
HAL Id: hal-04295076
https://hal.science/hal-04295076v1

Submitted on 30 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Imaging and multi-omics datasets converge to define
different neural progenitor origins for ATRT-SHH

subgroups
María-Jesús Lobón-Iglesias, Mamy Andrianteranagna, Zhi-Yan Han, Céline

Chauvin, Julien Masliah-Planchon, Valeria Manriquez, Arnault
Tauziede-Espariat, Sandrina Turczynski, Rachida Bouarich-Bourimi, Magali

Frah, et al.

To cite this version:
María-Jesús Lobón-Iglesias, Mamy Andrianteranagna, Zhi-Yan Han, Céline Chauvin, Julien Masliah-
Planchon, et al.. Imaging and multi-omics datasets converge to define different neural progenitor
origins for ATRT-SHH subgroups. Nature Communications, 2023, 14 (1), pp.6669. �10.1038/s41467-
023-42371-7�. �hal-04295076�

https://hal.science/hal-04295076v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Article https://doi.org/10.1038/s41467-023-42371-7

Imaging and multi-omics datasets converge
to define different neural progenitor origins
for ATRT-SHH subgroups

María-Jesús Lobón-Iglesias1,18, Mamy Andrianteranagna1,2,18, Zhi-Yan Han 1,18,
Céline Chauvin 1, Julien Masliah-Planchon3, Valeria Manriquez4,
Arnault Tauziede-Espariat5,6, Sandrina Turczynski 1, Rachida Bouarich-Bourimi1,
Magali Frah1,ChristelleDufour 7, ThomasBlauwblomme 8, LiesbethCardoen9,
Gaelle Pierron 3, Laetitia Maillot3, Delphine Guillemot3, Stéphanie Reynaud3,
ChristineBourneix3,CélioPouponnot 10,Didier Surdez 11,12,MyleneBohec 13,
SylvainBaulande 13,OlivierDelattre 3,11, ElianePiaggio 4,OlivierAyrault 10,
Joshua J. Waterfall 14,15, Nicolas Servant 2,19, Kevin Beccaria8,19,
Volodia Dangouloff-Ros 16,19 & Franck Bourdeaut 1,17,19

Atypical teratoid rhabdoid tumors (ATRT) are divided intoMYC, TYR and SHH
subgroups, suggesting diverse lineages of origin. Here, we investigate the
imaging of human ATRT at diagnosis and the precise anatomic origin of brain
tumors in the Rosa26-CreERT2::Smarcb1flox/flox model. This cross-species analysis
points to an extra-cerebral origin for MYC tumors. Additionally, we clearly
distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from
those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions.
Molecular characteristics point to the midbrain-hindbrain boundary as the
origin of CAL SHHATRT, and to the ganglionic eminence as the origin of BG/IV
SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these
hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-
differentiation process mediated by repressors of the neuronal program such
as REST, ID and the NOTCH pathway.

Atypical teratoid rhabdoid tumors (ATRT) are rare and aggressive
malignancies of the central nervous system (CNS) affecting infants and
young children. They are characterized by a biallelic inactivation of
SMARCB1 tumor suppressor gene in an otherwise very stable genome1.
Based on both methylation and expression profiling, recent studies
have highlighted the molecular diversity of these tumors2,3, which are
nowdivided into at least three subgroups, i.e., the so-calledMYC-, TYR-
, and SHH-ATRTs4. This molecular diversity suggests multiple lineages
of origin for each sub-type, though none of these origins is definitively
identified at the present time. In this respect, the analysis of expression
profiling has been weakly informative, giving atmost some insights on
the lineage (neurogenic or melanogenic features for the SHH and TYR
subtypes respectively) or on some recurrently expressed

developmental genes and pathways (SHH and NOTCH pathway for the
SHH subtype; HOX clusters for the MYC subtype). Methylation pro-
filing analyses including ATRT aswell as extra-cranial rhabdoid tumors
(ECRT) have revealed that MYC ATRT and ECRT tend to cluster toge-
ther, apart from TYR and SHH ATRT, suggesting that MYC ATRT may
share some commonalities with tumors that emerge outside of the
brain5.

These results are consistent with single-cell RNA sequencing
(scRNAseq) results failing to find any convincing correlation between
tumor cells from MYC ATRT and any known cell types from normal
brain development6. These data were consistent with our own findings
in an inducible mouse model, where gene expression profiling of
mouse Myc ATRT suggested a neural-crest-derived lineage7. Likewise,
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a genotyping approach, comparing tumor cells with adjacent normal
tissues, suggested that ECRT derive from ancestors shared with
Schwann cells, thus pointing to a neural-crest-derived origin8. These
results were also partly supported by the development of typical
ATRT-like tumors in P0-Cre::Smarcb1flox/flox mouse, again pointing to
neural-crest cells asputative cells of origin9. Finally, applying scRNAseq
tomurine tumors, Graf et al. have suggested that primordial germ cells
could be the origin for at least a subset of murine Myc ATRT10. Alto-
gether, while a neuronal origin is considered for SHH ATRT and a non-
neuronal origin for MYC ATRT, the question of the lineage of origin of
each ATRT subtype remains mostly speculative.

In the present study, we thoroughly investigated the imaging at
diagnosis of a series of primaryATRT, aiming to describe the epicenter
and thereby, the site of origin for each case. We next correlated these
findings with themolecular profiles, including the new imaging results
in the definition of the subgroups together with methylation and
expression profiling. Finally, we performed a similar approach on
tumors from the Rosa26-CreERT2::Smarcb1flox/flox model, and added a
single-cell RNAseq analysis on both human and mouse tumors to
investigate the putative cells of origin for the various ATRT subtypes.

Results
Radiological description of ATRTs’ epicenter suggests clearly
distinct origins for each molecular subtype
We first reviewed a series of 54 human brain ATRT (Supplementary
Fig. 1A; Supplementary Data 1), aiming to categorize them following
the classically used locations, i.e. infratentorial or supratentorial. Using
the online DKFZ brain tumor DNA methylation-based classifier tool11

(http://www.molecularneuropathology.org/), we also assigned a
molecular subgroup to this series and found that, while the infra-
tentorial location is not per se suggestive of any tumor subgroup, the
supratentorial location could suggest both MYC or SHH subtypes
(Fig. 1A, B; Supplementary Data 1). For a higher-resolution analysis of
anatomic location, we then categorized the tumors from their pre-
sumptive epicenter, aiming to give a more precise anatomic origin.
This led us to define eight anatomical categories of ATRT: (i) cranial
nerves, tumors from extra-axial structures such as interpeduncular
cistern (IIIrd cranial nerve), internal acoustic canal (VII/VIIIth cranial
nerves), cavernous sinus (IIIrd, IVth and Vth nerves) and jugular fora-
men, (IX/X/XIth nerves); (ii) cerebellar anterior lobe (CAL), tumors
spreading from the quadrigeminal cistern to the anterior vermis; (iii)
tumors from the middle cerebellar peduncles and inferior cerebellar
vermis (MCP/ICV); (iv) peripheral tumors located in the cerebral cor-
tex, pressing the normal parenchyma towards the ventricles; (v)
intraventricular (IV) tumors, which were often large tumors in close
relationship with the basal ganglia region; (vi) basal ganglia (BG)
tumors, centered on the basal ganglia, pushing the brain parenchyma
to the periphery; (vii) septal tumors, located in the interventricular
septum; and finally, (viii) spinal cord tumors (Supplementary Fig. 1B).
Overall, we ended up with four locations belonging to the infra-
tentorial region and four locations belonging to the supratentorial
region (Fig. 1C).

