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Abstract

The mechanism by which cells measure the dimension of the organ in which they are embedded, and slow down
their growth when the final size is reached, is a long-standing problem of developmental biology. The role of
mechanics in this feedback is considered important. Morphoelasticity is a standard continuum framework for
modeling growing elastic tissues. However, in this theory, in the absence of additional variables, the feedback
between growth and mechanical stress leads to either a collapse or unbounded growth of the tissue, but usually
prohibits reaching a finite asymptotic size (‘size control’). In this article, we modify this classical setting to
include an energetic cost associated with growth, leading to the physical effect of size control. The present
model simultaneously provides a qualitatively correct residual stress profile and has a naturally emerging
necrotic core, all of which have previously been experimentally established in multicellular spheroids. This
is achieved through a local feedback mechanism derived from a thermodynamical framework. The model
delivers testable predictions for experimental systems and could be a step towards the understanding of the
role of mechanics in the multifaceted question of how growing organs attain their final size.

1. Introduction

In morphogenesis, living tissues change shape and size very rapidly. Morphogenetic events include spec-
tacular shape changes such as self-inversion [71], looping as in the case of the heart tube [89], branching such
as in lungs, kidney and vascular networks [47]. As these examples illustrate, morphogenesis involves complex
interactions between growth, non-linear mechanics, shape and size, calling for mathematical approaches that
can model such interplay.

The determination of the appropriate form of evolution equations for growth and shape change has been
the focus of much research ([43, 81, 37, 11, 55]). With limited experimental data available, this research
has employed thermodynamic arguments to motivate appropriate forms of the growth law that satisfy a
dissipation inequality. The reasoning is typically to assume a single constituent theory in which every material
point is in contact with a mass reservoir at an imposed chemical potential setting the tendency to grow.
When the free energy depends only on the elastic deformation, by following a standard set of arguments and
derivations, one arrives at a variant of the growth law

ĠG−1 = K(S∗ − S) (1)

where G is a tensor representing the geometrical rearrangement of the material due to growth, S is an Eshelby
stress, S∗ is a homeostatic stress representing the mass reservoir, and K is a constant symmetric positive-
definite matrix of growth rates. In particular, the hypothesis behind mechanical homeostasis [9, 79, 46, 60]
is that in the state of homeostatic stress S = S∗, growth and shape change do not occur (Ġ = 0), as the
cellular processes of birth, death and rearrangement balance each other out. Experimental evidence and
physical understanding of homeostatic stress have been demonstrated in arteries, where residual stress is
used to homogenize transmural stresses under physiological loading to minimize tissue abrasion during its
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lifetime [24]. There is experimental evidence that some living systems, such as embryos [17] and fibroblast
cells [50], maintain such a target, or homeostatic, stress.

The debate on the respective roles of mechanics and biochemistry in the study of how biological tissues
control their size has undergone interesting developments in recent decades. How biological tissues control
their size has been a decade-old mystery in mostly pure developmental biology research [100]. Many hy-
potheses have been experimentally tested and proven wrong: Size is not determined, for example, solely by
a cell clock or cell counting [106]. As models based on reaction and diffusion of growth-promoting chemicals
(morphogens) failed to explain numerous experimental observations [32], mechanics has received increasing
interest as a likely candidate for growth regulation in the developmental biology community [93, 73, 1, 2]. For
example, mechanics is fully accepted as a key ingredient in the growth of multicellular spheroids, a lab-made
model system for the early stages of tissue expansion. Growth is affected by both the level of compression
of the spheroid and the availability of oxygen [94, 13, 56, 39]. An appealing aspect of the model (1) it that
it shifts the emphasis from biochemistry to mechanics, allowing a more nuanced understanding of the role of
mechanics and residual stress in tissue growth and regulation, while still allowing a coarse-grained descrip-
tion of chemistry to enter through the external chemical potential S∗ that can be refined as needed by, for
instance, coupling growth to a diffusion process [11].

Certain details of the form of the growth law (1) are not entirely agreed upon. The presence of Eshelby
stress as a driving force of growth has been widely employed [43, 10, 11, 55, 56]. The Eshelby stress was
originally introduced to describe point forces due to elastic singularities, due to dislocations in crystal lattices
[48, 49]. It emerges naturally in the context of growth [10]. However, some authors make the assumption that
the free energy of the incoming material matches the free energy of the pre-existing material, which leads to
the presence of Mandel or Cauchy stress instead of Eshelby stress in the growth law (1) ([60, 96, 98]). The
difference of the two approaches has been contrasted in [20]. In a similar vein, there is some disagreement on
the form of the coefficient K in (1). A thermodynamical treatment requires this coefficient to be a positive
semi-definite matrix to ensure that the dissipation inequality is satisfied [10]. However, certain authors who
emphasize the role of unknown biochemical processes in thermodynamical treatments choose fourth-order
coefficient tensors instead [97, 60, 46]. This allows for cross-couplings in the growth dynamics that would be
impossible in the classical treatment [10], such as (in a system with spherical symmetry) the radial growth
rate being coupled to hoop stress.

A number of issues with (1) have received relatively little attention:

1. The first point concerns the homeostatic state itself. A conceptual problem raised by (1) is that if
at the tissue boundary the homeostatic stress does not match the boundary condition (which might
be a prescribed hydrostatic pressure for instance), growth never stops at the boundary, making an
equilibrium impossible. Several authors found a way around this problem by hypothesizing further
evolution equations for S∗ which adapt in a delayed response to the boundary conditions of the system
([96, 97]), or by postulating that the homeostatic stress is compatible with boundary conditions ([44]).
However, such choices are rather arbitrary in the context of biological tissue growth, where it is unclear
why the reservoir of nutrients should be linked to the imposed mechanical boundary conditions.

2. The second point concerns a larger question in biology: Is the purely mechanical feedback mechanism
(1) sufficient to encode a final asymptotic size of the tissue? This ties into a larger debate in biology
about how cells in an organ know what overall size the organ has, and how they “decide” when to stop
dividing once the organ has reached the right size, and which role mechanics plays in such regulation
([19, 42, 106, 76, 61]). It is questionable whether the system (1) will reach the same size or not depending
on different initial conditions: [14, 86] hypothesized that it should not, but gave no proof or numerical
example. While there have been some recent studies investigating the dynamics of (1) with methods
of dynamical systems theory ([104, 46, 79]), to our knowledge no investigation of the final size exists to
date.

In this paper we will address both issues of (1) by proposing a modification of the standard approach
that overcomes the two issues mentioned. The idea is to penalize the growth process in the free energy of
the system. While the classical theory neglects that growth has an energetic cost, even if the cell material
building blocks are readily available in the extracellular fluid, it costs energy [4, 87] to get them through the
cell membrane and assemble or disassemble them into the solid cell components that constitute the cell dry
mass [111]. An energetic cost is also involved in the ion pumping mechanism that is necessary to control cell
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volume and screen out the apparent osmotic imbalance between the cell inside and outside due to the presence
of the macromolecules trapped in the cell [21], generally leading to a certain level of control of the cell mass
density during growth [62]. We show that using this concept, there is no longer a need for the homeostatic
stress to match or adapt to the boundary conditions. Further, we show that this model creates the final size
robustly, independent of variations in initial conditions, something which the classical model (1) does not
achieve, as we shall also demonstrate numerically. The final model qualitatively matches important known
experimental observations about growing multicellular spheroids, namely that they reach an asymptotic size
in the presence of external pressure [70, 5], that the residual hoop stress near the periphery of the spheroid
is tensile as consistent with cutting experiments [94, 26, 63], and that larger spheroids experience an inflow
of material towards the core, known as a necrotic core [53, 34]. While mechano-chemical models captured
some of these experimental observations [15, 109, 107], to our knowledge, no existing model matches all these
observations simultaneously.

We divide the manuscript as follows. In Section 2, we introduce our notation and state the balance laws
and the first and second principle of thermodynamics of a growing solid in finite elasticity. Our main idea,
which distinguishes this work from classical works like [90] and [10], is that the free energy depends on the
determinant of the growth tensor, |G|, in addition to the traditional dependence on the elastic deformation
gradient A. In Section 3, we propose a concrete form of this free energy to derive a growth law which offers
a crucial modification compared to the classical law (1). The consequences of our modification are explored
in Section 4 based on two examples. Firstly, in subsection 4.1, we consider a compressible uniaxially growing
neo-Hookean bar. We find that our growth law enables the possibility of size control, and removes the need to
prescribe the homeostatic pressure in the bar ad hoc, thus fixing both issues with the classical law discussed
in the introduction. Secondly, in Section 4.2 we consider a growing compressible neo-Hookean spheroid,
showing how in addition to size control, residual stress can also be built up in this system through growth.
A residual stress profile consistent with experiments can be controlled by the anisotropy of the homeostatic
stress tensor S∗. In Section 5, we explore how the anisotropy influences the spheroid’s ability to achieve size
control. Large spheroids are subject to a flow of material towards the center, and we demonstrate how the
necrotic core forms in our model in Section 6. Finally, in section 7, we round up this work with a discussion.

