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A deep-learning based high-gain method for underwater acoustic signal detection in intensity fluctuation environments

Hailun Chu, Chao Li, Haibin Wang, Jun Wang, Yupeng Tai, Yonglin Zhang, Fan Yang, Yannick Benezeth

e Research highlight 1

We propose the deep-learning based separation network
for underwater acoustic signal detection, which is ad-
dressed for the first time in underwater scenario by a data-
driven separation method up to our knowledge.

e Research highlight 2

With the help of Encoder-Decoder design, we project the
input signal into a high-dimensional latent space where in-
formative features are extracted and preserved, leading to
better robustness to the random range migration compared
to conventional handcraft methods.

e Research highlight 3

We theoretically revise the conventional mean square error
loss, which is agnostic to correlation coefficients. To ad-
dress this issue, we propose a novel scale invariant signal-
to-noise ratio as our loss function to better leverage the
temporal coherence.
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Abstract

To achieve efficient underwater acoustic (UWA) signal detection in low signal-to-noise ratio (SNR) scenarios, the transmitted
signals are designed with a large time-bandwidth product to get a high detection gain. The linear correlator (LC) is considered as the
maximum SNR detector, whose detection gain is proportional to the time-bandwidth product. However, the detection performance
of LC degrades significantly in time-variant multipath UWA channel and non-Gaussian UWA ambient noise. In this study, we
present a deep-learning based two-stage UWA signal detection method in intensity fluctuation environments. This method takes
the advantages of the Conv-TasNet and Encoder-Decoder network, which utilizes an encoder module to extract signal features,
a separation module to enhance the signal components and then another decoder module to reconstruct the transmitted signal.
To demonstrate the performance of the proposed method, the datasets used for training and testing originated from the ASTAEX
2001 South China Sea (SCS) experiment. The experimental results show that our model outperforms the classical LC and channel
estimation based LC (CE-LC) in constant false alarm rate (CFAR) detection and also surpasses the TCDAE and Conv-Tasnet

models as evaluated by DSI-SNR1 and DSI-SNR2.
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1. Introduction

The rapid development of marine resources has led to in-
creased interest in active signal detection within complex un-
derwater acoustic (UWA) environments. Active signal detec-
tion has a wide range of applications, including echo detection,
target navigation, communication system wake-up, and time
synchronization. To achieve high-gain UWA signal detection,
a large time-bandwidth product signal is necessary. However,
due to the strong absorption of high-frequency sound, the band-
width available is limited. Therefore, the practical approach
is to maximize the transmission signal duration to increase the
gain in time domain.

Linear correlator (LC) is the most common detector in UWA
detection system, which is known as the maximum signal-to-
noise ratio (SNR) detector [1]. It assumes that the UWA ambi-
ent noise follows a Gaussian distribution, is uncorrelated, and
the UWA channel is time-invariant with a single path. Obvi-
ously, these assumptions are unreasonable in real UWA envi-
ronment. Besides, the UWA channel becomes more complex
as the transmission signal duration increases, which results in
the significant performance degradation of LC. The complex-
ity is mainly reflected in three aspects: UWA ambient noise,
multipath propagation and Doppler effect.

UWA ambient noise is of impulsive property, which can be
caused by marine life [2] and human activities [3]. This means
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that large amplitude values occur frequently in time domain and
manifests heavy tail property in probability density function
(PDF) compared to the Gaussian noise. The performance of LC
is negatively impacted by this property. To be precise, the sym-
metric alpha-stable (S aS) distribution is adopted to represent
the UWA noise [4]. However, the PDF of S @S has no closed
form expression except for some cases, suchasa@ =2 and @ = 1
corresponding to Gaussian and Cauchy cases, respectively.

Based on its heavy tail property, Chitre proposed the
maximum-likelihood (ML) and locally optimal (LO) detectors
with the detailed knowledge of noise probability distribution
[4]. To reduce the computational complexity, Zozor used some
particular properties of SaS to derive a parametric subopti-
mal detector without explicit PDF [5]. Chitre further com-
pared the performance of different approximate functions of
PDF [6]. Parametric detectors face challenges when applied
to UWA noise due to its non-Gaussian and non-stationary prop-
erties, especially for long-duration signals, which can make it
difficult to obtain a reliable noise distribution estimate [7]. To
avoid the numerical integration computation of PDF, some non-
parametric transfer functions are applied to LC, for example,
the sign function which can improve its applicability in UWA
noise [4] [8]. These detectors suppress the large amplitude sig-
nals to mitigate negative impacts of impulsive noise. It is clear
that the performance of non-parametric detectors is inferior to
that of parametric detectors.

Additionally, UWA channel is characterized as a double-
selective fading channel [9], which refers to the multipath
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propagation and Doppler effect. The multipath propagation is
caused by sea-surface and sea-bottom reflection. Due to the
multipath propagation, signal energy is dispersed and pulse du-
ration is extended. To concentrate the multipath energy, channel
estimation methods are applied to acquire the multipath struc-
tures. Then, time reversal mirror (TRM) is used to achieve
adaptive focusing [10] [11] [12]. Tian used robust orthogo-
nal matching pursuit to get multipath information and improved
the detection performance in multipath environment affected by
impulsive noise [13]. With the help of channel estimation meth-
ods, the performance of LC is improved by utilizing multipath
information in multipath environment. However, these channel
estimation based methods may fail in low SNR scenes and lead
to noise amplification.