Combining these detailed anatomic locations with the DNA
methylation subgroups, we found different localization patterns for
each molecular subtype. Specifically, (i) almost all TYR ATRT
emerged from the middle cerebellar peduncle and the inferior cer-
ebellar vermis; (ii) the SHH subgroup was composed of tumors
located in the CAL, the BG and the intraventricular region; and (iii)
the MYC subgroup was mainly composed by tumors located in
the cranial nerves, in the cerebral cortex and the spinal cord (Sup-
plementary Fig. 1C). Altogether, these findings showed a correla-
tion between anatomical location and molecular subgroups
that suggested different lineages of origin. To further investigate
this, we performed unsupervised analyses (UMAP and hierarchical
clustering) on this DNA methylation dataset. We found that ATRT

samples clustered according to their anatomical location (Figs. 1D, E).
Furthermore, the SHH subgroup seemed to be composed of two
distinct sub-clusters: one composed almost exclusively of tumors
from CAL and the other mainly composed of BG and IV
tumors (Fig. 1E).

Integrative analysis identified four anatomical-molecular sub-
groups and splits SHH ATRT in two subgroups with distinct
anatomical locations and transcriptional profiles
Next, we sought to explore how the anatomically defined ATRT clas-
sification behaved at the transcriptomic level. We first performed an
unsupervised analysis on the RNAseq data from 49 samples based on
the 2000 most variable genes. Hierarchical clustering showed three
molecular subgroups that corresponded to TYR, SHH, and
MYC (Fig. 2A).

To achieve a more comprehensive subgrouping, we next per-
formed a data integration approach using the three layers of infor-
mation: DNA methylation, gene expression, and anatomical location.
We then performed consensus clustering based on the transcriptomic
dataset (Fig. 2B, C, Supplementary Fig. 2A). Assuming the three sub-
types, we found some discrepancy between methylation and RNAseq
subgroupings (Fig. 2B); however, the consensus clustering solved this
discrepancywith k = 4by separating BG/IV (SHHmethylation signature
but MYC gene expression profile) from CAL SHH ATRT (SHH by
methylation and transcriptomic signatures) and MYC (MYC by both
methylation and transcriptomic signatures) (Fig. 2C). Sparse Partial
Least Square Determinant Analysis (sPLS-DA) applied to RNAseq also
supported the four subgroups (Fig. 2D, Supplementary Fig. 2B) and
allowed us to identify genes that were specific to each subgroup
(Supplementary Data 2). Consistently, a kernel-based data integration
method12, aiming to combine gene expression and DNA methylation
datasets before unsupervised analysis, confirmed the existence of four
molecular subgroups that fitted with our anatomical classification
(Fig. 2E). These results established that the SHH ATRT, canonically
defined by DNA methylation, could be divided in two distinct sub-
groups, with distinct gene expression profiles and specific anatomic
locations.

Genetically engineered mouse models reveal specific anatomi-
cal origins for murine Myc and Shh ATRT
We next aimed to investigate how these four anatomical-molecular
subgroups, based on anatomic location and molecular profiling, were
also relevant in our previously published mouse model of ATRT. We
developed amousemodel (Rosa26-CreERT2::Smarcb1flox/flox) which, by an
inducible inactivation of Smarcb1 in unrestricted cell types, gives rise
to Myc and Shh subtypes of ATRT7(Supplementary Data 3). To obtain
more robust correlations between tumor molecular subtypes and
anatomical sites of origin, we generated an increased number of
tumors and profiled themby RNAseq and gene expressionmicroarray.
Using unsupervised hierarchical clustering on these datasets, we first
confirmed the two Shh and Myc subgroups previously described. We
thereby found that intracranial Myc clustered with the extracranial
tumors (Fig. 3A and Supplementary Fig. 3A, B), in line with afore-
mentioned observations in humans relating ECRT to MYC ATRT5. This
corroborated the hypothesis that, inmice as inhumans,MycATRT and
extra-cranial tumors share certain molecular similarities, potentially
revealing similar non-neuronal lineages of origin. Furthermore, a
careful description of tumor locations clearly demonstrated that Myc
intracranial tumors were in fact of extra-CNS origin, arising from the
periphery of the brain, in meningeal spaces (Figs. 3A, B, C c, d; Sup-
plementary Fig. 3A and 3B). These results fit well with the extra-axial
origin andperipheral location of somehumanMYCATRTs, as deduced
from diagnostic magnetic resonance imaging (MRI) (Supplementary
Fig. 1B), strengthening the hypothesis of a non-neuronal origin for this
subgroup.
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In contrast, all murine Shh ATRTs developed within the brain
parenchyma (Fig. 3A); more precisely, 15/22 tumors were localized in
the ventral sub-ventricular region, and invaded the basal ganglia
(Fig. 3B, C a, b, Supplementary Fig. 3C: a, b), a location highly con-
sistent with the description of human BG/IV SHH ATRT. In addition,
we occasionally found tumor-like Smarcb1-deficient areas at the

junction of the midbrain and the posterior fossa (Fig. 3C b, Supple-
mentary Fig. 3C: c, d), which never reached the bulky volume
observed in the basal ganglia region. This indicated that, although
the CAL SHH ATRT was not properly recapitulated in this model, the
corresponding region in mice allowed some abnormal proliferation
of Smarcb1-deficient neurons. Of note, Shh/intra-brain parenchyma
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(intra-CNS) tumors were exclusively obtained after the earliest
inactivation of Smarcb1, i.e. E6 to E7; conversely, Myc/extra-brain
parenchyma (extra-CNS) tumors were obtained within a broader
developmental window (E6 to E10) (Fig. 3A, B). This suggested earlier
and more time-restricted progenitors for Shh ATRTs than for Myc
ATRTs. In addition, the single sample Gene set Enrichment Analysis
(GSEA) definitively pointed to a neuronal origin for Shh, whereas the
Myc tumors were mainly characterized by an immune signature
(Fig. 3D), as previously described13. These results supported the
hypothesis that mice Shh ATRT and supratentorial human SHH
ATRTs (BG/IV SHH ATRT) develop from similar anatomical
structures.

