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Abstract. We introduce a disease progression model suited for neu-
rodegenerative pathologies that allows to model associations between
covariates and dynamic features of the disease course. We establish a
statistical framework and implement an algorithm for its estimation. We
show that the model is reliable and can provide uncertainty estimates
of the discovered associations thanks to its Bayesian formulation. The
model’s interest is showcased by shining a new light on genetic associa-
tions.
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1 Introduction

The clinical courses of neurodegenerative pathologies such as Alzheimer’s or
Parkinson’s Diseases span multiple years and encompass intricate evolution of
patients’ cognitive abilities, physiological biomarkers and brain structure. Longi-
tudinal studies are an essential tool for clinicians to uncover the diseases’ mecha-
nisms. In such studies, biomarkers and cognitive scores of patients are repeatedly
measured at different times and need to be analyzed together, usually with a
two-sided scope. First, to describe the general process at play across a whole
cohort of patients: this is population-level modelling and allows to describe the
average course of the disease. A second layer aims at explaining and predicting
the variability observed among individuals: this is personalized-level modelling.

Mixed-effect frameworks are widely adopted to address these multi-layered
prospects, offering to disentangle fixed effects (population level) from random
effects (individual level) to explain the variability of the disease. Linear mixed-
effects models are the simplest instances of such models. Generalized linear and
? This work was funded in part by the French government under management of
Agence Nationale de la Recherche as part of the Investissements d’avenir program,
reference ANR-19-P3IA- 0001 (PRAIRIE 3IA Institute), ANR-19-JPW2-000 (E-
DADS), and ANR10-IAIHU-06 (IHU ICM), as well as by the European Research
council reference ERC-678304 and the H2020 programme via grant 826421 (TVB-
Cloud).



2 N. Fournier, S. Durrleman

non-linear mixed-models are now often prefered to account for the neurodegener-
ative diseases’ peculiarities, and most state of the art disease progression models
(e.g. [2,16,14]) belong to these categories. They are indeed better suited to de-
scribe phenomena whose complex dynamic spans multiple years. They have been
used with success to describe the natural history of diseases[8] or make individu-
alized predictions, for instance to enrich clinical trials[11]. A general formulation
is as follows, where η is a non linear mapping between timepoints and clinical
markers, parametrized by fixed-effects α and random effects βi (methods differ
by the chosen non-linearity η and how α and β parametrize the disease course):

yi = ηα(ti | βi)

Inter-patient variability is thereby modelled through random perturbations βi
around a fixed reference α. However, it is known that some of this clinical vari-
ability between patients is explained by external factors (and thus hardly ex-
plained entirely by random perturbations). Genetic mutations or external factors
such as gender, family history, education or socio-economics levels can influence
the course of pathologies. Accumulating evidence suggests that the variability
induced by such covariates stems from general mechanisms shared across the
population, for instance in Alzheimer’s and Parkison’s diseases [10,7,3,6]. In the
presented models, observed covariates ci are not taken into account and only
the repeated observations yi are modelled as a function of the patient’s ages ti.
Thus, random effects might be such that E [βi | ci] 6= 0. This shows that some
signal present in covariates to explain the progression of the disease has not been
fully exploited.

Our contribution is to propose a slight change in this mixed-effect paradigm
to allow non-linear models to also be influenced by these variables. Instead of
estimating a fixed effect α (parametrizing the average disease course) as well as
random effects βi, we introduce a link function fϕ that can predict, given a set
of covariates ci (e.g. sex, education level, SNP arrays, genetic risk scores), an
expected trajectory of the disease conditionned by these covariates.

The main difference between the standard approach and our method is that
the previously introduced fixed-effects α are now estimated for each subject as
a deterministic function of their covariates fϕ(ci). It also differs from account-
ing for the heterogeneity through hierarchical progression models[17,13]) since
covariates are, in our case, supervisingly used during model calibration and used
to navigate through a continuum of disease models, instead of having defined
clusters.

We demonstrate the value of this approach by adapting a general modelling
framework, namely a non-linear Bayesian model: the Disease Course Mapping
(DCM) [16]. We show that accounting for time-independent covariates in the
longitudinal modelling with this approach can be done in a reasonable statis-
tical setting. A stochastic estimation algorithm can be devised and we propose
an instantiation and implementation of our model, which we validate first on
synthetic. We then use clinical data from the Alzheimer’s Disease Neuroimaging
(ADNI) cohort and further demonstrate the clinical interest of the method by
estimating new associations between genetics and disease dynamics.
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2 Method

We derive here an algorithm that learns to model repeated observations while
accounting for the heterogeneity explained by additional covariates.