2. Kinematics, balance laws and thermodynamics

2.1. Kinematics
From a mechanical perspective, a biological tissue of mammalian cells is typically constituted of cells

interconnected directly by protein bonds or via some extracellular matrix. This system is permeated by an
extracellular solvent which contains the nutrients and the building blocks necessary for its growth through
biosynthesis and swelling of the cells followed by their division when reaching a critical added mass [21].
We model the tissue as a single continuum which initial material points are parametrized by their position
X ∈ B0. As time evolves, the growth process is described by a two steps evolution of this initial state. The
first step describes the growth of the initial configuration B0 to a fictitious stress-free state, which we call
the reference configuration Br. The second step is the elastic mechanical response during which the tissue is
deformed from the reference configuration to its actual deformed and stressed state, the current configuration,
x ∈ Bt, but no mass is added.

The deformation map is ϕ : B0 → Bt, X 7→ x = ϕ (X, t). The velocity of a material point X is
v = ϕ̇ (X, t) where the overdot denotes the material time derivative at fixed material coordinate X. Denoting
G the tensor describing the change of material configuration due to growth and A the one due to the material
elastic response that makes it compatible, the deformation gradient F = ∇Xϕ (X, t) reads [90]:

F =
∂x

∂X
= AG. (2)

The morphoelastic decomposition is illustrated in Fig. 1. Physically, G leads in general to an incompatible
configuration of the body (Br is said not to fit into Euclidean space and therefore sketched in Fig. 1 with
holes and overlaps) [102, 60]. For this reason, the current configuration Bt is no longer stress free, even when
it is unloaded. Stress that remains even in the absence of loads is called residual stress.

Further, we denote the right Cauchy-Green strain tensor as C = ATA and the left Cauchy-Green tensor
as B = AAT.
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Figure 1: Kinematic decomposition in morphoelasticity. The initial configuration B0 describes the body in its initial state at
time t = 0 (i.e. before deformation and before growth) and is required to be stress-free. The growth tensor G describes growth
without stress, leading to a stress-free incompatible reference configuration Br. The elastic deformation gradient A restores
compatibility by introducing residual stress in the current configuration Bt. Material points in B0 are described by the vector
X which is mapped to x in Bt. Surface normals are denoted N on ∂B0 and n on ∂Bt, respectively. Mass balance is stated over
a subregion Ω0 ⊂ B0 in the initial configuration, which transforms to Ωt ⊂ Bt in the current configuration.

2.2. Mass balance

In our continuum modeling approach, the tissue has a density (mass per volume) ρ (X, t) in Bt. The
biosynthesis and subsequent swelling and division of the cells contributes a volumetric growth rate function
ρ (X, t) Γ (X, t) in Bt. Physical laws are most naturally stated in the current configuration. The mass balance
takes the form

˙∫
Ωt

ρ dx =

∫
Ωt

ρΓ dx. (3)

The infinitesimal volume element of a material point X in initial and current configuration are, respectively,
dX and dx. They transform via the Jacobian |F|, which represents the local change of volume, that is
dx =|F|dX.

Mass conservation between the reference configuration Br and current configuration Bt leads to the rela-
tionship

ρr = ρ |A| . (4)

We further assume that the reference density is a constant in time, ρ̇r = 0. Taking into account this assump-
tion and transforming the mass balance (3) into the initial configuration, we get ˙∫

Ωt
ρdx =

∫
Ω0
|F| ρΓ dX .

Assuming that the integrands are all continuous and using the fact that Ωt is arbitrary, we use the Maxwell
transport and localization procedure ([67, 60]) to obtain the local version of the mass balance equation:

˙|F| ρ = ρr ˙|G| = ρ|F|tr(ĠG−1). Here we applied Jacobi’s identity ˙|G| = |G| tr(G−1Ġ) ([67]). That allows us to
identify the mass source term as

Γ = tr(ĠG−1). (5)

The trace, and double contraction operator, are defined in Appendix A.



2.3 Momentum balance 5

2.3. Momentum balance
In the absence of external body force and inertia, we write momentum balance as ∇x · T = 0 where T

is the Cauchy stress tensor. The angular momentum balance imposes symmetry of the Cauchy stress tensor
TT = T.

2.4. First and second principle
Combining the first and second principles of thermodynamics, at a fixed temperature, the dissipation Θ

(i.e. the entropy production rate divided by the temperature) takes a simple form Θ = Ė + Ẇ − Ḟ ≥ 0,
where W is the external mechanical work performed on the tissue through its boundary, F = U − T S is the
Helmholtz free energy of the tissue (U is the internal energy, S the entropy, and T the temperature) and E
is the free energy exchanged with the external environment.

We assume that mass is delivered within the tissue bulk such that:

Ė =

∫
Bt

ρS∗ : ĠG−1dx, (6)

where S∗ is an imposed tensorial chemical potential [101] setting the building blocks availability in the local
environment along the growth principal directions, sometimes referred to as the homeostatic stress tensor
[10, 97, 20, 46].

The mechanical work is done through traction forces t = Tn acting at the boundary ∂Bt with surface
normal n (see Fig. 1 for an illustration). Using the momentum balance ∇x · T = 0, the rate of work is
Ẇ =

∫
Bt

T : ∇xv dx . Finally, we write the free energy as F =
∫
Bt
ρf dx in terms of the free energy per

current unit mass f , of which the form specific will be detailed in the next few sections. Transformed into
the initial configuration, the dissipation inequality reads

Θ =

∫
B0

|F| ρS∗ : ĠG−1 dX︸ ︷︷ ︸
Ė

+

∫
B0

|F|T : ∇xv dX︸ ︷︷ ︸
Ẇ

−
∫
B0

˙|F| ρf dX︸ ︷︷ ︸
Ḟ

≥ 0 . (7)

We assume that the free energy density f depends on the elastic deformation A and the determinant
of the growth tensor |G|, that is f = f (A, |G|) . While the dependence in A corresponds to the classical
morphoelastic theory [90, 60], the |G| dependence reflects the fact that, during the cell cycle, the swelling
of the cell volume by the uptake of extracellular fluid costs some metabolic energy (e.g. biosynthesis of
proteins, ion pumps activity). Over a longer timescale, cell division also requires some energy, for instance
for the active process of cytokinesis to take place. With this assumption, the dissipation inequality (7) can
be rewritten as

Θ =

∫
B0

(
|F|TA−T − |F| ρ ∂f

∂A

)
: Ȧ + |F| ρ

(
S∗ +

1

ρ
ATTA−T − f 1− ∂f

∂ |G|
|G|1

)
︸ ︷︷ ︸

G

: ĠG−1 dX ≥ 0 (8)

Since the rates Ȧ and Ġ can vary independently, this inequality must hold for each term independently. The
assumption that stress is non-dissipative (elastic mechanical response) thus enforces:

T = ρ
∂f

∂A
AT . (9)

We define the elastic energy per unit volume of the reference configuration W as

f (A, |G|) =
1

ρr
W (A, |G|) . (10)

The Cauchy stress (9) then takes the form

T =
1

|A|
∂W

∂A
AT . (11)
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We can see that the dissipation inequality simplifies by inserting (9) into (8). This leaves Θ =
∫
B0
|G| ρrG :

ĠG−1dX ≥ 0. To ensure that the dissipation inequality is satisfied, we assume the close-to-equilibrium
relation KG = ĠG−1 where K is a constant symmetric positive-definite matrix. We thus obtain the growth
law

ĠG−1 = K
(
S∗ − f 1+

1

ρ
ATTA−T − ∂f

∂ |G|
|G|1

)
. (12)

Further, we identify the “Eshelby-like” stress tensor [11, 10] S:

S := f 1− AT ∂f

∂A
= f 1− 1

ρ
ATTA−T =

1

ρr

(
W1− |A|ATTA−T

)
. (13)

Next, we non-dimensionalize the system, using the following scaling and notation in which the hatted variables
are dimensionless:

t̂ =
t

τ
,

ˆ̇
(. . .) =

∂ (. . .)

∂t̂
,
{
Ŝ, Ŝ∗, f̂

}
=
ρr
G
{S,S∗, f} ,

{
T̂, Ŵ

}
=

1

G
{T,W} , K̂ =

τG

ρr
K . (14)

where τ is the characteristic time scale of growth. This leads to the dimensionless growth law

ˆ̇GG−1 = K̂

(
Ŝ∗ − Ŝ− ∂f̂

∂ |G|
|G|1

)
(15)

where the non-dimensional Eshelby stress is Ŝ = Ŵ1− |A|ATT̂A−T.
We now make another simplifying assumption regarding K̂ in (15) assuming that the rate of growth is

isotropic such that K̂ = k̂1. Since k̂ is used to non-dimensionalized time, without loss of generality, we will
set K̂ = 1 for the rest of this manuscript.