BG/IV SHH ATRT and murine Shh ATRT show a unique expres-
sion pattern suggesting a ganglionic eminence origin
Since wewere confident that BG/IV SHHATRT formed a distinct group
fromCALSHHATRTand shared similar locationwith Shhmice tumors,
we addressed the specific gene expression signatures in both species.
In humans, we compared the four anatomically and molecularly
defined subgroups. When compared with all other groups, BG/IV SHH
ATRT were characterized by the overexpression of genes involved in
forebrain development (FOXG1, EMX2, ARX, and NRG1), neurogenesis,
synapse and neuronal plasticity (ARC, LRRTM3 and BDNF), glial mar-
kers (FABP7, OLIG2, GFAP, MLC1) and pluripotency genes (DPPA4)
(Fig. 4A, Supplementary Fig. 4G, Supplementary Data 4). When com-
pared withMYC ATRT only, BG/IV SHHATRT again showed a neuronal
signature (Fig. 4A, B, D; Supplementary Fig. 4A, B, D; Supplementary
Data 5). In contrast, when compared with CAL SHH ATRT only (Sup-
plementary Fig. 4B, C), BG/IV SHH ATRTs were characterized by genes
related to immune response (Fig. 4C; Supplementary Fig. 4F; Supple-
mentary Data 6). Using deconvolution and immune infiltration esti-
mation methods on both transcriptomic and DNA methylation
datasets, we found that BG/IV SHH ATRT shared with MYC ATRT a
more prominent immune infiltrate than TYR and CAL SHH ATRT,
which likely accounted for their «MYC-like» expression signature
(Supplementary Fig. 4H–O). However, the immune response observed
inMYC ATRT and BG/IV SHHATRT showed some differences such as a
higher regulatory T cell infiltrate inMYCATRT and a higher level of NK
cells in BG/IV SHH ATRT (Supplementary Fig. 4N, O). These results
were confirmed by immunostaining using CD3, CD8, and CD163,
showing a more prominent immune infiltrate in BG/IV SHH ATRT than
in CAL SHH ATRT (Supplementary Fig. 4P, Q).

Besides genes related to immune response, the top-expressed
genes in BG/IV SHH ATRT contained the typical core set of genes
expressed in the ganglionic eminence (Fig. 4D). The ganglionic emi-
nence is a transitional structure with a key role during forebrain
development; it is a progenitor domain that gives rise to cortical
interneurons and, eventually, basal ganglia14,15. The expression of the
ganglionic eminence core set of genes is consistent with the anatomic
location of BG/IV SHH ATRT and suggested that cells from the gang-
lionic eminence couldbe at the developmental origin of this subgroup.

To investigate howmouse Shh ATRT actually recapitulates human
BG/IV SHH ATRT, we first performed an unsupervised hierarchical
clustering pooling mouse and human dataset. This showed that Shh
mouse tumors clustered with CAL SHH ATRT rather than with BG/IV

SHH ATRT, despite their clearly distinct locations (Supplementary
Fig. 5A). However, considering that the immune infiltrate noticeably
influenced the transcriptome-based clustering of BG/IV with MYC
ATRT, despite their clearly neuronal features, we hypothesized that the
difference between mouse Shh ATRT and BG/IV ATRT could be related
to the influence of micro-environment rather than pointing to different
origins. We therefore considered that the cell identity could be also
assessed by the analysis of specific transcription factors (TF), known to
play a critical role in neuronal lineages’ differentiation. In that line,
ganglionic eminencemarker genes that characterized BG/IV ATRTwere
also clearly overexpressed in the mouse Shh tumors (Fig. 4E), while TF
found in CAL were much less clearly overexpressed (Supplementary
Fig. 5B). Altogether, this shared TF expression in tumors localized in
similar brain regions (Fig. 3C a, b) still suggested relevant homologies
between Shh mouse and BG/IV ATRT. Together with the single sample
GSEA pointing to embryonic brain neuron signatures (Fig. 3D), these
results suggested neural progenitors from the ganglionic eminence as
putative candidate cells of origin for basal ganglia Shh ATRT.

Single-cell RNAseq suggests ganglionic eminence neural pro-
genitors as putative cells of origin of BG/IV-ATRT
Taking advantage of the similarity between anatomical location and
transcription factor modules of BG/IV and murine Shh ATRT, we
assumed that single-cell transcriptomic analysis onmice tumors could
further inform on the putative cells of origin in both species. We
therefore performed scRNAseq on three murine Shh basal ganglia
ATRT.We first checked the expression of genes that were known to be
specific to SHH ATRT molecular subgroup identified in previous
studies2,3; as expected, most of the genes related to the SHH ATRT
signature were not homogeneously expressed, demonstrating the
transcriptional intratumoral heterogeneity (Supplementary Fig. 6A).
Then, our clustering approach suggested 13 different cell populations
(Fig. 5A), for which marker genes were identified by differential
expression analyses (Supplementary Data 7). Based on these marker
genes, gene expression atlas databases (see Methods), as well as lit-
erature curation, we were able to infer the biological identity of each
cell population (Fig. 5A, B; Supplementary Fig. 6B). In addition, inorder
to identify potential master regulator candidates for each cell popu-
lation, we applied gene regulatory network (GRN) analysis using the
SCENIC framework16, leading to the identification of transcription
factors (TFs) characteristic for each cluster.

We first identified five clusters marked by non-neuronal marked
genes: clusters 5 and 8were characterized by the expression of genes of
G1 to S and G2 to M cell cycle transitions, cluster 10 by immune
response genes (C1qa, Fcer1g), cluster 11 by astro-glial gene markers
(Gfap, Aqp4) and finally cluster 12 by endothelial gene markers (Rassf9,
Tm4sf1) (Supplementary Fig. 6B). Interestingly, all the other clusters
shared a subset ofmarkers from the neuronal lineage (Fig. 5B, C). These
clusters could be gathered in three main subgroups: (i) clusters 1 and 6
(“neural progenitor 1” and “neural progenitor 2”) characterized by the
expression of neuronal progenitor markers (Sox2, Dlx1, Dlx2) and the
activation of typical ganglionic eminence TFs (Cluster 1:Gsx1; Cluster 6:
Dlx1); (ii) clusters 2, 7 and 9 (“neuron restricted progenitors 1”, “neuron
restricted progenitors 2” and “committed neuronal progenitors”)
characterized by the expression of neuronal differentiation genes (Dcx,