Another challenge for signal detection is Doppler effect,
which leads to the time-varying impulse response by platform
motion and distortion of the propagation medium [14] [15]. As
for linear platform motion, the Doppler shift can be corrected
by moving target indicator (MTI) when there is no range migra-
tion [16]. When range migration occurs, it can be compensated
using Keystone Transform [17] and Radon-Fourier Transform
[18]. For more complex target motion model, Lin proposed
a slow time reverse based method [19]. These methods are
widely applied in radar system under the assumption of narrow-
band signal. Zhang formed a multi-pulse long-time integrated
model and generalized it to the UWA wideband signal [20]. The
prior knowledge of motion model is required in the above meth-
ods. When the motion model mismatches, the performance is
deteriorated.

Another type of Doppler effect, resulting from propagation
medium distortion, is typically less pronounced than those
caused by platform motion, but it tends to be more erratic. The
difficulty brought to signal detection is the decrease of tempo-
ral coherence. This physical phenomenon was observed and
measured in shallow and deep water [21] [22] [23] [24]. Phase
and delay-locked loop structures are used to compensate this
Doppler distortion with preliminary pilot synchronization in
UWA communication [25], which is impossible in UWA active
signal detection as the presence of interested signals is undeter-
mined. Furthermore, the target motion model based methods
mentioned previously seem not applicable for suppressing the
random range migration as the motion model is unpredictable
in this case.

To confront the channel fading and cope with impulsive
noise, some transfer functions are utilized to enhance the re-
ceived signals. In the presence of impulsive noise, the transfer
functions are designed to suppress the large amplitude signals.
For UWA multipath channel, the transfer functions are TRM
with various channel estimation based methods. For Doppler
effect, the transfer function is to compensate the range migra-
tion. However, the conventional detectors’ performance suffers
degradation in ASIAEX 2001 SCS environment due to the ob-
served decrease in temporal coherence as reported in [23] and
[24]. This decrease is especially severe on linear correlator.

In general, traditional techniques primarily concentrate on
the present data, whereas deep learning methods can leverage
historical data to learn. As a result, the performance of conven-

tional methods may decline if the current samples do not align
with the templates, such as the transmitted signal and motion
model, particularly in a time-varying environment. However,
deep learning based methods are considered to show promis-
ing performance in complex environment with its data-driven
function expression. Upon completing the learning process,
deep learning-based methods can compensate for template mis-
match, which in turn leads to high-gain detection capabilities.
In order to employ deep learning-based methods for active sig-
nal detection, the method must be capable of distinguishing be-
tween the signal and ambient noise, as well as dealing with
channel fading. Convolutional neural networks (CNNs) have
strong capability of extracting features. Stacked convolutional
denoising Auto-Encoders are proposed for unsupervised train-
ing [26]. It can transform the raw data into high-level feature
representations as well as data compression. Zhang utilizes
the stacks of convolutional neural network with skip connec-
tions for UWA communication [27]. It has been shown that
the stacked CNN can effectively extract promising features and
achieve signal recovery. However, the temporal dependence in
time domain is not efficiently captured for CNNs and stacked
CNN. To get a more larger receptive field, a temporal convolu-
tional neural network (TCNN) is proposed for real-time speech
enhancement [28]. In many underwater application scenarios
and early speech enhancement, deep learning based methods
are implemented in the time-frequency domain. But the fea-
tures in frequency domain are not enough for active signal de-
tection. Conv-Tasnet is proposed to model the signal directly in
time domain [29]. This model utilizes a 1-D convolutional layer
and deconvolutional layer as the encoder and decoder mod-
ules to replace short-time Fourier transform (STFT) and inverse
STFT, respectively. Then, masks for speaker separation are
constructed by using TCNN which consists of several stacked
dilated convolutional blocks. However, the feature extraction
capability is not sufficient without considering the channel dis-
tortion.

In this study, we consider the active signal passing through
UWA channels as the interfered signal with ocean noise, mul-
tipath propagation and Doppler effect. We resolve the detec-
tion problem in a two-stage way. At first, we apply a temporal
convolutional separation network for signal reconstruction in
time-domain. Afterwards, decide whether the signal is present
or not by utilizing LC and channel estimation-based LC. The
network consists of three modules: an encoder, a separator,
and a decoder. The encoder is designed with stacked convo-
lutional blocks used to extract higher-dimensional features and
compress time-domain information. The separator comprises
stacked dilated convolutional blocks aiming to form an efficient
mask based on the compressed features. Then, the decoder can
be applied to achieve time-domain signal reconstruction, which
has an inverse architecture compared with the encoder. The loss
function is the scale-invariant signal-to-noise ratio (SI-SNR) in
this network.

The main contributions of this study are summarized as fol-
lows:

1 The deep-learning based separation network is introduced
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Figure 1: The UWA active sonar detection system

into UWA active signal detection. The signal detection prob-
lem is to separate the signal from ambient noise, which is
fitting to the separation network.

2 The SI-SNR is chosen to replace the mean squared error
(MSE) as the loss function in UWA active signal detection.
The SI-SNR loss function is equivalent to correlation coef-
ficient [30] which is our criteria for characterizing temporal
coherence and signal recognition.

3 The deep-learning structure is utilized to suppress the ran-
dom range migration caused by the distortion of the prop-
agation medium. The detrimental influence, caused by this
random medium distortion, can be mitigated by compressing
the time domain information.

4 These detectors are represented in a uniform form and the
performance of these detectors is compared. These detectors
differ in their corresponding transfer functions.

