

High resolution Mid-Infrared spectroscopy of Volatile Organic Compounds from Fourier Transform and Quantum Cascade Laser measurements: case of 2-furfural

Pierre Asselin, Sathapana Chawananon, Manuel Goubet, Robert Georges, Anthony Roucou, A. Cuisset

▶ To cite this version:

Pierre Asselin, Sathapana Chawananon, Manuel Goubet, Robert Georges, Anthony Roucou, et al.. High resolution Mid-Infrared spectroscopy of Volatile Organic Compounds from Fourier Transform and Quantum Cascade Laser measurements: case of 2-furfural. Journée SOLEIL@SU, Sorbonne Université, Paris, Jun 2023, Paris, France. hal-04295146

HAL Id: hal-04295146 https://hal.science/hal-04295146

Submitted on 20 Nov 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

High resolution Mid-Infrared spectroscopy of Volatile Organic Compounds from Fourier Transform and Quantum Cascade Laser measurements: case of 2-furfural

<u>Pierre Asselin</u>¹, Sathapana Chawananon¹, Manuel Goubet², Robert Georges³, Anthony Roucou⁴ and Arnaud Cuisset⁴

¹Laboratoire MONARIS UMR 8233 CNRS, Sorbonne Université, Paris, France ²Laboratoire PhLAM, UMR 8523 CNRS, Université de Lille, Lille, France ³Institut de Physique de Rennes, UMR 6251 CNRS, Rennes, France ⁴Laboratoire de Physico-Chimie de l'Atmosphère, UR 4493, Université du littoral Côte d'Opale, Dunkerque, France

As a reaction product of biomass combustion, the ortho-isomer 2-furfural (2-FF) is a primary pollutant in the atmosphere. Laboratory studies demonstrated that emission rates of 2-FF and other furan-like compounds as furan and methylfurans, measured during combustion ranged from 70 to 120 times higher than CO, making them marker volatile organic compounds (VOC) for fire warning system [1,2]. 2-FF disappears rapidly by atmospheric oxidation processes with OH and NO₃ during day and night times leading to the formation of secondary organic aerosols which affect the climate. Its contribution to the radiative forcing, still poorly known, fully justifies the interest to monitor 2-FF directly in the atmosphere or in atmospheric simulation chambers to characterize its reactivity and its ability to produce secondary organic aerosols [3,4].

The present study reports an extensive jet-cooled rovibrational study of *trans* and *cis* conformers of 2-FF in the mid-IR region using two complementary set-ups, a continuous supersonic jet coupled to a high resolution Fourier transform spectrometer on the IR beamline of the SOLEIL synchrotron (JET-AILES) [5] and a pulsed jet coupled to a mid-IR tunable quantum cascade laser spectrometer (SPIRALES).[6] In a first step, jet-cooled spectra recorded at rotational temperatures ranging between 20 and 50 K have been exploited to derive reliable excited state molecular parameters for a ten of vibrational bands of 2-FF in the fingerprint region (700-1750 cm⁻¹). These parameters allow reproducing the mid-IR spectra at any temperature and instrumental resolution at the experimental accuracy and in the present case, have been used to reconstruct the vibrational crosssections referenced in the HITRAN atmospheric database measured at room temperature in a N₂ dilution. Such an approach evidences the major contribution of hot bands in the room temperature mid-IR spectra of 2-FF, which represents about 50% of the fundamental bands. To go further in assigning the hot band pattern and improving the modeling of room temperature rovibrational crosssections require imperatively using highly correlated *ab initio* methods to provide accurate anharmonic coefficients $\chi_{i,i}$ from a reliable anharmonic force field.

Reference

¹Andreae, M.O.; Merlet, P. *Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles*, 2001, **15**, 955–966.

²Paczkowski, S.; Paczkowska, M.; Dippel, S.; Schulze, N.; Schütz, S.; Sauerwald, T.; Weiß, A.; Bauer, M.; Gottschald, J.; Kohl, C.D. *The olfaction of a fire beetle leads to new concepts for early fire warning systems*. Sensors and Actuators B: Chemical 2013, **183**, 273–282.

³Colmenar, I.; Martín, P.; Cabañas, B.; Salgado, S.; Villanueva, F.; Ballesteros, B. *Evaluation of the SOA Formation in the Reaction of Furfural with Atmospheric Oxidants*, Atmosphere 2020, 11.

⁴Ali, F.; Coeur, C.; Houzel, N.; Bouya, H.; Tomas, A.; Romanias, M.N. *Rate Coefficients for the Gas-Phase Reactions of Nitrate Radicals with a Series of Furan Compounds.* The Journal of Physical Chemistry. A 2022, **126**, 8674–8681.

⁵Cirtog, M.; Asselin, P.; Soulard, P.; Tremblay, B.; Madebène, B.; Alikhani, M.E.; Georges, R.;Moudens, A.; Goubet, M.;Huet, T.R.;.*The* (*CH*₂)₂*O*-*H*₂*O Hydrogen Bonded Complex. Ab Initio Calculations and Fourier Transform Infrared Spectroscopy from Neon Matrix and a New Supersonic Jet Experiment Coupled to the Infrared AILES Beamline of Synchrotron SOLEIL*,.The Journal of Physical Chemistry A 2011, **115**, 2523–2532.

⁶Asselin, P.; Potapov, A.; Turner, A.C.; Boudon, V.; Bruel, L.; Gaveau, M.A.; Mons, M. Conformational landscape of the SF_6 dimer as revealed by high resolution infrared spectroscopy and complexation with rare gas atoms. Phys. Chem. Chem. Phys 2017, **19**, 17224–17232.