Fig. 1 | Radiological description of ATRTs’ epicenter suggests clearly distinct
origins for each molecular subtype. A MRI showing the most frequent tumor
locations according to molecular subgroups. The round size indicates the number
of tumors. The last column represents the tumors located on themidline,which are
not additional cases, except the spinal MYC tumors. The different colors corre-
spond to the molecular subgroups based on DNA methylation data (DKFZ brain
tumor classifier v11b4): MYC (green), TYR (red) and SHH (blue).B Bar plot showing
the distribution of the different molecular groups assigned according to the DNA

methylation profile at the supra- and infratentorial level. C Pie charts showing the
distribution of the different ATRT anatomical locations at infra and supratentorial
levels. NA: not available anatomical location. The color code is referred to at the
bottom of Fig. 1. MCP/ICV: middle cerebellar peduncle and inferior cerebellar
vermis. D UMAP analysis performed on human ATRT DNA methylation array data.
EUnsupervised hierarchical clustering of ATRT samples based onDNAmethylation
data. Top annotation indicates ATRT anatomical location andmolecular subgroup.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-42371-7

Nature Communications |         (2023) 14:6669 4



location

subgroup

rlog

0

5

10

15

A

ATRT subgroup

MYC SHH TYR

anatomic location

Basal Ganglia

Cerebellar Anterior Lobe

Cerebral Cortex

Cranial Nerves

Intraventricular

MCP/ICV

Septum

Spinal Cord

location

D
N

A
 m

et
h.

tr
an

sc
rip

t.

co
ns

en
su

s 
in

de
x 

(k
 =

 3
)

0

0.5

1

B

location

D
N

A
 m

et
h.

tr
an

sc
rip

t.

co
ns

en
su

s 
in

de
x 

(k
 =

 4
)

0

0.5

1

C

−10

−5

0

5

10

−10 −5 0 5 10
comp1

co
m

p3

(transcriptomics)
sPLS−DA

D

−3

0

3

−2.5 0.0 2.5
UMAP1

U
M

A
P2

(transcriptomics + DNA methylation)
meta−kernel UMAP

E

Fig. 2 | Integrative analysis identified four anatomical-molecular subgroups
and splits SHH ATRT in two subgroups with distinct anatomical locations and
transcriptional profiles. A Unsupervised hierarchical clustering of human ATRT
samples based on RNAseq dataset. Anatomic location as well as the assigned
RNAseq subgroup for each sample is indicated in the top annotations.
B,CConsensus clustering of humanATRT samples basedonRNAseqdatawith k = 3
(B) and k = 4 (C).DUMAPofhumanATRTbasedon the integratedDNAmethylation

and transcriptomics datasets (kernel-based approach). Points indicate tumor
samples, colors indicate anatomic location and the ellipses indicate tumor
anatomical-molecular subgroups. E sPLS-DA individual plot using the two major
components (comp, comp 1, and comp3). Points indicate tumor samples, colors
indicate anatomic location and the ellipses indicate tumor anatomical-molecular
subgroups. sPLS-DA was applied on RNAseq data. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-023-42371-7

Nature Communications |         (2023) 14:6669 5



Stmn2 and Tubb3) and regulated by the transcription factors Neurod1
and Pou4f1; (iii) clusters 3 and 4 (“neural stem cell like 1” and “neural
stem cell like 2”), both characterized by neural stem cells markers
(cluster 4: Sox2, Sox9, Ttyh1; cluster 3: Sox2, Nes) and a large variety of
“non-neuronal” markers (Fig. 5B). Finally, cluster 0 fell apart from all
others since it was massively characterized by non-coding RNAs, and
the absence of marker genes of any specific cell type; it was therefore
further referred to as “unspecified” cluster (Supplementary Data 7).

Aiming to identify the source of this cell diversity, we next per-
formed trajectory inference analysis on the “neuronal” clusters (clus-
ters 1, 2, 3, 4, 6, 7, and 9), using two different algorithms, the PAGA
algorithm implemented in Monocle317 and the elastic principal graph
algorithm implemented in ElPiGraph18. In addition, RNA velocity ana-
lysis based on dynamical modeling19 was used to identify the root of
the trajectory. These analyses suggested that the tumor cell popula-
tions studied here originated from the “neural progenitors 1 and 2”

(Fig. 5D, E). These clusters were characterized by the expression of
repressors of the terminal neuronal differentiation (Rest and Id genes)
and the ganglionic eminence markers (Ascl1, Dlx1, Dlx2) (Fig. 5B, F).
These cells then followed two antagonistic paths: (i) one towards the
more committed neurons (clusters 7, 2, 9), which lost the neuronal
repressors Rest and Id and switched to the post-mitotic Actl6b Swi/Snf
member (Fig. 5D–F) and (ii) the other to the less differentiated cells,
still characterized by neuronal lineage markers such as Sox2 and Sox9,
but also expressing more pleiotropic markers of mesodermal lineages
(Pmp22, Twist) (Fig. 5B, F). Altogether, this trajectory analysis, in
agreement with our hypothesis based on anatomic location and bulk
RNAseq in both species, suggested that the murine Shh ATRT, and
therefore possibly human BG/IV SHH ATRT, arise from neural pro-
genitors from the ganglionic eminence, a subset of which will still be
capable of neuronal commitment while another subset will dediffer-
entiate in more pleiotropic cells.
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CAL SHH ATRT anatomical location and molecular profile sug-
gest a neuronal progenitor from the midbrain-hindbrain
boundary as cell of origin
Sincewe felt confident thatCAL SHHATRT formed adistinctgroup,we
sought to identify its specific transcriptomic profile aswe did for BG/IV
SHH ATRT. Differential gene expression analysis between CAL SHH
ATRT and all other subgroups identified the over-expression of genes

related to neurogenesis and neuronal migration (SOX1, NTNG2, NEU-
ROD4, NSG2, DCX), WNT and FGF signaling pathways (Fig. 4A, Sup-
plementary Data 4) and genes involved in midbrain-hindbrain
boundary (MHB) patterning and cerebellum development
(Fig. 6A)20–24. TheMHB is an embryonic region delimiting themidbrain
and the hindbrain and organizing the fate of neuronal progenitors
from both sides of the edge, an embryonic structure of particular
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interest given the location of CAL SHH ATRT at the edge of supra- and
infratentorial regions. This region is specified by the expression of
typical genes and signaling, such as FGF8 and WNT3A at the edge,
markers of the rostral and caudal structures (Iroquois homeobox
genes (IRX1, IRX2) and Engrailed family (EN1, EN2)), HES3 and PAX325–31.
All these MHB core genes were characteristic for CAL SHH ATRTs
(Fig. 6A), whileGSEApointed to embryonic neuronal development and
midbrain or hindbrain patterning gene sets (Fig. 6B).