This paper is organized as follows. In Section 2, the con-
ventional UWA active signal detection system is introduced.
Section 3 presents the proposed deep-learning based two stage
UWA active signal detection method. The performance of the
proposed method is shown in Section 4. Finally, Section 5 con-
cludes the paper.

2. UWA active signal detection system

In this section, the conventional UWA active signal detec-
tion system is introduced, and several conventional detectors
are compared. The schematic is shown in Fig. 1. The transmit-
ted signal propagates through the UWA channel to the receiving
end with ambient noise. In the receiving end, the presence of
signal or not is decided by the detector.

2.1. Underwater acoustic signal and channel model

The transmitted signal consists of M adjacent phase modu-
lated signals, which can be defined as follows:

s1(n) = A cos(¢(n)) 0<n<N-1
=0 elsewhere (@))]
M-1
s(m) = ) s1(n—mN) @)
m=0

where A is the magnitude, ¢(n) is the instantaneous phase, and
N is the signal duration in the samples for each phase modulated
signal. For m-sequence, the instantaneous phase is defined as:

¢(l’l) = 27Tf01’lTs + ¢0mseq(n) (3)

where fy, Ts ¢o and my,, are the center frequency, sample inter-
val, phase angle, and m-sequence, respectively. .

Given the doubly-selective characteristic of UWA channel,
we can denote the UWA channel impulse response as

L-1
h(ns k) =" A(motk — k() @)
=0

where L is the number of paths, n and k are the index of time
and time delay, A;(n) and k;(n) denote the gain and time delay
of the I-th path at sample n, respectively.

After passing through the UWA channel, the received signal
can be expressed as

K-1

r(n) = Z s(n — k)h(n; k) + w(n)

k=0

&)

where K is the length of channel and w(n) is the ambient noise.

Our aim is to determine whether the transmitted signal is re-
ceived. Then, the detection problem can be formulated as a
hypothesis-testing problem with two cases where hypothesis H;
and H( mean that the transmitted signal is present or not.

w(n) ,if Hy
r(n) = {55 (6)
Z s(n = h(: k) + w(n) ,if Hy
k=0
2.2. Conventional underwater acoustic detectors
The test statistic for the LO detector can be given by [4]:
MN
A = ) glrmlstn) )
n=0

where g(-) is the transfer function, which is determined by the
distribution of ambient noise and also the UWA channel. When
g(+) is a linear function, that is g(x) = ax, the test statistic can
be simplified as LC detector, which is optimal in the presence
of Gaussian noise. Obviously, the performance of LC detec-
tor will degrade in the presence of non-Gaussian noise. In the
following, we will derive several detectors and explain their re-
lationship.

To simplify the notation, the UWA channel impulse response
is rewritten as h(k) and zero-padded to length N, wherein the
time-invariant channel is assumed. Then Eq. 5 can be expressed
as

r=Sh+w

®)



Algorithm 1 OMP

Require: Received signal r, dictionary matrix S, iterations /
1: Initialization: iteration i <— O residual ey < y atom index
set Ag «— @
2: whilei < Ido
Calculate inner product between residual and each atom,
and then select the atom corresponding to the largest
product, i.e., j « argmaxlslreil

4:  Update the atom index set, re. A «— AU J
5. Calculate the channel estimation i «— S,_\:H r
6:  Update the residual e;,; < y — Sp,, h

7: i—i+1

8: end while

9:

Outputs: the channel estimation h and the reconstructed

~

signal Sy, h

where the signal matrix can be written as

s(0) sS(N=1) -+ s(1)
S = s(.l) s(0) - s(.2) )
S(N=-1) s(N-=-2) --- 5(0)
The output of LC can be expressed as
_qT
Zic=8'r (10)
where the vectors r = [r(0),---,r(N — DI', h =
[70), -+, A(N = 1)]", and w = [w(0),--- ,w(N = D]".
The least-squares solution can be expressed as
his =S'r=(S"8)"'S"r (11)

As the auto-correlation function of wideband signal is ap-
proximated to Dirac function [31], we can get

his = —STr (12)

where o2 is the power of signal. From Eq. 10 and Eq. 12, we
can see that LS detector is equivalent to LC detector.
For CE-LC detector, the output can be expressed as

Zcp-rc =1 (s®h)
=r® (sgﬁ)
=(r® Z) *§
= ZTRM-LC
= 8" gc(r) (13)

where - means time reversal operation, ® means convolution
operation, and * means correlation operation. Obviously, using
the same channel estimation, CE-LC detector is equivalent to
TRM-LC detector. In this paper, the expression of CE-LC is
adopted.

Given the sparsity of UWA channel, orthogonal matching
pursuit (OMP) algorithm is used to estimate the channel. The
procedure of sparse channel estimation and received signal re-
construction using OMP is described in Algorithm 1. The
OMP algorithm uses partial columns of the dictionary matrix
to achieve channel estimation, which can reduce the noise of
the channel. In the following sections, we use OMP-LC to rep-
resent CE-LC.

According to the above descriptions, all detectors can be rep-
resented in a unified form with different transfer functions g(-).
For LC detector, the transfer function is a linear function. As for
CE-LC detector, the transfer function is a convolution function,
which is related to the algorithms of channel estimation. The
linear function is easy to implement but performs not well in
non-Gaussian noise and double-selective fading channel. The
convolution function utilizes the multipath information, but has
a noise amplification issue. In the next section, we adopt deep-
learning network to get a better transfer function.