3. The energy cost due to growth

We now consider the following expression of the energy density W ,

W (A, |G|) = Wel (A) +Wg (|G|) =
G

2
(I1 − 3− 2 log |A|) +

κ

2
(|A| − 1)

2
+
χ

2

(
|G| − 1

|G|+ 1

)2

. (16)

The first part of the energy, Wel, is that of a compressible neo-Hookean material [84], where G is the shear
modulus and κ the bulk modulus. The last term, Wg, weighted by the growth penalty χ, is an energetic
penalty due to growth, which is not present in most current treatments of growth [43, 81, 37, 10, 55, 20],
although a dependence of this type has been suggested in [28]. We non-dimensionalize κ and χ according to

{κ̂, χ̂} =
1

G
{κ, χ} . (17)

Taking also into account (14), the energy density (16) in non-dimensional form becomes

Ŵ (A, |G|) = Ŵel (A) + Ŵg (|G|) =
1

2
(I1 − 3− 2 log |A|) +

κ̂

2
(|A| − 1)

2
+
χ̂

2

(
|G| − 1

|G|+ 1

)2

. (18)

We shall motivate the new Ŵg term in two steps. In Section 3.1, we focus in isolation on the Ŵg term
and demonstrate in a geometrically simplified setting how its presence in the free energy density leads to a
growth dynamics with size control. In Section 3.2, we construct the fully general growth law pertaining to
the free energy density (16), a growth law in which both the elastic term and the growth penalty term are
present.
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Figure 2: Final size in the absence of mechanical feedback. Depending on the value of the scaled chemical potential µ̂∗, the
dynamics is in one of three regions: collapse, size control, and unbounded growth. The insets show the right hand side of the
dynamical system (19), for a representative point in the respective region (the points are marked as black circles). If the nutrient
supply, modeled with the chemical potential µ̂∗, is low enough, the cell suspension dies and reaches zero final volume. If µ̂∗ is
sufficiently high, on the other hand, the suspension grows without any control or limit. Between those regimes, a fixed final size
|G| for t → ∞ is reached, independently of the initial conditions of (19). This represents controlled growth of the cells, which
we term size control. Parameter value: χ̂ = 1.

3.1. No mechanical feedback

To motivate the last term of (16), Wg, we first consider the case of a cell colony where mechanics is
not playing any role (for instance when cells are isolated in suspension or on a petri dish). In this case,
the colony still grows according to the nutrients availability (i.e. the carrying capacity of the environment)
and there are usually three regimes. If the nutrients supply is large enough, growth will be exponential
while we expect some growth arrest in an environment with moderate supplies. In the context of population
dynamics, the exponential regime is referred to as Malthusian growth [60]. If the supply is too low, the colony
will die (extinction in the context of population dynamics). Finally, if there is moderate nutrient supply, the
population of cells will saturate in a logistic profile, referred to as Verhulst growth or Gompertzian growth [91].
These models are frequently applied to cancer modeling [77]. Various classical models within the sigmoidal
function family, such as the von Bertalanffy, Gompertzian, and logistic models, have been used to describe
the growth of tumors [103, 54]. The concept of a "carrying capacity", borrowed from population dynamics
and ecology, represents the maximum number of cells for a growing cell population in an environment with
given supplies. [57].

This situation is mimicked when considering the growth law (15) in the absence of mechanics (i.e., f is
independent of A), which is what we would get if we set G = 0 and κ = 0 in (16). We denote this energy (in
non-dimensional form) as Ŵ = Ŵg (|G|), and its derivative dŴg/d |G| by Ŵ ′g (|G|). We next assume that the
homeostatic stress is spherical, Ŝ∗ = µ̂∗1, where we µ̂∗ is an external chemical potential. Furthermore, we
assume that G is spherical, that is G = |G|

1
3 1, in which case 1 : ˆ̇GG−1 = | ˆ̇G||G|−1. Then the non-dimensional

growth law (15) simplifies to

| ˆ̇G||G|−1 = µ̂∗ − Ŵg − |G| Ŵ ′g (|G|) = µ̂∗ − (|G| − 1) (|G| (|G|+ 4)− 1) χ̂

2 (|G|+ 1)
3 . (19)
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In Fig. 2, we show how the availability of nutrients, represented by the chemical potential µ̂∗, affects the
asymptotic size of the system described by the dynamical equation (19). When µ̂∗ is lower than a threshold
value, the cell suspension collapses to zero size (red region). The right hand side of the dynamical system
(19), plotted as an inset, has no zeros, and the dynamics has no equilibrium points. As µ̂∗ is increased, we
reach a finite size that increases with the value of µ̂∗ (blue region). The right hand side of (19) has two zeros
(inset), one of which is a stable equilibrium. We term this region "size control". Finally, once µ̂∗ becomes
large enough to leave the size control region, we enter a regime of unbounded growth (yellow region). The
right hand side of (19) once again has no zeros and is always positive, making the growth unbounded.

The Wg term implies the existence of a memory of a reference configuration in the cells of the tissue.
Indeed, telomere length is known to keep track of the number of divisions that a given cell has undergone
[69, 92]. Furthermore, there is a clear size memory at the cell scale as daughter cells always reach twice the
volume of their mother cell before they divide [21].

3.2. Full growth law
Next, our goal is to investigate how the classical population dynamics models couple with morphoelasticity.

To this end, we must evaluate the expression (15) using the free energy (18). Since the Cauchy stress T appears
in the growth law, it needs to be evaluated according to (11), once again using the free energy (16). For this,
the expressions ∂f/∂A and ∂f/∂ |G| are required. Their explicit computation is detailed in Appendix A,
expressions (A.1) and (A.2). Taking those results into account, the Cauchy stress is

T =
G

|A|
(B− 1) + κ (|A| − 1)1 (20)

and the non-dimensional growth law (15) reads

ˆ̇GG−1 = Ŝ∗ − Ŝ− 2χ̂ |G|

(
|G| − 1

(|G|+ 1)
3

)
1 . (21)

3.3. Analogy between growth energy Wg and defect energy in crystal plasticity
While most growth theories [37, 43, 12, 56, 52, 11, 25] do not take into account a free-energy contribution

due to growth (Wg in (16)), in plasticity, it is common to include an anelastic contribution into the free
energy. In crystal plasticity, the deformation gradient F = AP is decomposed into an elastic tensor A and
a plastic tensor P of which G is the kinematic equivalent in growth theories. The free energy then takes
the form W = Wel (A) + Wd(γp) where Wel is the retrievable energy connected to atomic bond stretching
in a crystal lattice, and Wd is a defect energy due to imperfections in the lattice such as dislocations. Wd
is often called the “stored energy of cold work”[66, 75]. The defect energy is a function of γp, which is a
macroscopic measure of the dislocations stored in the microscopic structure. This quantity is closely linked
to the plastic deformation gradient: γp is the accumulated plastic strain defined in terms of the differential
equation γ̇p = |Dp| where the plastic stretching Dp is the symmetrization of the plastic distortion-rate tensor,
that is Dp = sym(ṖP−1) [66, 67, 75]. A extension of this view, strain gradient plasticity, further assumes that
Wd also depends on gradients of the accumulated plastic strain, which quantifies the inhomogeneity of the
microscopic structure due to stored dislocations [64, 65, 80, 33, 88, 22].

In both crystal plasticity and growth theories, incompatibility plays a very important role. While in
plasticity the geometric incompatibility usually arises due to defects in the crystal lattice, the source of
incompatibility in growth is as diverse as biology itself: Incompatibility may be due to isotropic non-uniform
growth (for instance, in tumor spheroids [15]), anisotropic uniform growth (for instance in the Drosophila
wing disc [68]), or differential growth between adjacent layers (for instance in heart tube formation [72] or
chick eye development [83]).

4. Application to a 1D and 3D scenario

In this section, we explore the consequences of the modification to the free energy density (18) and the
growth law (21) that follows from it. We start in subsection 4.1, with a uniaxially growing bar, which is
restricted to homogeneous deformations. In this system, deformations and stresses are spatially uniform,
making the mathematical analysis transparent. Next, in Section 4.2, we study a growing spheroid. This
system permits anisotropy in growth and stress, which leads to the buildup of residual stress.
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G = diag(1, 1, γz)

F̂ext

F = AG = diag(α, α, αzγz)

γz

αzγz11

1

α

1

1

α

A = diag(α, α, αz)

initial configuration B0

reference configuration Br

current configuration Bt

Figure 3: Illustration of a single bar growing uniaxially. In the initial configuration B0, before any growth or elasticity takes
place, the system is stress-free. For the purpose of illustration, we set all reference lengths to 1. The growth stretches γz
describes the change of length purely due to growth in z-direction, where γz in the reference configuration Br can be thought
of as rest-lengths of a (non-linear) spring. The elastic deformation with respect to these rest lengths is captured via the elastic
stretches αz , where λz = αzγz in the current configuration Bt represent the observed (scaled) length of the bar, which is subject
to an external force F̂ext acting over the (scaled) surface α2.