Focusing on differential expression analysis betweenCAL and BG/
IV SHH ATRT only, we confirmed that CAL SHH ATRT were char-
acterized by WNT and FGF signaling and MHB signature (Figs. 4C and
6C). Finally, considering that CAL SHH ATRT and infant SHH medul-
loblastomas develop in the cerebellum of young children and activate
theSHHpathway,weassumed that a comparisonof gene expressionof
these two types of tumors could also be relevant on the actual identity
of CAL SHH ATRT (Supplementary Fig. 7; Supplementary Data 8). The
MHB signature characterized again theCAL SHHATRTs, strengthening
our previous results. In addition, compared to SHHmedulloblastomas,
CAL SHH ATRT also showed the overexpression of genes involved in
NOTCH, WNT, and FGF signaling pathways and the overexpression of
stem cell and neuronal progenitor genes markers (Fig. 6D).

Single-cell RNAseqanalysis reveals transcriptional intra-tumoral
heterogeneity of cerebellar anterior lobe ATRTs and neuronal
progenitors as putative cells of origin
As aforementioned, we failed to obtain bulky tumors from the mid-
brain/hindbrain boundary that would recapitulate the CAL SHH
ATRT subgroup in the Rosa26-CreERT2::Smarcb1flox/flox model. Thus, to
get further insights on putative cells of origin of the CAL SHH ATRT,
we performed scRNAseq on four fresh human tumor specimens. As
expected, the expression of typical SHH ATRT genes identified in
Johann et al.2 and Torchia et al.3 was found heterogeneously among
cells, suggesting the transcriptional intra tumoral heterogeneity of
CAL SHH ATRT (Supplementary Fig. 8A). Different clustering
approaches were applied (see Methods) leading to the identification
of 10 clusters (Fig. 7A). Aiming to determine the biological identity of
each cluster, we performed differential expression analyses (Sup-
plementary Data 9) as well as GRN and identified marker genes and
activated TFs characteristic for each cluster, as described above for
mice Shh ATRT. Using atlas databases (see Methods) and literature
review, we assigned a biological identity to each of the identified
clusters (Fig. 7A, B). We first isolated two cycling clusters corre-
sponding to G1 to S and G2 to M transitions (clusters 2 and 3, Sup-
plementary Fig. 8B). We next found two clusters (clusters 4 and 6)
characterized by the expression of different neuronal markers such
as GADD45G, NHLH1, DCX, NRN1, CBLN2, and MAPT6,32–37. These two
clusters also showed the activation of the same neurogenic TFs such
as ISL1, NHLH1, NEUROD2, DLX2 and SHOX2, suggesting that they
were closely related (GRN analysis, Fig. 7C). In addition, cluster 4
presented specific expression of LHX9, GAP43 and ELAV2 genes,
related to neuronal differentiation, whereas cluster 6 showed a
specific expression of ASCL1, JAG1, DLL3, DLX5 and NEUROG1, also

suggesting a neuronal commitment but with a prominent NOTCH
pathway activation and a less differentiated state than cluster 4
(Fig. 7B). Of note, the MHB marker genes identified from bulk RNA-
seq analyses (IRX1, EN1) were found expressed in these two clusters,
although not restrictively (Fig. 7D). These two clusters were then
referred to as “Neuronal Progenitor-like 1” (cluster 4) and “Neuronal
Progenitor like 2” (cluster 6). In addition, we identified three clusters
characterized by the expression of endothelial and glial genes mar-
kers (clusters 7, 8 and 9) that were referred to as “non-neuronal”
clusters (Fig. 7A, Supplementary Fig. 8B, C) and one cluster char-
acterized by the expression of genes involved in the hypoxic
inflammatory response (cluster 5, Supplementary Fig. 8B). Finally,
clusters 0 and 1 didn’t show any marker genes specific of known
normal cell types, (Fig. 7B, Supplementary Data 9), which lead us to
assign them as “undifferentiated”. However, they showed activation
of TFs related to stem cell and pluripotency maintenance
(NANOG38–40), epithelial-mesenchymal transition, and mesodermal
commitment pathway (PRRX2, MEOX1, FOXA1, and TBX2)41, and neu-
roglial fate determination (SOX9)42,43, indicating some stemness fea-
tures (Fig. 7C). The exclusive expression of stemness-related (OTX2)
and neuronal committed-related markers (DCX) were confirmed by
immunostaining (Supplementary Fig. 8D).

To investigate the relationship between the different clusters
showing neuronal or stem cell features, we performed trajectory
inference analyses on the “Neuronal progenitor like” and the “Undif-
ferentiated” clusters, using similar approaches as described formurine
Shh ATRT. These approaches gave consistent results and identified a
path linking “Neuronal progenitor” clusters to the “undifferentiated”
clusters (Fig. 7E, Supplementary Fig. 8E). Trajectory inference analysis
using CytoTRACE44 shows gradual change on cell differentiation state
throughout the trajectory, suggesting differentiation or dediffer-
enciation processes involved in the tumor development (Fig. 7F). RNA
velocity analysis showed that the “Neuronal progenitors” from cluster
4 was the origin of the “undifferentiated” cells (Fig. 7G), while pseu-
dotime analyses highlighted a consistent temporal progression,
starting from “Neuronal progenitors” from cluster 4 and leading to the
“undifferentiated” cells (Supplementary Fig. 8F).

Notch pathway plays a role in the differentiation blockade
To understand the molecular mechanisms underlying this transition
from “Neuronal progenitors” to the “Undifferentiated” cell clusters,
we explored the expression of genes throughout the trajectory.
Interestingly, we found a clear split between clusters expressing
repressors of neuronal differentiation (REST and ID genes)45–47, neural
stem cell markers (SOX2)31,48 and ACTL6A, and clusters expressing
markers of neuronal differentiation (DCX, ACTL6B) (Fig. 7H). Simi-
larly, we observed a clear separation between clusters expressing
NOTCH pathway ligands, and clusters expressing NOTCH receptors
and intracellular signaling actors (Supplementary Fig. 8G), suggest-
ing a cross-talk between clusters via the NOTCH pathway. To confirm
this hypothesis, we performed ligand-receptor interaction analysis
using the CellPhoneDB framework49 and found that the ligands of

