange food, but also information about 
odorant food cues (Farina et al., 2005; Provecho and Josens, 2009). 
Bees can also exchange information based on the antennal 
movement of conspecifics (Cholé et al., 2019). Although the time 
required to condition individuals is relatively short (minutes to 
hours), it may also be possible to condition only a small number of 
individuals per colony that will later go on to share the information 
with naive nestmates, as social insects possess impressive social 
learning abilities (Chittka and Rossi, 2022). Another possibility 
would be letting a whole colony condition itself, by presenting the 
VOCs of interest next to a reward outside the nest (Rodacy et al., 
2002). Each member of the colony would then already 

be conditioned (or at least non-naive) to a specific disease/biomarker, 
dramatically reducing the individual training time.

On the other hand, fruit flies and nematodes are well 
established models for genetic manipulation, and mutants can 
easily be produced (note that this was also achieved in ants and 
bees; Friedman et al., 2017; Kohno and Kubo, 2019). Mutants with 
specific disease-related olfactory receptors could therefore 
be developed to reach higher detection thresholds, or to detect 
new odorants and the associated disease (Neto et  al., 2016). 
Mutants expressing a particular behaviour (e.g., repulsion/
attraction) only in the presence of the VOCs from a disease would 
greatly simplify the diagnosis. This could be  performed by 
non-specialised personnel, or via computer assisted tracking.

Electronic biosensors are also being developed for disease 
detection. Electronic noses apply different techniques based on 
high-end polymers or metal-based sensors. VOCs that are present 
in the environment will bind to sensors if they have the according 
affinity. This binding process will produce a specific signal, as 
different VOCs have different affinities with a given sensor 
(Behera et  al., 2019). E-noses can have very low detection 
thresholds, but current sensors are rather unspecific and a range 
of volatiles can bind with each sensor. Efficient systems thus 
currently combine an array of different sensors (Frenois et al., 
2014; Claverie, 2022) including for example metal based and 
fluorescent detectors (absorption of a compound change the 
fluorescence of the sensor) in order to detect more specific 
compounds. Insect olfaction may revolutionise such systems, by 

FIGURE 1

Advantages and constraints of the invertebrate species for disease detection. The four species already tested – the nematode Caenorhabditis 
elegans, the fly Drosophila melanogaster, the bee Apis mellifera, and the ant Formica fusca – are presented together with the method used, as 
well as with the advantages and current constraints of these species for disease detection. Pictures for the methods are adapted from Giurfa and 
Sandoz (2012), Strauch et al. (2014), Thompson et al. (2021), Piqueret et al. (2022a).
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integrating insect olfactory receptors as biosensors, ensuring a 
highly specific binding process with particular VOCs (Bohbot and 
Vernick, 2020; Saha et al., 2020; Claverie, 2022; Farnum et al., 
2022). The development of neurogenetic tools to identify and 
precisely characterise olfactory coding and processing in the 
insect brain (Carcaud et al., 2022) could help design solutions for 
silencing specific neurons or implementing them in biosensors.

The use of olfactory detection abilities of invertebrates is at 
an early stage with extremely few species/diseases tested so far. 
Nevertheless, invertebrates show a significant potential when it 
comes to implementation, replication, rapidity, and efficiency of 
disease detection. Invertebrates account for up to 97% of all 
animal species, and thus represent a mostly unexplored and 

thriving pool of millions of species with potentially impressive 
detection abilities. They should receive more attention from 
scientists working on disease detection. Invertebrates have the 
advantages of being cheap and easy to maintain, and easy to train 
under standardised procedures in controlled laboratory 
conditions. Some species do not need to be  trained and can 
express natural behaviour toward specific samples, while others 
can present interesting mutations (e.g., on olfactory receptors 
used for disease detection), and finally some are eusocial species, 
able to transmit learned information to conspecifics (Figure 1). 
We hope that this short review will prompt further efforts to 
make use of the rich diversity of species and behavioural and 
neurophysiological protocols available in invertebrates, to 

TABLE 1 List of invertebrate species tested for human related disease detection.

Species Disease Sample 
used

Method used Number of 
replicates per 
experiment

Success References

Nematodes 

(Caenorhabditis 

elegans)

Cancer Cell lines Innate attraction/

repulsion behaviour

N ≥ 5 Maximum attraction/repulsion 

behaviour compared to the 

control |0.40|

Hirotsu et al. (2015)

Tissue Innate attraction/

repulsion behaviour

N ≥ 5 Attraction behaviour compared 

to the control ≥ |0.20|

Hirotsu et al. (2015)

Urine Innate attraction/

repulsion behaviour

N ≥ 5 73–95% accuracy1 Hirotsu et al. (2015), 

Asai et al. (2021), 

Kobayashi et al. (2021), 

Lanza et al. (2021), and 

Thompson et al. (2021)

Tuberculosis Pure compounds 

used as 

biomarkers

Innate attraction/

repulsion behaviour

N = 3–4 Attraction/repulsion behaviour 

compared to the control ≥ |0.25|

Neto et al. (2016)

Sepsis Urine Innate behaviour N = 36–45 72.2–82.2% accuracy Tee et al. (2019)

Fruit flies 

(Drosophila 

melanogaster)

Cancer Cell lines Calcium imaging N = 30 100% discrimination between 

cancer and healthy cell lines 

(Linear Discriminant analysis)

Strauch et al. (2014)

Honey Bees (Apis 

mellifera)

Tuberculosis Pure compounds 

used as 

biomarkers

Conditioning N = 20–25 Response from 40% of the bees 

to the biomarkers, ~7% to the 

control

Suckling and Sagar 

(2011)

Cancer Cell lines Conditioning N = 14 No difference between responses 

to the reinforced odour (CS+) 

and to the control (CS–)

Schallschmidt et al. 

(2015)

COVID-19 

(Mink 

origin)

Throat swab Conditioning N = 56–92 Sensitivity2 of 92% and 

specificity3 of 86%

Kontos et al. (2022)

Ants (Formica 

fusca)

Cancer Cell lines Conditioning N = 22–25 67% of the ants spent more time 

next to the learned odour than to 

the novel odour

Piqueret et al. (2022a)

Urine from PDX 

mice

Conditioning N = 35 70% of ants spent more time 

next to the learned odour that 

the novel one

Piqueret et al. (2022b)

1Accuracy is defined as the proportion of true positive and true negative results over the total number of tests.  
2Sensitivity is defined as the number of positive tests that are correctly identified as positive.  
3Specificity is defined as the number of negative tests that are correctly identified as negative.
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develop efficient new assays for the early detection of 
deadly diseases.
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