4.1. 1D: Uniaxial growth of a single bar
We illustrate the presence and absence of size control based on the simplest possible geometry, a uniaxially

growing bar, in which all deformations are spatially homogeneous. We work on a Cartesian coordinate basis
{ex, ey, ez} in both initial and current configurations, with the direction of growth being ez. We shall write
tensor components in this basis from now on. Assuming symmetric deformations in ex and ey directions, as
well as uniaxial growth, the kinematic tensors are

F = diag (λ, λ, λz) , A = diag (α, α, αz) , G = diag (1, 1, γz) , (22)

see Fig. 3. The Cauchy stress is then given by (20). Assuming no traction on the long faces of the bar, as
well as a non-dimensional external force F̂ext distributed over the scaled area α2 of the remaining faces, the
force boundary conditions are

T̂x = T̂y =

(
α2 − 1

)
α2αz

+ κ̂
(
α2αz − 1

)
= 0, T̂z =

(
α2
z − 1

)
α2αz

+ κ̂
(
α2αz − 1

)
=
F̂ext

α2
, (23)

implicitly determining the components α, αz of the elastic deformation gradient A. The growth law (21)
takes the form

γ̇zγ
−1
z = µ̂∗ − Ŵ + αzF̂ext − 2χ̂γz

(
γz − 1

(γz + 1)
3

)
. (24)

Here, the zz-component of the Eshelby stress is Ŝzz = Ŵ − αzF̂z.
Previously we have seen that depending on the chemical potential, i.e. the availability of nutrients, our

model can exhibit three regimes: Collapse, size control and exponential growth. Now, we explore also how
the growth penalty χ̂ affects the regions. To this end, it is instructive to fully write out (24) which means
that we expand the free energy density Ŵ according to (18). Then, (24) can be written as

γ̇zγ
−1
z = µ̂∗ + χ̂h (γz) + ĉ (25)

where we introduced the shorthand

h (γz) = − 4

(γz + 1)3
+

4

(γz + 1)2
− 1

2
(26)

ĉ = −1

2

(
2α2 + α2

z − 3
)
− 1

2
κ̂
(
α2αz − 1

)2
+ log

(
α2αz

)
+ αzF̂ext (27)
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Figure 4: Dynamics and final size of a single bar growing uniaxially. A Region diagram showing the asymptotic final size as a
function of the non-dimensional parameters µ̂∗ and χ̂. The present theory "opens up" a blue region in which a finite non-zero
final size is reached, independently of initial conditions (see trajectories inset, where the µ̂∗ and χ̂ parameters are marked by
the black dot). This region is placed between the red "collapse" region, in which the system reaches a zero size, and the yellow
"exponential growth" regime, in which the system keeps growing exponentially without bounds. The classical theory can be
seen in the cusp of the "V" shaped region, in which case there is only collapse and unbounded growth, but no size control. B
The final asymptotic size, as well as the right-hand side of the growth law (24) (as insets). The final size is finite and non-zero
in the size control region. C In the classical theory (χ̂ = 0) the size control region disappears. Parameters are κ̂ = 1, µ̂∗ = 1,
F̂ext = −1.

Note that all γz-dependence is contained in h (γz). When the external force F̂ext is given, α and αz can be
determined via (23), and so ĉ according to (27) is then just a constant.

The right-hand side of the dynamical law (25), that is µ̂∗ + χ̂h (|G|) + ĉ, has a relatively straightforward
structure: Its lowest and highest values, respectively, are at γz = 0 and γz = 1/2. We can thus define the
different types of dynamical behavior as follows:

collapse : µ̂∗ + χ̂h (1/2) + ĉ < 0 (28)
size control : h (0) ≤ h (γz) ≤ h (1/2) (29)

unbounded growth : µ̂∗ + χ̂h (0) + ĉ > 0 . (30)

The idea of defining these regions is centered around whether the right hand side of (25), shown as a blue
curve in the insets of Fig. 4B and C, crosses zero or not. In the collapse region, the blue curve is completely
below zero, allowing no equilibrium of the dynamics, only shrinking. In the unbounded growth region, the
curve is always above zero and once again no equilibrium is possible. In the size control region, the curve
crosses zero at two points, one of which (the one with the greater value of γz) is the only stable equilibrium
point, ensuring that the final size is always reached regardless of initial conditions.
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F = AG

B0

initial
configuration

R

eφ

eθ

B

eR

current
configuration

Bt

r(R)

b

eφ

eθ

eR

Figure 5: Sketch of morphoelastic decomposition for a ball. In the initial configuration B0 the ball is unstressed and undeformed,
corresponding to the pre-growth stage. It has a radius R and its boundary is at R = B, i.e. R ≤ B. The growth tensor G
instructs how vectors from B0 are mapped into the reference configuration, Br (not sketched here), and the elastic deformation
gradient A maps vectors from Br to the current configuration, Bt. In the current configuration, the boundary of the ball is at
r = b, which corresponds to its actual size.

This is precisely how the red (collapse), blue (size control) and yellow (unbounded) regions are defined
in Fig. 4A. The boundary between the collapse and size control region is defined by µ̂∗ + χ̂h (1/2) + ĉ = 0,
and is thus a linear relationship between µ̂∗ and χ̂, forming the left line of the “V”. The boundary between
the size control region and the unbounded growth region is defined by µ̂∗ + χ̂h (0) + ĉ = 0, forming the right
line of the “V”. In Fig. 4A, we can see that the scaled growth penalty parameter χ̂ opens up the size control
region in a "V"-shape: The sharp edge of the "V" corresponds to χ̂ = 0, i.e. the classical case, in which size
control is not present and you can only have either collapse or exponential growth. As χ̂ > 0 increases, the
size control region gets wider. The insets show example trajectories with different initial conditions for γz at
t̂ = 0. In the size control region, regardless of initial conditions, the same final size is reached, since there
is only one stable equilibrium point ˆ̇γz = 0. Figs. 4B and C show slices through this diagram at constant
values χ̂ > 0 and χ̂ = 0, respectively, contrasting the present and classical theory. In the classical case there
is no size control regime, whereas in the present theory it "opens up" in the form of the blue region between
collapse and unbounded growth.

4.2. 3D: Compressible spheroid
4.3. Kinematics

We consider the case of a compressible growing neo-Hookean spheroid (i.e. a ball of cells). We work in
spherical polar coordinate basis {eR, eθ, eφ} (the same basis vectors apply to both initial and current configu-
rations). The deformation map is given by x = r (R, t) eR, where r is the current radial coordinate and R the
initial radial coordinate (we will not explicitly refer to reference coordinates here). The deformation gradient
tensor F with these geometric restrictions will have the structure F = ∂r

∂ReR⊗eR+ r
R (eθ ⊗ eθ + eφ ⊗ eφ) .We

shall assume the same coordinate basis as in the previous expression for all relevant tensors in this geometry
(A, G, T, S) and will from now on write their components in index notation. The elastic deformation gradient
takes the form A = diag (αR, αθ, αθ), and the growth tensor is G = diag (γR, γθ, γθ). To summarize, in index
notation (with the basis {eR, eθ, eφ} implied), we have

F = diag
(
∂r

∂R
,
r

R
,
r

R

)
, A = diag (αR, αθ, αθ) , G = diag (γR, γθ, γθ) . (31)

In the initial configuration B0, the domain boundary is located R = B, see illustration in Fig. 5.

4.4. Mechanics
Given that all deformations are diagonal in the coordinate basis considered here, the Cauchy stress is

also diagonal T = TReR ⊗ eR + Tθ (eθ ⊗ eθ + eφ ⊗ eφ) . In the present geometry the Cauchy stress tensor
according to (20) has the following components:

T{R,θ} =
G

|A|

(
α2
{R,θ} − 1

)
+ κ (|A| − 1) . (32)
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Notice that Tθ − TR = G
(
α2
θ − α2

R

)
/|A|. We assume that the mechanical equilibrium holds ∇x · T = 0 in

the presence of a hydrostatic pressure T = pext1 at the boundary of the ball ∂Bt, that is

∂TR
∂R

=
2r′

r
(Tθ − TR) =

2Gr′

r

(
α2
θ − α2

R

|A|

)
, TR = pext at R = B . (33)

Once TR is solved for, the hoop stress is computed as Tθ = TR +G
(
α2
θ − α2

R

)
/|A|.

Next, we non-dimensionalize the system according to (14). In addition, we scale all lengths by the initial
disk size B, that is r = Br̂ and R = BR̂, as well as scaling the external pressure by the shear modulus, that
is pext = G p̂ext Together, the constitutive law (32) and the stress balance (33) provide a boundary value
problem which we refer to as the “spatial problem”, as for fixed γR, γθ it is a system of coupled ODEs in
space:

T̂R = −κ̂+

(
κ̂r̂2

R̂2γ2
θγR

+
R̂2γ2

θ

r̂2γR

)
∂r̂

∂R̂
− R̂2γ2

θγR

r̂2(∂r̂/∂R̂)
, r̂ = 0 at R̂ = 0 (34)

∂T̂R

∂R̂
=

2

[
r̂2γ2

R − R̂2γ2
θ

(
∂r̂/∂R̂

)2
]

r̂3γR
, T̂R = p̂ext at R̂ = 1 (35)

with any imposed functions γR(R̂), γθ(R̂). The non-dimensional hoop stress is obtained as T̂θ = T̂R + (α2
θ −

α2
R)/|A|.