Fig. 4 | BG/IV SHH ATRT and murine Shh ATRT show a unique expression
pattern suggesting a ganglionic eminence origin. AHeatmapof gene expression
using the 100 most differentially expressed genes between anatomical-molecular
subgroups in a “one versus all others” manner. Top annotation indicates sample
anatomical location. Genes of interest are listed at the left of the heatmap;
expression levels are ranked from the lowest (gray, −2) to the highest (red).
B, C Volcano plots showing differential gene expression analysis results of BG/IV
SHH versus MYC (b) and BG/IV SHH versus CAL SHH (c). The x axis indicates the
log2 transformed fold-change and the y axis indicates the reverse of the log10
transformed adjusted p-value. Horizontal red line corresponds to adjusted p-value
equals to 0.05 and two vertical blue lines indicate log2(fold-change) respectively
equal to = −1 (left) and 1 (right). Differentially expressed genes of interest are

labeled. Negative binomial GLM and Wald test were applied for gene expression
comparison and generated p-values were corrected using the Benjamini and
Hochberg method. D, E Boxplots of ganglionic eminence gene expression in (A)
human ATRT anatomical molecular subgroups (n = 39 total of independent sam-
ples: nCNCS-MYC = 13, nBG/IV-SHH = 8, nCAL-SHH = 12, nMCP/ICV-TYR = 6) and in (B) mouse
RT subgroups (n = 16 total of independant samples: nR26-SHH = 5, nR26-MYC= 11). x axis
indicates subgroups and y axis indicates the level of expression in log2(TPM+ 1).
The box part of the boxplots represents the interquartile range while the whisker
bonds of the boxplots indicate the highest and smallest values within 1.5 times
interquartile range above and below the 75th and 25th quantiles respectively.
Source data are provided as a Source Data file.
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NOTCH signaling were specifically expressed in the neuronal pro-
genitor clusters, while the NOTCH receptors were specifically
expressed in undifferentiated clusters (Fig. 7I). Altogether, these
results suggested that CAL SHH ATRT emerge from neuronal pro-
genitors at the MHB, that, following SMARCB1 inactivation, mostly
dedifferentiate by promoting neuronal program repressors.

Interestingly, re-analysing the only single cell sequencing of CAL
SHH ATRT sample available in the literature (Jessa et al.6, sample
ATRT5), we also clearly found that genes related to undifferentiated

states (SOX2, FABP7, OTX2, ID4, TTYH1) distinguished the most pro-
minent clusters from a minor population expressing more committed
markers (STMN4, DCX), findings that corroborate our observations on
an independent dataset (Supplementary Fig. 9A). Again, genes
involved in the NOTCH pathway (HES5, DLL3) distinguished these
clusters.

Our results suggested that the activation of the NOTCH pathway
couldmimic a lateral inhibitionprocess that is also known toplay a role
in repressing the normal neuronal differentiation50–53. To get an insight
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on how NOTCH pathway could participate to cell reprogrammation,
we treated two SHH ATRT cell lines (CHLA-02, and IC-032) with DAPT,
a gamma secretase inhibitor (Fig. 8A). Although the treatment did not
significantly affect cell viability (Supplementary Fig. 9B), it clearly
impacted gene expression (Fig. 8B, C, Supplementary Data 10–11). As
assessed by gene ontology analyses, differentially expressed genes
were involved in developmental and differentiation programs
(Fig. 8D–G). NOTCH signaling actor genes (HES5, HES1, HES4…) were
clearly repressed as well as stem markers (TTYH1, GFAP, FABP7, ID4)
typical of SHHATRT (Fig. 8H, I); in CHLA-02 at least, the treatment also
induced neuronal progenitor markers (ISL1, NEUROG2, NEUROD1),
findings consistent with an overall dysregulation of development-
related gene ontologies.

Discussion
To date, multiple studies in humans have attempted to correlate
ATRT molecular subgroups with predominant supra or infra-
tentorial anatomical location, failing to accurately correlate the
anatomical site with the molecular profiles and to provide informa-
tion about the putative lineage of origin of each ATRT
subgroup2–4,54,55. Here, we have investigated by an integrative analysis
whether the precise anatomical description could improve the
understanding of ATRT development. This approach allowed us to
identify four distinct anatomical-molecular subgroups, which in turn
allowed us to investigate the putative lineage of origin. We first found
that a significant subset of MYC ATRT emerge from extra-axial
locations such as cranial nerves; this feature has been repeatedly
described in previous case reports56–62 that we believe, from our own
findings, could be related to the lineage of origin ofMYC tumors. The
location of Myc murine ATRT, arising outside of the brain in the
Rosa26-CreERT2::Smarcb1flox/flox model, corroborated the hypothesis of
an extra-axial origin for this subtype of tumors. These findings are
consistent with (i) the SMARCB1-related schwannomatosis, which
tightly links SMARCB1 to oncogenesis inmature peripheral nerves63–66

(ii) the previously published phylogenetic links between Schwann
cells and ECRT, again indicating a possible neural-crest origin for
rhabdoid tumors8, (iii) the unique clustering to whichMYC ATRT and
ECRT belong, already suggesting a common non brain origin for
these types of rhabdoid tumors5, and (iv) the typically extra-axial
origin of ATRTs in the P0-Cre::Smarcb1flox/flox model, originating from
the cranial nerves and the periphery of the brain, locations very
similar to the ones we described for human MYC ATRT, and also
pointing to neural-crest cell precursors as lineage of origin. In a
recently published work, Graf et al. performed scRNAseq on a series
of Myc murine ATRT, which was not done in the present
manuscript10. Of note, those authors related this tumor subset to
primordial germ cells based on correlationwith atlases, a finding that
does not fully fit with the aforementioned studies. Whether these
results reveal some specificity formurineMyc tumors, some diversity

among the potential origins of Myc tumors, or simply indicate that
SMARCB1 abrogation can, in some contexts, erase all specific pre-
existing gene expression in such a deep manner that the tran-
scriptome matches with primordial germ cells, remains to be further
demonstrated. Further work is therefore needed on human and
mouse MYC ATRT to fully elucidate this enigma.

Our study also established that SHH ATRT, canonically defined
using DNA methylation profiling, are in fact composed by at least two
anatomical-molecular subgroups. While we were preparing this
manuscript, Federico et al. published similar findings on an indepen-
dent series of SHH ATRT67, depicting three subgroups, with clearly
distinct locations and gene expression profiles. “ATRT SHH-2” in the
Federico study overlaps with our CAL SHH ATRT regarding the loca-
tion and the overexpression of genes such as EN2, supporting our
results about the origin of these tumors in the midbrain hindbrain
boundary. Moreover, “ATRT SHH-1A” largely corresponds to our BG/IV
SHH ATRT, and, interestingly, overexpress OLIG2, a glial marker that
we also found overexpressed in the bulk RNAseq analyses, together
with several neuronal markers, again underscoring the multiple line-
age markers characteristic for this group. Our series comprises less
SHH supratentorial cases with more restricted age distribution
(between 0.7 and 6.2); this fact may explain why we don’t identify the
third subgroup recently described by Federico et al., which could be
part of our BG/IV SHH ATRT. By including a comprehensive radi-
ological review, our study helped orienting the interpretation of the
bulk expression profiling and extends the results of Federico et al. by
adding scRNAseq for two of these subgroups. This combined
approach taking into account the precise anatomical location to
interpret gene expression profiling allowed us to raise hypotheses for
both CAL and BG/IV SHHATRT, i.e., progenitors from theMHB and the
ganglionic eminence, respectively. These hypotheses now need to be
definitely confirmedusingmousemodels expressingCre in specifically
restricted progenitors.