2.1 A Generic Mixed-Effects Geometric Model

In their seminal paper [16], Schirrati et al. introduced a generic framework to
model a dataset

(
yi,j
)
of multimodal longitudinal measurements. Here yi,j is

a vector of N biomarkers measured for the i-th subject at their j-th visit –
i.e. at age ti,j . Each observation yi,j is assumed to lie on Riemannian subman-
ifold (M, g) of RN . The average course of the disease is posited to be such
that individual progressions stem from a geodesic trajectory γ0 on the manifold
surface. Geodesic equations imply that γ0 is entirely characterized by its initial
position p0 ∈ M and speed v0 ∈ Tp0M (tangent space of M at p0) at time
t0. Individual trajectories are obtained from this reference trajectory γ0 via a
temporal reparametrization t 7→ ψi(t), used to derive what we name a disease
age and enables registering patient’s chronological ages onto a common disease
timeline. Spatial effects wi are applied to the reference trajectory thanks to an
exp-parallelization procedure that identifiably deforms geodesics in the manifold
space. We denote ηwi

γ0 the resulting geodesic. We refer to [16] for extensive de-
tails on the geometric properties of these operations (such as commutativity and
identifiability of both temporal and spatial effects).

The choice of the manifold’s metric shapes the geodesic trajectories and thus
the disease model[16,4,15]. Clinical knowledge of Alzheimer’s Disease suggests
that sigmoid shapes as sound candidates to model biomarkers’ evolutions (see
[5] for clinical considerations, or [12] for the logistic dynamic of imaging-derived
features such as brain-averaged protein loads backed by prion-like diffusion hy-
pothesis). We therefore consider a product-metric gp such that geodesic are sig-
moids: gp(u, v) = u ·M(p) · v with M(p) = 1

p2(1−p)2 , which gives the trajectories
of equation (1). The resulting trajectories and the geometric interpretation of
the (v0, p0, t0) parameters are also presented in figure 1.

ηwi
γ0 (ψi(ti,j))

(k) =

(
1 +

(
1

p
(k)
0

− 1

)
exp

(
−v

(k)
0 ψi(ti,j) + w

(k)
i

p
(k)
0 (1− p(k)0 )

))−1

(1)

2.2 Covariate Association and Statistical Framework

We provide here a statistical instantiation of the previous geometric model. As
described, given a geodesic trajectory γ0 (fully specified by its position p0 and
speed v0 at initial time t0), and a set of random effect ψi and wi, individual
trajectories of an individual i observed at times (ti,j)j are modelled by the curve
ηwi
γ0 (ψi(ti,j)). We propose that γ0 (which represents the reference disease course,
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=

Fig. 1: A two feature model, with geodesic trajectories on the manifold (left)
and the biomarkers observation space (right). This provides the intuition over
the effect of the initial position p0 and the initial velocity v0 at time t0.

as a fixed-effect of the model) is to be computed for each subject i from the
measured covariates ci as:

γ0,(i) ∼=
(
p0,(i), v0,(i), t0,(i)

)
= fϕ(ci)

Where f belongs to a parametrized family of functions and ϕ are its parameters
treated as the new fixed-effect of the model. The individual effects to register this
computed γ0,(i) onto observations are characterized by two random effects: an
acceleration factor ξi and a time-shift τi such that ψi(t) = eξi

(
t− t0,(i) − τi

)
. On

top of these are space-shifts wi ∈ RN , computed thanks to an ICA: wi = Asi,
where A is a latent matrix of independent directions (fixed effect) and si is the
corresponding individual latent source vector (random effect).

Our hierarchical statistical model treats the fixed and random effects as a
set of latent variables z which is the reunion of the population and individual
variables zpop = {ϕ, A} and zindiv = {(si)i, (τi)i, (ξi)i}. We posit the following
priors on these latent parameters, where θhyper = {σϕ, σA} are fixed hyperpa-
rameters and θmodel =

{
ϕ, A, σ2

τ , σ
2
ξ , σ

2
}
are the parameters of the model to be

estimated:

ϕ ∼ N
(
ϕ, σ2

ϕ

)
A ∼ N

(
A, σ2

A

)
ξi ∼ N

(
0, σ2

ξ

)
τi ∼ N

(
0, σ2

τ

)
si ∼ N (0, 1)