4.5. Growth
We now reduce the growth law (21) to a form appropriate for the present spherical geometry. Since the

tensors A and T are diagonal and share the same basis, they commute. Therefore, the non-dimensional form
of the Eshelby stress (13) takes the simplified form Ŝ = −Ŵ1 + |A| T̂. Further, we decompose Ŝ∗ into a
hydrostatic part and a deviatoric part. In the component notation adopted above,

Ŝ∗ = diag
(
σ̂∗,−1

2
σ̂∗,−1

2
σ̂∗
)

+ diag (µ̂∗, µ̂∗, µ̂∗) (36)

where, as in previous notation, the hat in σ̂∗ and µ̂∗ means that they are scaled by the shear modulus G. In
this form, Ŝ∗ is split into its deviatoric and hydrostatic part: the deviatoric part is dev Ŝ∗ = 1

3 tr Ŝ
∗ = µ̂∗1,

and the hydrostatic part is hyd Ŝ∗ = Ŝ∗ − 1
3 tr Ŝ

∗ = diag
(
σ̂∗,− 1

2 σ̂
∗,− 1

2 σ̂
∗). Taking this into account, we

write the non-dimensional growth law as

ˆ̇γR
γR

= σ̂∗ + µ̂∗ − Ŵ + |A| T̂R − 2χ̂ |G|

(
|G| − 1

(|G|+ 1)
3

)
γR = γ0

R at t̂ = 0 (37)

ˆ̇γθ
γθ

= −1

2
σ̂∗ + µ̂∗ − Ŵ + |A| T̂θ − 2χ̂ |G|

(
|G| − 1

(|G|+ 1)
3

)
γθ = γ0

θ at t̂ = 0 . (38)

The energy Ŵ is given by (18). The determinants of the kinematic tensors, in our geometry, are

|A| = r̂2

R̂2

(
∂r̂

∂R̂

)
1

γRγ2
θ

, |G| = γRγ
2
θ . (39)

In summary, for the whole boundary value problem we must simultaneously solve the constitutive law (34),
the stress balance (35), and the two equations for growth dynamics (37), (38). We describe our numerical
approach to solving this system of partial algebraic-differential equations in Appendix C.

Fig. 6 shows a scenario that qualitatively mimics the situation in real spheroids under external pressure.
Fig. 6A shows a particular scenario with size control. The simulation starts with smooth noisy randomly
generated initial conditions for γ0

R, γ
0
θ . Fig. 6B shows the evolution of |G| and |A|, which start out noisy.

Eventually, they each converge to smooth profiles. Fig. 6C shows the evolution of the stress profiles (Cauchy
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Figure 6: Qualitatively realistic scenario of multicellular spheroid growth. A. Evolution of the spheroid volume divided by
the initial volume. B. Evolution of the determinants of the kinematic tensors G and A. The initial conditions are noisy; the
final (equilibrium) profile of |G| is smooth. C. Evolution of the stress profile. Due to the external compressive pressure on the
spheroid, the final (equilibrium) stresses (rose color) are compressive. D. After the equilibrium state has been reached with the
external pressure acting on the spheroid, the spheroid is removed from the experimental setup and returned to a no-pressure
boundary condition p̂ext = 0. This reveals the residual stress in the system, with the hoop stress being tensile at the periphery
and compressive at the center, which is consistent with cutting experiments of spheroids. Parameters are κ̂ = 1, χ̂ = 6.5, µ̂∗ = 2,
σ̂∗ = 0.15, p̂ext = −1.

stress in radial and hoop directions, TR and Tθ, respectively). The stress profile starts out as nearly uniform
and nearly isotropic, T̂ ≈ p̂ext1, deviating from uniformity only slightly due to the noisy initial profile. It
evolves to a smooth, non-uniform and anisotropic profile. Due to the external pressure, which is compressive,
the stress profiles are all compressive, consistent with the results of [5] where external pressure is achieved via
a polymer coating of spheroids. Finally, Fig. 6D shows the equilibrium configuration of Fig. 6C, but with the
external pressure removed. This setup reveals the residual stress which has been built due to non-uniform
anisotropic growth. The hoop stress is tensile at the periphery, and compressive at the center, in line with
the experiments of [94] where qualitatively the same stress pattern was observed in spheroids through the
opening of radially cut slices of spheroids [63, 26]. In summary, the discussion of Fig. 6 reveals how the
deviatoric part of the homeostatic stress, controlled by the parameter σ̂∗, induces a spatial inhomogeneity in
the profiles of stress and kinematic tensors and causes the buildup of residual stress in the spheroid.

5. Residual stress and size regulation

When the homeostatic stress tensor has no deviatoric part (σ̂∗ = 0), the deformation field in the spheroid
is spatially homogeneous, i.e. the stress in the spheroid is isotropic and the same everywhere, matching
the externally imposed pressure for all times. This case is illustrated in a 7A, in which the collapse region
(red) and the unbounded growth region (yellow) are separated by a "V"-shaped size control region (blue).
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Figure 7: How the anisotropy of the homeostatic stress shifts the size control boundary. A. When the homeostatic stress tensor
is isotropic Ŝ∗ = µ̂∗1, we obtain a "V"-like separation between the region of collapse, size control and exponential growth,
qualitatively identical to Fig. 4. B. When the homeostatic stress tensor is anisotropic in favor of the radial component (σ̂∗ > 0),
the size control boundary shrinks compared to the scenario where homeostatic stress is isotropic (σ̂∗ = 0, dashed line). This
causes a realistic residual stress profile (inset), with tensile hoop stress at the boundary, which is consistent with experiments in
which the spheroid is cut and opens. C. In the opposite scenario, where then anisotropy of the homeostatic stress tensor is in
favor of the hoop component (σ̂∗ < 0), the size control boundary also shrinks compared to the scenario where homeostatic stress
is isotropic (σ̂∗ = 0, dashed line). This causes compressive hoop stress at the boundary (inset), which is not consistent with
experiments. Parameters are κ̂ = 1, p̂ext = −1. The black dots in both subfigures highlight the parameters µ̂∗ = 2, χ̂ = 6.5.
For subfigures B and C, the deviatoric part of the homeostatic stress is σ̂∗ = 0.15 and σ̂∗ = −0.4, respectively.

The region boundaries for this case σ̂∗ = 0 are worked out semi-analytically in Appendix B. This result is
qualitatively identical to the uniaxially growing bar which was explored in Fig. 4, in which deformations and
stresses inside the bar were also completely uniform. In both cases, the bar and the spheroid at σ̂∗ = 0, once
the external force or pressure is removed, the stress in the system goes back to zero, the systems are free of
residual stress.

As was shown in Fig. 6B and C, when the homeostatic stress has a non-zero deviatoric part (σ̂∗ 6= 0),
quantities like the Cauchy stress tensor T and the kinematic tensors F, A and G become spatially non-uniform
and anisotropic, even if they start in a completely uniform and isotropic state. As Fig. 6D demonstrates,
when the external pressure is removed from the spheroid, the Cauchy stress does not vanish, which means
that the growth dynamics has built up residual stress due to the fact that the homeostatic stress tensor is
anisotropic (σ̂∗ 6= 0).

In Fig. 7B and C, we explore how the deviatoric part of the homeostatic stress tensor σ̂∗ shifts the regions
of collapse, size control and unbounded growth compared to the "V"-shaped case σ̂∗ = 0 shown in Fig. 7A.
Indeed, the region boundaries of 7A are shown in Fig. 7B and C as the gray dashed lines for comparison.
We see that in both cases σ̂∗ > 0 (7B) and σ̂∗ < 0 (7C), the size control region (blue) shrinks in comparison
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Figure 8: Transient scenarios and the necrotic core. A. The evolution of the spheroid radius (black, solid), alongside the paths
of internal material points (gray, solid). Initially, all material points move away from the core of the spheroid in a rapid growth
phase, but afterwards there is some backflow of material towards the necrotic core. The necrotic radius (dashed) separates the
necrotic core | ˆ̇G| < 0 (blue shaded region) from a proliferating region | ˆ̇G| > 0 (light red shaded region). The spheroid at initial
time t̂ = 0 is marked with 100 randomly placed points. After the initial growth phase, the necrotic core (white ring) becomes
visible, coinciding with the flow of marked points towards the center. Around t̂ = 8.5, the dynamics is close to equilibrium (| ˆ̇G|
is close to zero), as material points have clearly moved to the center compared to t̂ = 0. Parameters are , µ̂∗ = 4.50, σ̂∗ = 0.49.
B. In the case of unbounded growth, there is no backflow of material and no necrotic core. The marked material points expand
almost isometrically. Parameters are: µ̂∗ = 6.5, σ̂∗ = 0.52. The following parameters were used for both simulations A. and B.:
p̂ext = 0, κ̂ = 1, χ̂ = 10.

to the case where the homeostatic stress is isotropic Ŝ∗ = µ̂∗1 (which corresponds to σ̂∗ = 0).
The direct comparison of the cases σ̂∗ > 0 and σ̂∗ < 0 allows us to see which of these cases is consistent

with experimentally observed results of residual stress in spheroids. In [94], it was observed that cutting
tumor spheroids with a knife leads to an opening of the "lips" at the cut. This is consistent with a tensile
hoop stress at the boundary [94, 26, 63], but would be inconsistent with a compressive hoop stress, since in
that case the spheroid would stay closed [60]. This allows us to identify 7B as a physically plausible scenario,
in which the residual hoop stress is consistent with experiments, and in which a finite size is reached (Fig.
6A), which is consistent with experimental observations [5].