One unexpected finding of our study was the immune signature
distinguishing BG/IV from CAL SHH ATRT, that accounted for the
discrepancy between methylation-based and gene expression-based
classifications for this particular subgroup. Previous studies depict-
ing the immune infiltrate showed partly discrepant results regarding
SHH ATRT immune infiltrate13,68, which may be explained by the use
of different subgrouping techniques. It also suggests that the abun-
dance of the immune infiltration may be due to some anatomical
constraints as much as to intrinsic tumor cell properties. Interest-
ingly, the low immune infiltrate seen in CAL ATRT is to be compared
to the similarly low immune infiltrate in mouse Shh ATRT. Alto-
gether, this suggests that not only the SHH or MYC methylation
profiling, linked to the neuronal versus non-neuronal features of
ATRT, should be considered to predict potential efficacy of immu-
notherapies, but rather immunohistochemistry and/or precise sub-
type definition.

Fig. 7 | Single-cell RNAseq analysis reveals transcriptional intra-tumoral het-
erogeneity of cerebellar anterior lobe ATRTs and neuronal progenitors as
putative cells of origin. A UMAP visualization of the human CAL SHH cell clusters
obtained after integration 4 independent samples. Colors distinguish the different
clusters; assigned names are reported at the right of the UMAP. B Violin plots
showing the specific marker genes for Neuronal progenitor like cells and undif-
ferentiated cells. C Heatmap of Midbrain/Hindbrain boundary gene signatures
(IRX1, EN1) expression on the UMAP of integrated human CAL-SHH ATRT samples.
D Regulon specificity score (RSS) for each transcription factors (TF) in Neuronal
progenitor and undifferentiated cell populations. In each cluster, regulons (TF
along with their direct targets) are ordered according to their RSS. Regulons of
interest are labeled. E Trajectory inference analysis using the PAGA algorithm
(Monocle3) showing a path form NPL1 cluster to UD clusters via NPL2 cells. Color
code indicates cell clusters as referred in (A). Dark green: NPL1 cells, light green:
NPL2 cells, light blue: undifferentiated cells. F Heatmap of CytoTRACE score at

single cell level. The color gradient indicates a differentiated state (red) to an
undifferentiated state (blue). G Embedding streams (RNA velocity – scVelo)
showing the transcriptional dynamics throughout the trajectory. Genes specifically
expressed in NPL1, NPL2, UD1, and UD2 cell clusters were used. Dark green:
NPL1 cells, light green: NPL2 cells, light blue: undifferentiated cells. H Heatmap of
gene expression showing the gradual expression along the trajectoryof neurogenic
TFs (SOX4, SOX11), neuronal differentiation genes (DCX, ELAVL4), neuronal
repressor (REST), stem cell and pluripotency markers (ID4, SOX2) and the SWI/SNF
subunits genes (ACTL6A, ACTL6B). The color gradient indicates the expression
levels, from the lowest (gray) to the highest (red). I Dot plot of NOTCH signaling
ligand-receptor interaction between two cell clusters. Color gradient indicates the
average expression of the ligand-receptor partner in the two clusters while the
diameter of the dot indicates the corresponding p-value. Source data are provided
as a Source Data file.
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Since these neural progenitor regions play a crucial role in brain
segmentation processes69–72, SHH ATRT could be considered as a
disease of embryonic brain segmentation. Moreover, single cell
transcriptomic approaches suggested that SMARCB1 loss in the
appropriate neural progenitors drives a dedifferentiation process
through the induction of neuronal program repressors such as REST
and ID genes, leading to the emergence of neural stem cell markers
including ACTL6A and SOX2. In none of these SHH ATRT did the
SHH signaling seem to play a major role in cluster distinction. In

contrast, we clearly noted a prominent role of NOTCH signaling
which has already been described to be characteristic for SHH
ATRT2,67. Our results suggest that lateral inhibition involving the
NOTCH pathway may play an important role in the inter-cluster
cross-talks, and possibly in the dedifferentiation process, as sug-
gested by the effects of NOTCH inhibition on SHH ATRT cell lines.
Targeting NOTCH signaling would therefore deserve further
explorations in an interceptive strategy for the treatment of both
types of SHH ATRT.
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Methods
Animals
Mouse strain Rosa26-CreERT2::Smarcb1flox/flox (Han et al.7) was genotyped
according to this reference. All experiments were performed onmixed
background (129/SV×C57BL/6). The sex ratio within groups was in
equilibrium. Protocol and animal housing were in accordance with
national regulation and international guidelines73.

Approval for this study was received from the Institutional CEST
review board (Comité d’Evaluation et de Suivi de Recherche Transla-
tionnelle) from Curie Institute, and from the Direction Generale de la
Recherche et de l’Innovation,Ministere de l’Enseignement Superieur et
de la Recherche (authorization number 6,150).

Tamoxifen administration to recombine Smarcb1 locus was per-
formed according to the same reference. Mice were sacrificed
according to the ethical approval and when neurological behaviors
reached the ethical limit endpoints.

Mouse tumor monitoring
Mice were monitored for tumor formation at least 3 times per week.
The observation period encompassed at least 18 months. Intra-CNS
tumors could not be measured. Mice weight was checked daily from
any neurological symptom (weakness, circling, tremor, paralysis) and
mice were sacrificed when weight loss reached 20%. For the rare
extracranial tumor, mice were sacrificed when tumors reached 1000
mm3. Tumors and all organs were taken and fixed in AFA for histology
orwere frozen in −80 °Cuntil RNAextraction. Three fresh tumorswere
processed for scRNA-seq.

Mouse sample histological examination
Organs were collected, frozen on dry ice and processed for cryo-
sectionning and macro-dissection or fixed in AFA (Carlo Erba, ref:
526263001) for histological examination. BAF47 immunohistochem-
istry was performed on fixed paraffin-embedded tissue using BD, code
612111, clone 25/BAF47, dilution 1/5074. Immunohistochemistry Ki67:
primary antibody (sc-7846) incubation 1 h (dilution 1:300), secondary
antibody anti-goat BIOT (705-006-147 Jackson) incubation 25min
(dilution 1:250), staining with Vectastin Kit.

Mouse tumors macrodissection and RNA extraction
Frozen brains were serially sectioned using a cryostat at 4mm; quick
Hematoxilin stainings were performed on each section until a tumor
could be identified;macrodissection was then performedwith a sterile
scalpel. Small pieces of tissue containing the tumor cells were frozen at
−80 °C until RNA preparation. The tumor RNAs were extracted using a
miRNeasy mini kit (Qiagen ref: 217004).