3. Deep-learning based UWA active signal detection
method

In this section, the architecture of deep-learning based de-
tection method is proposed. As shown in Fig. 2, the proposed
method has two stages. The first stage utilizes the deep-learning
network to achieve signal enhancement, which consists of three
modules-an Encoder, a Separator, and a Decoder. Furthermore,
the LC and OMP-LC detector are applied to identify whether
the signal is present or not in the second stage.

3.1. Encoder

The received signal is taken as the input of the Encoder. The
Encoder is utilized to transform the discrete waveform into a
single feature map, which is implemented by a 1-D convolu-
tional block. The detailed architecture of the encoder is shown
in Fig. 2(B).

The input is divided into F overlapped frames x; € RX!,
where L is the length of each frame and f = 1,2,--- , F is the
frame index. The stride of the first 1D convolutional is L/2,
otherwise, the stride is 1. The kernel size is L. Zero padding
is adopted in the 1-D convolutional block to ensure the number
of frames to be the same. Therefore, the Encoder realizes the
information compression and feature extraction. The feature
map w can be formulated as:

w = PReLU(Us - PReLU(U, - PReLUU, - X)))  (14)

where X = [x1,X,,...,xr] € R™F contains all input frames,

U, € RE*L U, € R*C and U; € RS> consist of C,
C, X C} and C3 X C; learnable kernels, respectively.

3.2. Separator

The Separator is used to learn a non-negative mask m,, from
the feature map w, which is the output of the Encoder. The
estimated clean feature map of transmitted signal can be formed
as:

Wy =WO My, (15)
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Figure 2: The deep-learning based two-stage UWA active signal detection system

The specific structure of the separator is shown in Fig. 2 (D).
The Separator is implemented by the stacked 1-D dilated con-
volutional blocks (1-D ConvBlock). The number of 1-D Conv-
Block is R, which has x layers. The kernel size is 3 in every
1-D ConvBlock. The dilation factors increase exponentially to
ensure a sufficiently large reception field to incorporate with
the long-range dependence temporal information. Besides, the
1 X 1 — conv block is used at the beginning and the end of the
module as a bottleneck layer to connect with the Encoder and
Decoder. To keep the frame length the same, zero padding is
used in every block whose structure is shown in Fig.2 (C). The
residual path of each block serves as the input to the next block,
and the skip-connection paths for all blocks are summed up and
used as the output of the Separator.

3.3. Decoder

The Decoder is a symmetrical structure of the Encoder,
which transforms the clean feature map w; to a waveform, that
is the estimation of transmitted signal. The overlapped frames
of the estimation can be formulated as

Y = PReLU(V3 - PReLU(Vy - PReLU(Vy - wy))) (16)

Then, we can get the estimation of the transmitted signal §

which is recovered by removing the overlapped frames.

3.4. Training objective

Here, we choose SI-SNR as our loss function, which has
commonly been used in speech separation system. It is defined

Figure 3: The diagram of loss function

as:
§ =gpr(r)
_ (8.8
sproj = W
e=15—S8p) 17)
2
SI-SNR = 10log,, ||s”perﬁ.;ll

where (-) and ||-|| denote the inner product operation and power
operation respectively. gp.(-) denotes the deep learning net-
work, § denotes the signal estimation, s,,,; denotes the projec-
tion of signal estimation onto the transmitted signal, and e is the
residual between the signal estimation and the signal projection.
The mean square error (MSE) loss function is defined as :

R 2
Juse = |I§ = sl|

(18)

From Fig. 3, it is obvious that given the angle 6, SI-SNR is
invariant with the scale @ but MSE is dependent on the scale
a. Besides, maximizing SI-SNR is equivalent to maximizing



Table 1:
Configuration of the experiment.

Parameters Value
source E400
source depth 99.7m
distance 19km
receiver 16-element vertical line array

receiver depth 42.75m-121.5m

the correlation coefficient, which is exactly the purpose for im-
proving temporal coherence. Furthermore, the minimum mean-
squared error (MMSE) can be asymptotically approached by
deep learning based methods [32] [33] and is also equivalent to
SI-SNR [30].

For the ASTAEX 2001 SCS experiment, internal waves are
the major oceanic features in the exploration of acoustic volume
interaction, resulting in sound-speed fluctuation and scattering.
Due to the ocean sound field fluctuation, the experimental area
is a time-varying environment and the amplitude gains of the
received signal are variant at different time. Based on the above
analysis, the SI-SNR function is more conductive for UWA ac-
tive signal detection.

3.5. Time domain signal detection

Based on the deep-learning method, we can get the estima-
tion of transmitted signal from the received signal in time do-
main.

19)

After passing through the LC and OMP-LC detector, we can
get the output of the whole system

§=gpr(r)

2oLt = 8" gpi(r) (20)
Zpi-omp-1c = 8" gomp(gpL(r))
= 8" gpr-omp(r) 21

We can see that the transfer function is replaced by the deep-
learning network and can be combined with channel estimation
methods.
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Table 2:
Source transmission schedule.

Parameters Value

center frequency 400 Hz

bandwidth 100 Hz
m-sequence length 511
number of pulses 88

time length of a single pulse 5.11s

sample rate 3255.208252 Hz
resample rate 800 Hz

4. Experiments

In this section, we evaluate the performance of the proposed
method in the detection system. Several experiments were con-
ducted to compare our method with other conventional and
deep learning methods. In the following, we will introduce
our datasets, then make comparison with deep neural network
(DNN) based models and optimize the model’s parameters. Fi-
nally, the implementation process with conventional methods is
presented and the results are discussed.