6. Transient dynamics and the necrotic core

The presence of a necrotic core in the center of a growing spheroid is generally attributed to a nutrient
depletion within the core [99]. The classical explanation is that avascular tumor growth relies on the delivery
of oxygen and nutrients from surrounding host tissue and their consumption by tumor cells. The nutrient
availability affects cell proliferation and death, leading to the formation of a concentric structure with a
necrotic center, a dormant middle layer, and a highly active outer layer, due to the sharp differences in
chemical concentration. In mechanosensitive tumor models, the necrotic core usually emerges due to a
coupling of oxygen diffusion and stress feedback, see e.g. [107, 109].

Perhaps surprisingly, the present model suggests an alternative explanation for the formation of the
necrotic core. In the presence of anisotropic homeostatic stress, a transient phase can emerge in which a
necrotic core becomes apparent, as long as the spheroid is in the size control regime, see Fig. 8A. There, we
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visualize the transient initial growth phase which occurs before eventually all growth stops ( ˆ̇G = 0 for all
R̂). This transient phase can be broadly subdivided into two phases: Initially (between t̂ = 0 and t̂ = 0.3 in
Fig. 8A), the tumor grows rapidly without a necrotic core. After that, but before the spheroid reaches its
largest size, a necrotic core emerges (the necrotic core is defined as those radial points for which | ˆ̇G| < 0).
The effect of the necrotic can be seen clearly when observing randomly marked points on a spheroid: There
is a material flow towards the center as the points are "attracted" into the necrotic core. Just before the
spheroid reaches a steady state in which any material flow stops ˆ̇G = 0, the initially marked points have
clearly moved towards the center. This observation is qualitatively consistent with experiments in which cells
of freely growing spheroids have been stained and showed the same trend of outward followed by inward flow
(see Fig. 4d in [34]). In the case of an unbounded freely growing spheroid, on the other hand, no necrotic
core emerges as material points expand nearly isometrically, leading to unbounded proliferation of the tissue.

7. Discussion

The key idea in this article is that we make a modification of the free energy which we identify with the
physical effect of size regulation. The modification is led by the insight that for a cell to grow, or shrink,
there is an energetic cost. Some active processes that consume chemical energy from ATP hydrolysis are
directly involved in the control of the local tissue swelling such as the cells ion pumping and the process of
endocytosis. This energy consumption can be maintained thanks to the cell metabolic system that consumes
nutrients [110]. Our model do not explicitly consider these detailed processes and their coupling with the
extracellular matrix as it operates only with the variable G characterizing the swelling at the tissue scale.
It is only broadly consistent with the fact that these swelling processes consume energy, which should be
reflected in the free energy of the system. Our way to fix this energetic cost is to phenomenologically select a
dependence that is consistent with the expected behavior of a cell colony even in the absence of mechanical
interactions between the cells.

7.1. Comparison of tumor models
A number of experimental observations about growing multicellular spheroids are well established, and

capturing them all in a single model has not been achieved previously. While the poroelastic model of Xue
and co-workers [109] captures the growth profiles observed in experiments (necrosis towards center, high
proliferation at the rim), their stress distribution is not fully consistent with experiments, as the hoop stress
in their model is compressive. This would not cause an opening of the spheroid when it is cut, as reported
in [94, 26, 63]. On the other hand, in the model of Ambrosi and co-workers [15], the stress distribution is
captured, with tensile hoop stress at the rim which is consistent with experiments. The same model, however,
explicitly does not include the possibility of a necrotic core. Finally, the model of Walker and co-workers
[107] qualitatively captures the right trends for the residual stress of a spheroid, although only close to the
boundary (in the bulk, the stress profiles reverse). The same model also captures a necrotic core. However,
this model relies on a non-local feedback mechanism, i.e. any cell must have access to the largest magnitude
compressive stress experienced by all cells in the entire spheroid.

Shi-Lei et al.
[109]

Ambrosi et
al. [15]

Walker et al.
[107] present

residual stress as in experiments × X
only at

periphery X

necrotic core is present X × X X

oxygen diffusion is modeled X X X ×
derived from thermodynamics X × × X

Table 1: Comparison of tumor models. The category "residual stress as in experiments" refers to tensile hoop stress at the
periphery and compressive hoop stress near the core, and compressive radial stress throughout, which would lead to an opening
of the spheroid upon incision [94, 8, 26, 63]. In [107], this appears to be true only very closely to the edge of the spheroid, while
in the bulk the profile is reversed.
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A B

pressure 

Figure 9: Mechanical feedback in Shraiman’s models compared to the present model. A. Sketch of Shraiman’s non-monotonic
mechanical feedback mechanism, adapted after [73] Fig. 3. Too much tension or too much compression leads to resorption of
the tissue, while the optimal growth rate is achieved when the tissue is in tension. Mechanical feedback is seen as an essential
ingredient to size control in [73]. B. In the present model, even in the absence of mechanical feedback (p̂ = 0), a finite size can
be reached, and the carrying capacity of the cell colony is set by the chemical potential µ̂∗. Mechanical feedback reduces the
size of the spheroid in the presence of increasing compression (black contour). Parameters are: µ̂∗ = 0.7, χ̂ = 1, κ̂ = 1.

The present model simultaneously provides a qualitatively correct residual stress profile (Fig. 6D) and
captures the inward flow of material associated with necrosis (Fig. 8A). All this is achieved through a local
feedback mechanism derived from a thermodynamical framework, requiring only a single phase material (i.e.
no poroelasticity) and no model of oxygen diffusion. A caveat is that the necrotic core emerges only in a
transient phase and eventually vanishes as growth stops, rather than being a true "dynamic equilibrium"
state. A comparison of the features of the different models discussed here is shown in Table 1.

7.2. Different approaches to size regulation in the presence of mechanical feedback

An influential model of a feedback mechanism between growth and stress was presented by Boris Shraiman
in [93], and was later extended to produce size regulation in [73]. The mechanical feedback in both these
works exhibits a non-monotonic growth rate (see [93] Fig. 3 and [73] Fig. 3), which we reproduced in Fig.
9A. Shraiman postulates a growth-mechanical coupling according to which a bit of tension is optimal for
growth, but too much tension kills the tissue. This feedback leads to unbounded exponential growth [93].
In the perspective of morphoelasticity, a similar feedback can be obtained if one takes the classical law (1)
and makes the kinetic coefficient K dependent on stress. Similarly to [93], this type of feedback produces
unbounded growth. In order to add the possibility of attaining an asymptotic size, Shraiman and co-authors
[73] combined the mechanical feedback mechanism shown in Fig. 9A with a diffusing chemical species (a
morphogen) as well as a thresholding mechanism by which growth stops if the morphogen level falls below a
certain threshold. In this point of view, mechanical feedback is essential for growth arrest.

A fundamental difference in our model is that even in the absence of mechanics, growth arrest is possible
if the chemical potential µ̂∗ lies in the size control regime. The case of no mechanics can be seen in Fig. 2 as
a non-monotonic relationship between the growth rate and |G| which is a proxy for the system size. Fig. 9B
shows how this non-mechanical scenario, captured by the p̂ = 0 plane, is modified when the pressure p̂ becomes
increasingly compressive: The growth rate is shifted downwards, and the equilibrium size (represented by
the black contour) decreases, which is consistent with the expectation that a more compressed spheroid will
reach a smaller size.

A similar point of view is taken by Ambrosi and co-authors in [15]. There, in the absence of mechanical
feedback (c = 1 and tr S = 0 in their notation), the growth of a spheroid follows a logistic (Verhulst) growth
curve. Mechanical feedback in their model is activated through a prescribed non-uniform concentration profile
decaying exponentially from the oxygen-saturated boundary. A contribution of the present work is to give an
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energetic and thermodynamical interpretation to a growth profile of logistic type, and to relate the carrying
capacity of the logistic growth to the external chemical potential S∗. In our view, the anisotropy of the
potential tensor S∗ activates mechanical feedback which also affects the carrying capacity of the spheroid.

7.3. Size regulation in mixture models

In the present work, we focus on size control in the classical kinematic decomposition framework in which
the growing biological material, i.e. its cells, their constituents, and the extracellular matrix, are all treated
as a single field. To consider the interplay between multiple constituents, such as solid cell components
and water in a multicellular spheroid, or elastin and collagen in arteries, the concept of a mixture has been
proposed there have been several mixture theories in which size regulation has been demonstrated, at the
cost of adding considerable complexity to the modeling. These can be broadly split in two categories:

1. Solid-fluid mixtures, of which the most canonical one incorporates one solid and one fluid phase, are
modeled by poroelasticity. In this view, the solid cell components and extracellular matrix are interpen-
etrated by a fluid. The classical framework of poroelasticity [27] has been adapted to growth theories
with a multiplicative decomposition [52]. Using a similar approach, a poroelastic model of a growing
spheroid was able to produce growth arrest [109] (this model and its caveats are contrasted in Table
1). However, due to the relative complexity of such models, and an almost complete lack of analytical
solutions, an explicit understanding of the minimal ingredients needed for size regulations is missing.