A non-informative prior is used over these model parameters due to the lack of
a-priori knowledge. We seek to maximize a posteriori the joint-likelihood under
the following additive Gaussian noise modelling yi,j = ηAsifϕ(ci)

(ψi(ti,j)) + εi,j

q(y, z, θmodel) = q(y | z, θmodel)︸ ︷︷ ︸
data attachment

× q(z | θmodel, θhyper)︸ ︷︷ ︸
regularization of the

latent variables

× qprior(θmodel | θhyper)︸ ︷︷ ︸
prior on model parameters

(taken non informative)

It can be shown that the model’s likelihood function lies in the curved ex-
ponential family. That is there exist two smooth functions Φ and Ψ functions of
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θmodel and a measurable sufficient statistics function S(y, z) of the data and the
latent realizations such that log q(y, z, θmodel) factors as:

log q (y, z, θmodel) = −Φ(θmodel) + 〈S(y, z), Ψ(θmodel)〉

This allows estimating our model with a Monte-Carlo Markov-Chain Stochas-
tic Approximation version of the Expectation Maximization algorithm (MCMC-
SAEM) while enjoying theoretical guarantees of convergence [1]. The expectation
phase is therefore built upon a sampling scheme to sample from the posterior
distribution of the latent parameters (namely Metropolis-Hastings within Gibbs
sampler). The maximization phase follows update rules established by finding
critical points of θ 7→ −Φ(θ) + 〈S̃p, Ψ(θ)〉 (S̃p is the stochastic approximation of
the sufficient statistics built at step p), which yields analytic expressions.

We choose to parametrize the link function as a linear mapping between
covariates and dynamic parameters fϕ(ci) = ϕslope · ci + ϕintercept. This will
provide an interpretable model to explain the general processes linking covariates
to dynamic features such as the base pace of the disease or average onset time.
The coefficients of ϕ that correspond to the mapping between the covariates
ci and v0 measure how much a given covariate impact the progression speed of
each feature, and can be analyzed easily. Model parameters are initialized by
setting their intercept to the models learned by a regular DCM model without
considering covariates, while latent parameters are initialized at random.

3 Evaluation, Clinical Results and Discussion

3.1 Simulated Data

We used the generative abilities of the DCM[8] to simulate multimodal longitu-
dinal datasets with covariates influencing the dynamic of the progression. To this
end, we fixed some reference models corresponding each to a slightly different
pure form of a fictional disease. Then, covariates were simulated either:

– as binary covariates that directly dictated which hardcoded model is used to
simulate the repeated measurements (covariate thought as a mutation-status
or sex for instance).

– as continuous covariates, influencing the simulated progression by using them
as convex coefficients in a combination of the reference models. The covari-
ates are seen as continuous risk factors of following one form or another.

Our simulated datasets typically included 500 subjects with an average of 5
visits and an average follow-up duration of about 5±2 years and a measurement
noise of around 5%. Such an experiment is summarized in figure 2, where three
continuous covariates were simulated on the [0, 1] range, the first one being a
risk to develop a motor form of the disease, the second one a memory-form risk
and the third a covariate without any influence on the disease.

In this example, our calibrated model correctly matches each covariate to
its simulated effect. For instance: the coefficients of the link function related to
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the disease initial speed v0 (we refer to fig. 1 for its interpretation) associated
with the memory-risk covariate show an acceleration of the decline in memory
(multiplicative factor of 1.32 [1.15, 1.62] — credible interval at 95%) contrasted
to the two other biomarkers (factor of 0.79 [0.73, 0.90] for the motor and 0.89
[0.80, 1.01] for the language). These intervals are represented in fig. 2b. These two
other features are slowed down relatively to the memory in order for the model to
capture the change in the slope-ratio of different features on the fixed effects. If
we translate the effects of these coefficients into effects on slope-ratio, we obtain
indeed obtain that the ratio between memory-speed and motor-speed goes from
4.22 [3.54, 5.02] (no extra memory-risk) to 7.05 [5.54, 11.26] (maximum extra
memory-risk). The ground truth change of slope (from the reference models) was
from 4.48 (no particular risk) to 9.19 (full risk) and is therefore covered by our
credible intervals.

Similarly, the coefficients associated with the irrelevant covariate did not
capture any significant effect (factors of 1.03 [0.94, 1.12], 1.05 [0.98, 1.12] and
1.04 [0.97, 1.11] for the memory, motor and language features), which validates
the ability of the model to discard covariates without influence on the disease
dynamic.