4.1. datasets preparation

The raw data used in this study was obtained by ASIAEX
2001 SCS experiment. The configuration of the ASTAEX 2001
SCS experiment is shown in Table 1 and the source transmis-
sion schedule is provided in Table 2. To form our datasets,
the first 10 pulses and the top hydrophone are chosen. After
bandpass filtering, the received signals are demodulated and re-
sampled in 800 Hz. Our datasets contain about 40 hours sig-
nal components and 60 hours ambient noise. Under assump-
tion H;, each sample consists 10 pulses and its adjacent am-
bient noise. Under assumption Hy, each sample is composed
of ambient noise. In our following experiments, the ratio of
the training set to testing set was approximately 4:1 and cross
validation was chosen. To guarantee the generalization of our
proposed method, the data in training set and testing set is from
different experiment dates, which is considered to have differ-
ent propagation medium fluctuations. Additionally, we calcu-
late the correlation coefficient and SI-SNR matrix between the
training and testing sets, which are shown in Figure 4 (a) and
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Figure 4: (a) The correlation coefficient matrix between the training and testing sets; (b) The SI-SNR matrix between the training and testing sets.
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(b). These matrices model the difference in channel characteris-
tics and can be considered as a measure of distance between the
training and testing sets. There are only 7 numbers greater than
0.7 in the correlation coefficient matrix and 5 numbers greater
than O dB in the SI-SNR matrix. It can be seen that the cor-
relation coefficients and SI-SNRs of the channel characteristics
are low, indicating a difference in the environment between the
testing set and the training set.

In the training set, the arrival time of pulses is random be-
tween [300,2000] sampling points and the SNR of each sample
is random between [-15,0] dB. For the testing set, the SNR of
each sample is from -25dB to 0dB. The SNR of the received
signal is defined as

2 2
”rsignal” - ”rnoise”

2
”rnoise”

SNR = 10log, (22)
where rgn. is the received signal under assumption H; and
Fnoise 18 the adjacent received signal under assumption Hy.

The time domain normalized waveform of the recorded un-
derwater ambient noise (about 15 minutes) is shown in Fig. 5,
where the impulsive property of the noise can be clearly ob-
served. Compared with Gaussian distribution, it appears that
the probability density for large noise amplitudes is signifi-
cantly higher in Fig. 6.

Here, we give two time-varying channels (SCS1 and SCS2)
sampled from our testing sets, as well as their delay-Doppler
spread functions (DDS) and power delay profiles (PDP) in Fig.
7, which are described in [14]. In Fig. 7 (a) and (b), the sub-
pictures in the upper right corner are partial enlarged pictures
from 1.2 s to 1.3 s. We can see that the two channels have

Table 3:
Summary of system parameters and symbols.

Parameter Value Symbol  Value
Optimizer Adam L 255
Learning rate le-3 F 355
Batch number 128 C, 128
Epoch number 200 C, 256
Training SNR -15dB - 0dB C; 512
Training TOA ~ 300-2000 sample points ~ B/H/S . 128
Test SNR -25dB - 0dB X 8
Test TOA 300-2000 sample points R 3

several relatively stable paths but with some distortion,which
means range migration. To provide additional evidence of the
quality of the UWA channels, we employ empirical mode de-
composition (EMD) as described in [34] to isolate the random
component from the channel.

h=hg+h, (23)

where h represents the UWA channel. h, is known as the trend,
representing the contribution of pseudo-deterministic physical
phenomena to the channel’s fluctuations. Additionally, h,, rep-
resents channel fluctuations caused by scatterers that result in
fast fading, which is the zero-mean wide-sense stationary un-
correlated scattering (WSS) ergodic random process.

Then the average fade rate (AFR) defined in [27] can be ap-
plied to evaluate the UWA channels.

Pow(h,,)
AFR = 10log Pow() 24)

The AFR values of the SCS1 and SCS2 channels are 0.0505
and 0.6312, respectively. We can see that the SCS1 channel
with small AFR value is of higher quality. This is because
its stable paths’ energy is more concentrated and it has smaller
Doppler frequency shift.

4.2. Comparison with baselines

In this section, the advantages of our model over previous
models are analyzed without considering the multipath infor-
mation. As a comparison, the LC detector is used as the con-
ventional baseline model. In addition, the TCDAE [35] and
Conv-Tasnet [29] are used as the representative DNN-based
baseline models, which are briefly introduced as follows: TC-
DAE is one-dimensional time-domain denoise approach with
skip connections between encoder and decoder layers. Conv-
Tasnet is a fully-convolutional time-domain audio separation
network for end-to-end time-domain speech separation. All the
above models are trained on the same datasets. Our proposed
model was implemented on the advanced deep-learning frame-
work PyT orch and trained using NVIDIA RTX 4090 GPU. The
parameters and symbols of our proposal are listed in Table 3.

In audio separation task, the signal-to-distortion ratio (SDR)
[36] and SI-SNR are used as objective metrics. To be pointed
out, the SDR is equivalent to SI-SNR for one target signal.
Unlike audio tasks, the aim of UWA signal detection task is
to magnify the difference between the two scenarios with and
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without the presence of the target signal. Therefore, we define
two differential SI-SNR (DSI-SNR) loss functions as our objec-
tive metrics:

Figure 9: The comparisons of output noise levels among LC, OMP-LC and
DL-LC
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Table 4:
Quantitative comparisons with other UWA signal detection methods on
our dataset.