2. Solid-solid mixtures model the fact that soft tissues are often composed of different load-bearing con-
stituents such as cells and their collagen matrix. Constrained mixture theory simplifies the problem
by assuming equal velocities for all solid phases [74, 30, 9]. This theory is particularly relevant for
studying growth and remodeling in tissues where different constituents have different turnover dynam-
ics. A drawback is that the history of the dynamics of each individual phase must be tracked and
evaluated in “hereditary integrals” which requires considerable computational effort. To investigate
questions such as dynamical stability and the final size of an artery in healthy conditions vs. condi-
tions in which aneurysms appear, the constrained mixture theory approach has been extended to a
dynamical perspective known as “mechanobiological stability"”[29, 31, 79]. In addition to the usual
constitutive law describing stress-strain relations, mechanobiological stability approaches require ad-
ditional constitutive laws for each constituent in form of a mass production and mass removal rate.
Paired with a suitable homogenization method to eliminate the aforementioned hereditary integrals, a
mechanobiological stability analysis based on dynamical systems theory has shown that artery models
produce a stable organ size via a homeostasis mechanism resembling (1), and proposed explanations
for aneurysms via a mechanobiological instability [29, 31, 79]. In this case, a homeostatic feedback can
produce a finite size and stable equilibrium due to the force balance between the different phases. But
if only one phase is present, this is not possible in general. This is seen in the 1D bar example in Fig.
4C. However, if an extra bar is added in parallel, a finite size for the composite system becomes possible
[45]. Analogously to the two competing bars in parallel balancing forces, in the case of multicellular
spheroids, the cells and the extracellular matrix (ECM) [39] represent two phases that balance forces
with each other. Furthermore, the growth dynamics of the two phases is interlinked: The two processes
of cell swelling during its growth and the ECM swelling are coupled since cells are able to deposit their
ECM as well as digest it.

One may speculate that mixture approaches may in the future provide mechanisms that underlie the
phenomenological form of Wg proposed in this article. Indeed, in the case of poroelasticity, the free energy
traditionally includes not only the elastic contribution of the solid phase, but also a contribution from the
coupling of solid and fluid phases. Since the fluid phase is linked to |G| via mass conservation relationships,
a poroelastic approach resulting in a free energy of the form W = Wel(A) +Wg(|G|) is conceivable. It is also
possible that after an appropriate homogenization of the hereditary integrals of constrained mixture theory,
a free energy of the type Wg could emerge due to the differential growth of the cells and ECM phases.

7.4. Model limitations

The presence of the new growth term in the free energy density establishes size control, meaning that if
the parameters of the system are contained in the blue region in Fig. 7, the system will reach the same size
independently of initial conditions. This is contrary to the classical system (1), in which for some prescribed
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value of the externally imposed chemical potential S∗ (also known as the homeostatic Eshelby stress tensor)
the system will either collapse or grow without bounds , see Fig. 4C. The present model endows the classical
model with size control (Fig. 4B). In the present model, in its simplest form, biochemistry is reduced to an
externally imposed constant scalar chemical potential µ∗, bringing a simplicity and clarity that allows the
investigation of the relationships between biochemistry, mechanics, residual stress and size (Fig. 7B and C
and Fig. 4B).

Our model is a simplification that considers only one cell type and one resource availability. This allows us
to illustrate the coupling between mechanics and logistic growth, but it does not account for other important
aspects of tumor biology. For example, our model does not distinguish between apoptosis and necrosis, but
only captures the loss of cell mass. Moreover, our model does not include the phenotypic heterogeneity of
cancer cells that depends on the oxygen and nutrient levels in different regions of the tumor. These factors
could be incorporated in our model by integrating a diffusive concentration field into the kinetic coefficient
K similarly to [11], through a spatiotemporal dependence of µ̂∗, and/or by adding internal variables in the
free energy. However, such extensions are beyond the scope of our work and can be found in other models,
such as [105, 52].

7.5. An energetic penalty for growth Wg in the context of physics and biology
Most mechanical theory of growth do not take into account an energetic cost for growth Wg, which

includes single phase theories [37, 43, 12], poroelastic growth theories [56, 52], or chemo-mechanical theories
[11, 25]. While the term Wg in (16) is often absent from growth theories, when viewed from plasticity theory,
the presence of an anelastic field in the free energy is not a surprise. As discussed in Section 3.3, in plasticity
theory, the free energy is typically additively decomposed into a contribution due to elasticity Wel and a
defect energy Wd which is the energy stored in the crystal lattice due to dislocations: W = Wel +Wd.

We argue that in growth theories, an analog of the defect energy Wd should also be included to penalize a
competition between cells and their environment. This energy is the growth penalty Wg. For a cell colony on
a petri dish, as discussed above, this competition is mainly due to nutrient availability. However, in different
contexts, when more details are known about the mechanics and microstructure, Wg may need to be adapted
to the biological setting. In an epithelial layer, this may be the competition between cortical tension and
contractility of cells [51]. In a setup of multiple adjacent layers, the competition may be the differential
growth between a cell layer and adjacent extracellular matrix [83, 68]. If the tissue is best described as a
solid-fluid mixture (capturing, for instance, the solid skeleton of the cell and intracellular fluid), the compe-
tition may be between the solid phase and the fluid phase [56]. Finally, if the tissue is best described by a
solid-solid mixture (capturing collagen, elastin and smooth muscle cells in an artery) [58, 6], the competition
may be between the solid phases of the mixture.

7.6. Towards a microstructural theory of cellular growth through water mobility and ion fluxes
In the present situation, unlike in plasticity, an established microstructural theory rigorously linked to

a coarse-grained free energy does not exist yet. We thus propose a choice of Wg that divides the possible
outcomes into three scenarios: The death of a cell colony, its unbounded proliferation, and a controlled state
where a certain size of the cell colony is maintained. A future challenge will be to justify the form of Wg
based on microscopic laws of cell growth. Solid cell components, such as cell organelles or the cytoskeleton,
only occupy about 20% of the total cell volume [21]. Therefore, a crucial problem of understanding how
cells grow in volume, and consequently how the tissue grows in volume, is to understand how water flows in
and out of cells. Water mobility in and out of cells relies on the permeation of water through the plasma
membrane, which can be regulated by aquaporin channels, which are permeable to water but not ions [78],
as well as ion pumps which actively consume energy.

In this view, water mobility and ion fluxes take a highly important role in the regulation of growth, and
should therefore be linked to the coarse grained field Wg(|G|) . While historically in growth models of living
tissue, fluid phases were not considered [13, 95, 97, 59, 18, 44, 7], there has recently been considerable interest
in combining elements from morphoelasticity and poroelasticity [109, 52, 15] or discrete vertex models explic-
itly tracking fluxes between cells [23]. In parallel, there are new developments coupling the electrochemistry
of ion fluxes, mechanics of cell volume regulation, active pumping through ATP hydrolysis, all expressed in a
close to equilibrium thermodynamical framework respecting the Onsager relationships [21, 36, 40, 41]. These
developments could be stepping stones towards a full microscopic theory that would provide the underlying
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mechanisms that lead to the coarse-grained form Wg(|G|).

7.7. Possible experiments in spheroids and Drosophila towards understanding size

An excellent way of testing predictions of the growth law (15) is through experiments in multicellular
spheroids. These lab-made cell cultures have clear spherical symmetry, can be tested with high throughput
methods [5], and established protocols for cutting experiments in order to quantify the residual stress in the
system [94, 15]. Furthermore, the mechanical environment of multicellular spheroids can be controlled very
precisely. For instance, multicellular spheroids can be compressed by supplementing the culture medium with
large Dextran molecules that cannot permeate the spheroid pores. The imposed osmotic pressure leads to an
interstitial fluid flow that dehydrates the spheroid leading to its compression [34, 35, 38]. These experimental
tools can allow us to look at the long timescale behavior (∼ one week) of multicellular spheroids and reveal
their final size as a function of tightly controlled external pressure (p̂ext in our model) or the chemical
microenvironment (µ̂∗). In particular, our model predicts that different initial sizes would lead to the same
final size in the size control regime. Whether spheroids of different initial sizes would reach the same final
size is still an unanswered question, and testing this hypothesis would be an important first step towards
confirming the growth law (15).

While multicellular spheroids are artificial in vitro systems, a good living biological model system for
some of the same questions of growth termination is the Drosophila wing disc due to its relative simplic-
ity. Attempts to understand its size termination have spawned a number of chemical and chemo-mechanical
models ([73, 1, 108, 16, 3]) which however fail to give a coherent picture of the relationship between size,
diffusion of morphogens, residual stress and growth. Recent studies reveal that the geometry of this system
is a multi-layered sandwich-like structure [68, 82] which is clearly residually stressed, as shown by a cutting
experiment [68]. Further experimental progress on the Drosophila wing disc, in particular the measurement
of asymptotic size of the wing disc, may make it feasible in the future to test the predictions of our model in
this developing organ.

Ultimately, the question of size regulation is complex and will likely involve many mechanisms including
biochemical signaling, morphogen diffusion, oxygen diffusion and, in its absence, cell death ([39]), as well as
water fluxes between cells and osmotic regulation ([23]). Still, a formulation of feedback laws that respect
the dissipation inequality, and that have sound microscopic underpinnings, is a physically grounded approach
which may lead to an understanding of the mechanisms that control the buildup of stress and control of size
across different model systems. Such an endeavor is of relevance to the developmental biology community
[1, 2], the physics community [3, 73], and to the mechanics community [14, 86].