3.2 Multimodal Clinical Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was
launched in 2003 as a public-private partnership led by Michael W. Weiner,
MD. For up-to-date information, see www.adni-info.org. We selected subjects
that eventually converted to an MCI or AD stage during their follow-up. This
amounted to 1440 patients for a total of 9343 visits. The follow-up duration was
4.069 (± 3.190) years, with a baseline age of 73.683 (± 7.508) years old. We
processed and included biomarkers relevant to monitor AD progression:

– Two cognitive scores: the Mini-Mental State Exam (MMSE) and the AD
Assessment Scale-Cognitive (ADAS-Cog). We normalized and inverted them
so that they both cover the [0, 1] interval, (1 being the highest abnormality).

– Hippocampus and Ventricles volumes, measured by structural T1 MRI and
normalized by patient’s Intracranial Volume (ICV). As for the cognitive
scores, these measurements were rescaled to [0, 1] interval.

– Contrasted PET imaging derived brain-averaged amyloid β42 and phospho-
rylated τ proteins loads, also rescaled to [0, 1].

APOE-ε4. We calibrated our model by including a covariate known to modulate
Alzheimer’s Disease course, namely the patient’s APOE mutation status. The
results of this model are showcased in figure 3. It shows that the APOE mutation,
which is a known risk factor for AD, has a clear effect on the disease dynamic:
in the obtained disease course map, the mutation is associated with earlier and
faster abnormalities on most biomarkers. We also investigate the learned linked
function fϕ and its coefficients dictating the interaction between the covariates
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Fig. 2: Risk factors to develop an acute memory-form or acute motor-form of the
disease are sampled continuously from the [0, 1] interval, and used as convex co-
efficients to combine three reference models (a standard form, a motor-dominant
form and an acute memory form), yielding the continuum of possible trajectories
presented in (a). We also sample an irrelevant covariate that is never used to
modulate the disease course. In (a) is the resulting model, which we can visual-
ize for any combination of covariates (two combinations are presented). We also
plot the credible intervals (at 95%) for the coefficients linking covariates to the
speed of progression on each feature (multiplicative effect, thus 1.0 stands for
no influence while a coefficient of 1.5 stands for an expected progression speed
greater by 50%).

and the speed of progression. This is presented in figure 3. This showcases how
the contribution of the APOE to the speed of progression (as in the coefficient
linking the covariate to the coordinates of v0) is different among biomarkers.
Features can be grouped into a cognitive scores group, more impacted than the
other features by the mutation (1.49 [1.31, 1.66] and 1.34 [1.21, 1.46] respectively
for MMSE and ADAS), a structural subgroup that also shows significative (even
though slower) increase of progression speed (1.08 [1.00 1.14] and 1.07 [1.0, 1.15]
resp. for Hippocampus and Ventricles volume), while exhibiting less clear effects
on the proteins loads (1.01 [0.91, 1.12] and 1.03 [0.92, 1.18] resp for Amyloid and
tau loads).

SNP associations. We selected a subset of 69 Single Nucleotide Polymorphisms
(SNP) among the top associations with AD diagnosis from a reference Genome-
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parameters of the link function ϕ (mode of the posterior and 95% credible inter-
val). Right: difference in the trajectory conditioned by the mutation status (the
represented trajectories are for 0 copy vs 2 copies of the APOE-ε4 allele).

Wide Association Study (GWAS) [9]. We included them in our model as co-
variates. The results suggest that being associated with the diagnosis does not
inform a priori on the influence of each SNP on the disease course. In figure 4
we show that, even though all these SNP were selected for being significatively
associated with the diagnosis, they can exhibit differences in their association
with the disease dynamic.
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Fig. 4: Analysis of the learned interaction between some of the SNP included in
the analysis and the speed of progression of each of the 6measured features. Some
SNPs present no significant interaction with the progression speed of any of the
variables (e.g. rs138727474T) to SNPs that are associated with a group of feature
(e.g. cognitive domain for rs114812713C) or single features (e.g. rs11932324A or
rs286604821A, in either a protective or risk-inducing direction).
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4 Conclusion

We proposed a framework to adapt a state of the art Bayesian non-linear mixed-
effect disease progression model to capture the effects of external covariates into
the disease dynamic. We implemented an estimation algorithm, and show that
it reliably provides new interpretable measures of interaction between covariates
and the disease course. For instance, we recover the (clinically known) association
between the APOE-ε4 mutation and cognitive dysfunction. In particular, its use
on genetic data (either single mutation status or SNP arrays) could help to go
beyond associations with the sole diagnosis and provide complementary tools to
GWAS.
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