SNR(dB) Methods DSI-SNR1(dB) DSI-SNR2(dB)

-20 LC 349 -5.62
TCDAE 6.58 -3.13
Conv-Tasnet 10.53 -0.50

Our model 16.05 7.90

-18 LC 5.08 -3.97
TCDAE 8.42 -1.29
Conv-Tasnet 15.53 5.95

Our model 24.83 16.69

-15 LC 7.72 -1.33
TCDAE 11.16 1.45
Conv-Tasnet 19.58 6.01

Our model 28.76 20.61

Ave. LC 5.43 -3.64
TCDAE 8.72 0.99
Conv-Tasnet 15.21 3.82

Our model 23.21 15.07

Ney
DSI-SNR2 = I-S NR(S;
SI-S - ;(s SNRGin,. ) 06

— max(S1-S NR(8;m,. 5))

where §;m, and §;g, represent model outputs when the i-th
noisy signal sample and i-th noise sample are inputted, respec-
tively. N,, is the number of signals in the test dataset. The DSI-
SNR1 and DSI-SNR2 both characterize the improvement in SI-
SNR. The former measures the average improvement, while the
latter focuses on the improvement at low probability of false
alarm (Pr4).

The results for DSI-SNR1 and DSI-SNR2 are presented in
Table 4 at three different SNRs. It is evident that the conven-
tional LC detector performs poorly in detecting UWA signals
with low SNRs, while the DNN-based baselines outperform the
conventional methods across all evaluation metrics. Moreover,
our proposed method outperforms other DNN-based techniques
on our datasets at different SNRs, achieving the highest evalua-
tion scores. Our method provides a 17.78 dB gain in DSI-SNR1
and an 18.71 dB gain in DSI-SNR2, which indicates its effec-
tiveness even at low SNRs. These results demonstrate that our
proposed method is an efficient solution for detecting UWA sig-
nals, particularly in low SNR conditions.

4.3. Parameter optimization

In this section, the parameters including the kernel size L in
the encoder and decoder, the number of filters H in the sepa-
rator and the number of 1-D D-ConvBlocks in each repeat x
are optimized with SNR = —18 dB and the results are shown
in Table 5. We can see that for different H values, DSI-SNR1
results are similar. However, the methods achieved the best re-
sults for DSI-SNR2 when we set H = 128. Meanwhile, increas-
ing the H in the separation module greatly increases the model
size. Additionally, when we reduce the L and x values, there
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Figure 10: AXTAEX 2001 SCS experiment area.

is significant performance degradation in both DSI-SNR1 and
DSI-SNR2. This is particularly evident for the L parameter.

4.4. Evaluation on unseen datasets

This section further explores the generalization performance
of our model on unseen datasets. For this purpose, we utilize
two different unseen scenarios to test our method. The first sce-
nario is from the unseen source S400 in the AXIAEX 2001 SCS
experiment and its geographic coordinates are shown in Fig. 10.
The distance between S400 source and recever is about 30 km.
To be pointed out, the E400 and S400 sources transmit the same
frequency band signal but with different modulation sequences.
We demodulate the S400 source transmitted signal and then
modulate it by the E400 source’s m-sequence. After that, this
test dataset utilizes the same template signal. To simplify it, we
call it the S400 dataset. The second is the unseen noise dataset,
which is from ShipsEar dataset [37] and conducted in Corte-
gada. In this scenario, we form our test dataset by mixing the
noise signal in ShipsEar dataset with the source E400 signals in
the AXTAEX 2001 SCS experiment. The results are shown in
Fig. 12.

For the S400 dataset (Fig. 12(a)), we observe that the LC de-
tector has 1.8 dB performance improvement in DSI-SNR1 and
DSI-SNR2. Meanwhile, our model achieves the similar DSI-
SNRI1 and DSI-SNR2, which means that the detection perfor-
mance of our model is not affected and our model has a good
generalization performance in different sound propagation sea
area. Besides, for the unseen noise dataset (ShipsEar), it can
be seen from Fig. 12 (b) that the LC detector has about 0.9
dB degradation in DSI-SNR1 and has about 6 dB gain in DSI-

Table 5:
Tuning the hyper-parameters.

L H x DSISNRI(dB) DSI-SNR2 (dB)
127 128 8 19.34 6.87
255 128 8 24.83 16.69
511 128 8 23.54 11.15
255 128 7 21.47 12.77
255 256 8 24.16 13.80
255 512 8 25.57 15.50
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Figure 11: ROC comparisons for different detectors in different SNR: (a) SNR=-25 dB; (b) SNR=-20 dB; (c) SNR=-18dB; (d) SNR=-15dB.
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Figure 12: Evaluation of our model for unseen datasets in terms of DSI-SNR1
and DSI-SNR2: (a) S400 dataset; (b) ShipsEar dataset.

SNR2. Our model has about 2 dB gain in DSI-SNR1 and DSI-
SNR2. The noise samples (rain, flow and wind) in the ShipsEar
dataset are collected from the sea surface. The E400 and S400
noise samples are collected from the underwater environment.
It can be seen that our model exhibits a robust performance in
different noise background environment. Furthermore, the per-
formance gain of our model over LC detector is relatively stable
in both unseen datasets. All the above results demonstrate that
our proposed model is effective to deal with unseen datasets and
has a good generalization performance.

4.5. Detailed analysis with conventional methods

As the advantages of our model are analyzed in previous sec-
tions. In this section, the detailed analysis is implemented to
demonstrate the performance of our proposed detection meth-
ods. The detectors in Eq. 20 and 21 are experimentally com-
pared with two other approaches:

10

1 Normalized LC based detection system. This method is
widely used for various detection systems because it offers
stable performance with low complexity.