Computational codes

The numerical implementation was done in Mathematica 12.1. The notebooks generating all the figures
can be downloaded at: https://github.com/airlich/size-control/.
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Appendix A. Explicit form of ∂f/∂A and ∂f/∂|G|

In order to evaluate the dissipation inequality (8), we must first evaluate the expressions ∂f/∂A and
∂f/∂ |G|. To this end, the following identities are very useful, see Matrix Cookbook ([85]) equations (49),
(108) and (52), respectively: ∂I1

∂A = 2A, ∂I3∂A = 2I3A−T and ∂|A|
∂A = |A|A−T.

Further, we define the trace and double contraction operator in the following ways: With some arbitrary
second order tensors U and M, we have U : M = tr(UTM) = tr(UMT) = UijMij as well as 1 : U = tr(U) .

https://github.com/airlich/size-control/
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To calculate ∂f/∂A for the dissipation inequality, we refer to the free energy in the reference configuration
(10), and utilize the chain rule to get ∂f/∂A = (∂W/∂A) /ρr. Using the form (16) for the free energy, we get

∂f

∂A
=
|A|
ρr

{
G

|A|
(
A− A−T

)
+ κ (|A| − 1)A−T

}
(A.1)

∂f

∂ |G|
=2

χ

ρr

|G| − 1

(|G|+ 1)
3 (A.2)

With these expressions, the Cauchy stress (20) and the growth law (21) can be obtained.

Appendix B. The role of mechanical feedback in size regulation

In this section, we derive semi-analytically the boundaries of the diagram 7A, corresponding to the case
σ̂∗ = 0 for a growing spheroid. The approach we take is practically identical to the uniaxially growing bar
described in subsection 4.1. The basic assumption here is that in the spheroid, all deformations and stresses
are spatially uniform and isotropic for all times. In this case, all relevant tensor quantities (A,G, T̂, Ŝ, Ŝ∗) are
isotropic and spatially uniform.

Now, we make the following assumption for homogeneous deformations:

G = |G|
1
3 1, A = |A|

1
3 1, r̂ = (|A| |G|)

1
3 R̂ . (B.1)

Here, it is assumed that both |G| and |A| are spatially uniform. Next, we insert the assumption (B.1) into
the definition of the Cauchy stress tensor (20),

p̂ext =

(
|A|2/3 − 1

)
|A|

+ κ̂(|A| − 1) . (B.2)

The positive root of this equation provides |A| as a function of p̂ext and κ̂. Next, we return to the growth law
(37), (38). In addition to the present assumption, we also impose σ̂∗ = 0, which means that the homeostatic
stress tensor is isotropic, Ŝ∗ = µ̂∗1. The growth law then becomes isotropic and can be written as

ˆ̇|G|
|G|

= µ̂∗ − Ŵ + |A| p̂ext − 2χ̂ |G|

(
|G| − 1

(|G|+ 1)
3

)
. (B.3)

Here, the scaled Eshelby stress is isotropic, Ŝ =
(
Ŵ − |A| p̂ext

)
1.

Note that when we expand (B.3), we can write it as

ˆ̇|G|
G

= µ̂∗ + χ̂h (|G|) + ĉ , (B.4)

where we introduced the shorthand

h (|G|) = − 4

(|G|+ 1)3
+

4

(|G|+ 1)2
− 1

2
, (B.5)

ĉ =
1

2

(
−3 |A|2/3 + 2 log(|A|) + 3

)
− 1

2
κ̂(|A| − 1)2 + |A| p̂ext . (B.6)

Note that all |G|-dependence is contained in h (|G|). When the external pressure p̂ext is given, |A| can be
determined via (B.2), and so ĉ according to (B.6) is then just a constant.

The right hand side of the dynamical law (B.4), that is µ̂∗+ χ̂h (|G|) + ĉ, has a relatively straightforward
structure: Its lowest and highest values, respectively, are at |G| = 0 and |G| = 1/2. We can thus define the
different types of dynamical behavior as follows:

collapse : µ̂∗ + χ̂h (1/2) + ĉ < 0 (B.7)
size control : h (0) ≤ h (|G|) ≤ h (1/2) (B.8)

unbounded growth : µ̂∗ + χ̂h (0) + ĉ > 0 (B.9)
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This is precisely how the red (collapse), blue (size control) and yellow (unbounded) regions were defined in
Fig. 7A. The boundary between the collapse and size control region is defined by µ̂∗ + χ̂h (1/2) + ĉ = 0, and
is thus a linear relationship between µ̂∗ and χ̂, forming the left line of the “V”. The boundary between the
size control region and the unbounded growth region is defined by µ̂∗+ χ̂h (0) + ĉ = 0, the linear relationship
between µ̂∗ and χ̂ thus form the right line of the “V”.

Appendix C. Numerical approach

Here, we discuss our numerical approach to solving the dynamical growth of the compressible neo-Hookean
spheroid (37), (38). This system of highly non-linear coupled partial differential equations must be solved for
γR (R, t), γθ (R, t), given a set of initial conditions γ0

R (R), γ0
θ (R) at t̂ = 0. We denote all initial conditions

with a superscript zero.
We approach the numerical solution via a method of lines discretization, in which the spatial variable R

is discretized with a finite difference scheme, whereas the temporal discretization is left to a standard method
for the numerical solution of systems of non-linear ordinary differential equations such as fourth-order Runge
Kutta.

We discretize the spatial domain into N + 1 node points, such that node i = 0 corresponds to the disk
center and i = N − 1 corresponds to the disk periphery, whereas the last remaining node i = N is a ghost
node to accommodate spatial derivatives.

We denote the spatial discretization with a subscript index i, such that the continuum variable r̂(R̂, t̂) in
its spatially discretized version becomes r̂i(t̂), and T̂R(R̂, t̂) becomes T̂R,i(t̂). The components of the growth
tensor become γR,i(t̂) and γθ,i(t̂). The initial radial coordinate R̂ becomes R̂i = i∆r̂ where ∆r̂ = 1/ (N − 1).
To discretize all equations for our problem, we use a backward difference scheme for spatial derivatives:

∂r̂

∂R̂
→ r̂i(t̂)− r̂i−1(t̂)

∆r̂
,

∂T̂R

∂R̂
→ T̂R,i(t̂)− T̂R,i−1(t̂)

∆r̂
. (C.1)

First, we focus on the discretization of the spatial problem, (34) and (35). The boundary conditions for
the spatial problem are r̂ = 0 at R̂ = 0 and T̂R = 0 at R̂ = 1, the discrete versions become

r̂0(t̂) = 0 and T̂R,N−1(t̂) = 0 for all t̂ . (C.2)

Thus, the discretization of the spatial problem (34), (35) provides 2 (N − 1) algebraic relationships for the
2 (N − 1) unknowns r̂1(t̂), . . . , r̂N−1(t̂) and T̂R,0(t̂), . . . , T̂R,N−2(t̂).

Next, we turn our attention to the full dynamical problem (37), (38). Discretized, these coupled PDEs
become 2 (N − 1) coupled ordinary differential equations in time, which must be solved for the 2 (N − 1)
unknowns γR,1(t̂), . . . , γR,N−1(t̂) and γθ,1(t̂), . . . , γθ,N−1(t̂). In summary, we have a differential algebraic
system of 2 (N − 1) differential equations and an additional 2 (N − 1) algebraic constraints.

To properly parameterize a differential-algebraic solver, we need initial conditions for all unknowns in the
system, of which there are 4 (N − 1). We consider an initial state of the system in which the growth tensor is
homogeneous (see Section ...), i.e. there is no residual stress in the system. The 2 (N − 1) initial conditions
for the growth tensor are an isotropic, uniform field ginit:

γ0
R,1 = . . . = γ0

R,N−1 = ginit, γ0
θ,1 = . . . = γ0

θ,N−1 = ginit . (C.3)

For r̂ and T̂R, the initial conditions must satisfy (B.2). With a prescribed external pressure p̂ext, the initial
condition for the Cauchy stress is T̂R = p̂ext on the whole spatial domain, and r̂ = (|A| |G|)

1
3 R̂ on the whole

domain. Here |G| is provided by the initial condition (C.3), whereas the initial |A| can be found by calculating
the positive root of (B.2), of which we denote the solution |A| = a3

init. Thus, the 2 (N − 1) initial conditions
for the spatial problem are

r̂0
i = ainitginiti∆r̂ for i = 1, . . . , N − 1 and T̂ 0

R,i = p̂ext for i = 0, . . . , N − 2 . (C.4)

We use the Mathematica function NDSolve[] to solve the differential-algebraic problem described here. In
pseudocode, the full problem can be solved by

NDSolve[{ODEs,AEs,ICs},{vars},{t,0,tend}] , (C.5)
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where ODEs is a shorthand for the 2 (N − 1) differential equations, AEs for the 2 (N − 1) algebraic constraints,
and ICs for the 4 (N − 1) initial conditions, and tend is a number for the final time of integration. The vector
vars of dimension 4 (N − 1) contains all variables to be solved for, that is

vars =
(
r̂1, . . . r̂N−1, T̂R,0, . . . , T̂R,N−2, γR,1, . . . , γR,N−1, γθ,1, . . . , γθ,N−1

)T
. (C.6)

The numerical approach (C.5) was used for Fig. 6, Fig. 7B and C, and Fig. 8. The full code is provided in
the repository https://github.com/airlich/size-control/.

—————–
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