OMP based detection system. Fisrt, this method uses OMP
to acquire a prior knowledge of the UWA channel, and then
reconstructs the copy signal or deconvolves the received sig-
nal. Finally, normalized LC is applied to detect if the object
signal exists. It improves the performance of detection sys-
tem when the OMP method is valid.

As we discussed before, our aim is to get a higher probability
of detection (Pp) while maintaining a low Pr4. In this section,
we will make a comparison about the output noise levels of
these methods under assumption Hy, which are corresponding
to the detection threshold (7'h) in CFAR detection. The box
plots of the above detectors are shown in Fig. 8. The com-
parisons of correlation coefficients are shown in Fig. 9, where
the straight lines are noise level contours. If the scatters are
above these lines, then the noise level is amplified. We can
see that LC has a lowest output noise level. The noise level of
DL-LC and DL-OMP-LC are equivalent to LC and OMP-LC,
respectively. The noise level of OMP-LC and DL-OMP-LC is
doubled at least compared to LC. Besides, OMP-LC has more
outliers than DL-LC. It means that the DL-LC method is more
stable with the underwater ambient noise and DL does not has
the issue of noise amplification, which makes the high P, with
alow Ppa possible.

The ROCs are one of the most important graphs showing
the performance of detection from the relationship between Pp
and Pr,4. The ROCs of different detectors in different SNR are
shown in Fig.11 , and the following observations can be made.
(1) The performance of LC is not good in low SNR and is infe-
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Figure 13: The output correlation coefficients of LC, OMP-LC, DL-LC and DL-OMP-LC in different SNR: (a) SNR=-20 dB; (b) SNR=-18 dB; (c) SNR=-15dB;

(d) SNR=-10 dB.
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rior to other proposed methods. (2) OMP-LC is unable to get a
good performance when Ppy4 is low. This is because OMP-LC
is likely to amplify the noise level, which leads to a higher de-
tection threshold when keeping Pr4 low. (3) OMP-LC is also
not efficient in low SNR since OMP algorithm fails under this
condition. (4) DL-LC performs well when P, is below 1073
Given the Pr4 = 107, when SNR is -20dB, -18dB and -15dB,
the Pp can reach 0.4, 0.8 and 1. (5) When Pg4 is beyond 1072,
DL-OMP-LC has the best performance and OMP-LC shows a
better performance than DL-LC. However, this area is not in
our interest. If Pry is very high, the detection system will al-
ways find targets and brings much burden to the operators. (6)
The DL signal enhancement method augments the received sig-
nal when the object signal exists. Before the processing of LC
and OMP-LC, DL is applied to enhance the signal. It can be
seen that there is a great performance improvement with both
LC and OMP-LC detetors.
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Figure 15: Dependency of Pp versus SNR in CFAR detection: (a) Pry = 1074;
(b) Pra = 1073;

In the following, we will analyze how the DL network en-
hances the signal in detail. Take the SNR of -20 dB, -18 dB,
-15 dB and -10 dB as examples, the output correlation coeffi-
cients of the proposed methods are illustrated in Fig. 13. The
horizontal and vertical axis represents the output correlation co-
efficients of noise and noised signal at a given SNR. It can be
seen that OMP-LC and DL-OMP-LC can enhance the signal
for most samples, but LC and DL-LC enhance it selectively
when SNR=-20dB. With the increase of SNR, the correlation
coefficients of LC and OMP-LC improve slowly. On the con-
trary, the correlation coefficients of DL-LC and DL-OMP-LC
improve rapidly. It means that on the one hand, noised signals
are not enhanced if DL network considers it as noise, and on the
other hand, the DL network tends to output a very clean signal
if the features of signals are captured.
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Figure 17: F1 score of different detectors: (a) LC; (b) DL-LC; (c) OMP-LC;
(d) DL-OMP-LC.

To further illustrate the enhancement capability of the DL
network, we test the median values of correlation coefficients
with the above four methods versus SNR, which are shown in
Fig. 14. It is necessary to point out that the detection is more
reliable with more higher coefficient and the correlation coeffi-
cient is equivalent to the SNR gain. We can see that the median
values of correlation coefficients of DL-LC and DL-OMP-LC
increase rapidly to 0.7 and 0.9, respectively. For LC and OMP-
LC, their correlation coefficients increase slowly. When SNR=-
15 dB, the correlation coefficients of LC and OMP-LC only
have about 0.1 and 0.19. When SNR exceeds -15 dB, our pro-
posed methods have a relatively stable and higher correlation
coefficient values. From the point of view of median values,
our proposed methods are always better than the conventional
methods. The increase in the median values is quite significant,
which means a high gain detection.
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Figure 18: Correlation coefficient of different detectors in time domain: (a) LC
and DL-LC; (b) OMP and DL-OMP-LC.
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Figure 19: PDP of different detectors: (a) LC and DL-LC; (b) OMP and DL-
OMP-LC.

In addition to the ROC curves, in many cases, the dependence
of Pp versus SNR at small Pry is of higher interest, which is
investigated in Fig. 15. It can be seen that the proposed detec-
tors are better than conventional detectors regardless of SNR.
Besides, the proposed detectors show a promising performance
in very low SNR. When SNR is below -15dB, LC and OMP-
LC are almost undetectable at Pr4 = 1074, but P, of the pro-
posed methods is able to get a 0.4 at -20 dB and almost 1 at -15
dB. If we relax Pr4 to 1073, the performance of OMP-LC has
been improved, but has at least 2dB performance gap with the
proposed methods. The detection performance of the proposed
methods is at the same level when Pr4 is low. This shows that
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Figure 20: DDS of different detectors: (a) LC; (b) DL-LC; (c) OMP-LC; (d)
DL-OMP-LC.



Channel Impulse Response

25 3
Time Delay (s)

(a)

Channel Impulse Response

A

TN Y PR

25 3
Time Delay (s)

()

3.5 4 4.5 5

Channel Impulse Response

|

0 0.5 1 1.5 2 25 3 3.5 4 45 5
Time Delay (s)
(b)

Channel Impulse Response

Time (s)

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time Delay (s)
()

Figure 21: Channel impulsive response of different detectors: (a) LC; (b) DL-LC; (C) OMP-LC; (D) DL-OMP-LC.
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detectors when the time delay shift is 10 ms.

the performance improvement is due to the DL network in this
area .

To compare the detection performance in fixed thresholds,
we increase the detection threshold to 0.2 and 0.3, which are
normally used in real engineering applications. The depen-
dence of Pp versus SNR is shown in Fig. 16. When the thresh-
old equals 0.2, there is about 6dB and 13dB performance im-
provement compared to OMP-LC and LC. When the threshold
equals 0.3, LC is completely undetectable and OMP-LC is able
to get a 0.6 Pp at -8dB. Our proposed detectors DL-LC and
DL-OMP-LC dose not loss much performance. It means that
our proposed detectors are able to get a high detection gain.

To verify the tolerance of the proposed methods in threshold
selection, we show the relationship between F1 score, SNR and
threshold in Fig. 17. It can be seen that the maximum detec-
tion thresholds of LC, OMP-LC, DL-LC and DL-OMP-LC are

13

0.3, 0.4, 0.7 and 0.85, respectively. For conventional detectors,
OMP-LC is more tolerant than LC. This result also holds for
the DL based detectors, that is, DL-OMP-LC is more tolerant
than DL-LC. Meanwhile, the proposed detectors are more tol-
erant than the conventional detectors, which also means that the
proposed detectors are of higher detection gain.

The above analysis is from the perspective of statistics.
Next, we will analyze from the perspective of samples, which
means time-domain correlation coefficient, channel impulsive
response, DDS and PDP. Time-domain correlation coefficient
and PDP are shown in Fig.18-19 when SNR is -15dB. We find
that the peak SNR gain is about 55dB with DL network and the
main lobe width is more narrower with OMP. The peak SNR
gain is from the background noise suppression and peak aug-
mentation. As shown in Fig. 20, the background noise lev-
els of the proposed detectors are very low. Besides, the time-



delay and Doppler spread are quite small. Channel impulsive
responses of these detectors are investigated in Fig. 21, it can
be seen that the distortion in multipath (i.e. range migration) is
migrated by the proposed detectors. Based on the above results,
it is obvious that our proposed methods are able to denoise the
signal and compensate the channel fading both in multipath and
Doppler.

To further illustrate the source of detection gain, a simula-
tion was conducted in the random distortion environment with
range migration. In time-invariant UWA channel, the relative
time delay for adjacent pulses is a constant, i.e., the time length
of a single pulse. In this simulation, we model the range mi-
gration as the abrupt time of arrivals between adjacent pulses,
which leads to a random time delay shift for each pulse. Here,
we ignore the multipath propagation and set the number of mul-
tipath to 1. Then, the random time delay shift for each pulse is
set from O to 62.5 ms. Besides, we assume that there is no am-
bient noise in this simulation.

Monte Carlo simulations were used to evaluate the perfor-
mance, assuming that the total number of Monte Carlo run is
10 000. The median values of correlation coefficients versus
different time delay shifts are shown in Fig. 22 (a). We can
see that the LC detector is more sensitive to the time delay shift
and its performance degrades significantly with the increase of
time delay shift. On the contrary, the DL-LC detector is able
to suppress the random range migration. When the time delay
shift is 62.5 ms, the median value of correlation coefficient for
DL-LC is above 0.8, in which the LC detector only has 0.2.
Then we make the comparison of correlation coefficients be-
tween LC and DL-LC detectors when the time delay shift is 10
ms. As shown in Fig. 22 (b), the correlation coefficients of DL-
LC are always higher than that of LC. Under this condition, the
correlation coefficient of LC is hard to get 0.8 but the median
value of DL-LC is above 0.8.

From this simulation, we show that the deep-learning struc-
ture is able to suppress the random range migration. When
the range migration occurs, the performance of LC detector de-
grades significantly. As for the DL-LC detector, the correlation
coefficients are pretty high even with a large range migration. It
means that the time gain is acquired by the DL network.

5. Conclusion

In this study, we proposed a deep-learning based two-stage
method for UWA active signal detection, in which the encoder
was applied to extract latent features from the received signals,
the separator was designed to obtain the clear object signal map
and the decoder was used to reconstruct signal from the masked
feature map. In the first stage, we utilized deep-learning net-
work to enhance the received signal. In the second stage, two
types of conventional detectors were developed to decide if the
object signal is present or not. Moreover, a novel SI-SNR func-
tion was introduced to UWA active signal detection, the benefits
and equivalence of which were explained. Furthermore, these
detectors were unified into one form with their own transfer
functions, which are related to their detection performance. In
particular, a simulation was conducted to illustrate the source
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of detection gain and show the ability of suppressing the ran-
dom range migration. Finally, the real-world experimental re-
sults demonstrate that the proposed detectors outperform the
conventional detectors.
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