ATRT Tumor samples
Freshly resected and snap-frozen humanATRT sampleswere collected
following written informed consent of parents regarding tumor
banking and use for research; approval of these consents was obtained
by the internal review board from Curie Institute and Necker Hospital

for Sick Children (Paris, France, IRB approved protocol number DC-
2009-955).

Immunohistochemical analyses
A representative section was selected for each case. Unstained 3-μm-
thick slides of formalin-fixed, paraffin-embedded tissues were obtained
and submitted for immunostaining. The primary antibodies employed
included programmed death-ligand 1 (PD-L1) (1:100, clone E1L3N, Cell
Signaling Technology, Beverly, USA), PD-1 (1:250, clone EPR4877(2),
Epitomics, Cambridge, USA), CD3 (1:50, clone F7.2.38, Dako, Carpin-
teria, USA), CD4 (1:80, clone4B12, Leica Biosystems,Wetzlar, Germany),
CD8 (1:25, clone C8/144B, Thermo Scientific, Waltham, USA), CD45
(1:500, clone PD7/26 and 2B11, Dako, Carpinteria, USA), CD57 (1:40,
clone HNK-1, BD Biosciences, Franklin Lakes, USA), CD68 (1:400, clone
KP1, Dako, Carpinteria, USA), CD163 (1:50, clone IHC163, Diagomics,
Blagnac, France), FOXP3 (1:50, clone 206D, BioLegend, USA), Granzyme
B (ready to use, clone 11F1, Leica Biosystems, Wetzlar, Germany), OX40
(1:100, clone ACT-35, Thermo Scientific, Waltham, USA), OTX2 (1:600,
clone 1H12C4B5, Thermo Fisher, Rockford, USA) and DCX (1:200, clone
EPR19997, Abcam,Cambridge, UnitedKingdom). All slideswere stained
using previously optimized conditions including positive and negative
controls (human placenta for PD-L1 and human tonsil for other mar-
kers). PD-L1 expression was evaluated in the tumor cells using H-score,
which includes the percentage of positive cells showing membrane
stainingpattern (0–100) and intensityof the staining (0–3+),with a total
score ranging from 0 to 300. All other immunemarkers were evaluated
as density of cells (0: absent; 1: scarce; 2: moderate, and 3: diffuse),
defined as the number of positive cells per area (1 mm2) regardless of
the intensity. The final score for each marker was expressed as the
average score of the five areas analyzed within the tumor region. The
final scores for eachmarker from each patient were then transferred to
a database for statistical analysis.

Cell culture and viability assays
ATRT cell line CHLA-02-ATRT (#CRL-3020, ATCC) was cultured
according to the manufacturer’s protocol. IC-032 cell line, established
in Curie Institute from a supra-tentorial ATRT, was cultured in DMEM/
F12 supplemented with 20 ng/mL FGF, 20 ng/mL EGF, and 1x
B27 supplement (#15360284, Fisher Scientific). To assess the effect of
NOTCH inhibition on cell viability, 8 × 103 cells per well were plated in
triplicate in 96-well plates and treated either with DMSO vehicle con-
trol or varying doses of DAPT gamma-secretase inhibitor (#HY-13027,
MedChem Express). After 7 days of treatment, resazurin (Sigma-
Aldrich) was added (20μg/ml) to assess cell viability and cells were
incubated for another 2–6 h, depending on the cell line. Fluorescence
signals proportional to the number of cells were recorded in a
FLUOstar Omega plate reader (BMG labtech SARL).

Western blot analysis
For NOTCH inhibition validation, CHLA-02-ATRT and IC-032 cell lines
were treated with DMSO or DAPT at 10 µM for 7 days. Cells were then

Fig. 8 | Inhibition of NOTCH signaling in rhabdoid cell lines. A Western blot
analyses for Notch intracellular domain NICD in CHLA-02 and IC-032 cell lines
treated with DAPT NOTCH inhibitor or DMSO as a control. The experiment has
been repeated 2 times for CHLA-02.B,CVolcanoplot showing the differential gene
expression analysis results of DAPT treatment versus DMSO in CHLA-02 (B) and in
IC-032 (C) cell lines. TheX axis indicates the log2 transformed fold-change and the Y
axis indicates the reverse of the log10 transformed adjusted p-value. The number of
significantly repressed and overexpressed genes are labeled in blue and in red,
respectively. Geneshaving anabsolute fold-changehigher than2 and anadjustedp-
value lower than 0.05 are colored either in blue (for genes repressed in DAPT-
treated cells) or in red (for genes overexpressed in DAPT-treated cells). The dotted
green horizontal and vertical lines correspond to a p-value = 0.05 and to absolute

fold-change = 2, respectively. Negative binomial GLM and Wald test were applied
for gene expression comparison and generated p-values were corrected using the
Benjamini and Hochberg method. D, E Top ten significantly enriched Gene
Ontology (Biological Processes only) gene sets in genes that are differentially
repressed (D) or overexpressed (E) in DAPT-treated CHLA-02 cells compared with
DMSO. F, G Top ten significantly enriched Gene Ontology (Biological Processes
only) gene sets in genes that are differentially repressed (F) or overexpressed (G) in
DAPT-treated IC-032 cells comparedwith DMSO.H, IHeatmap showing the level of
expression of a selection of interested genes in DAPT-treated cells compared with
DMSO in CHLA-02 (H) and in IC-032 (I) cell lines. Color codes at the left and at the
top of the heatmaps are shown below the figure. Source data are provided as a
Source Data file.
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washedoncewith coldPBS and scrapedon icewith lysis buffer (20mM
Tris-HCl pH 7.5, 1mM EDTA, 0.5% NP40, 120mMNaCl) supplemented
with protease inhibitors (Roche). After centrifugation and quantifica-
tion, protein extracts were resolved by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis before transfer onto
nitrocellulose membrane. Immunoblots were done with monoclonal
rabbit cleaved Notch1 (#4147, Cell signaling) and HRP-conjugated
GAPDH (#HRP-60004, proteintech) antibodies. Cleaved Notch1-
blotted membrane was then incubated with an anti-rabbit immu-
noglobulin G horseradish peroxidase-coupled secondary antibody
(1:3000, NA934; Amersham Biosciences). Proteins were detected by
enhanced chemiluminescence (Biorad).

Gene expression profiling
RNA-seq library preparation. Total RNAs were obtained from ATRT
(n = 10) and mouse RT (n = 16) frozen samples using Qiagen QIAamp
RNAeasy kit, according to the manufacturer’s procedures (Qiagen,
Venlo, Netherlands). For cell lines, CHLA-02-ATRT and IC-032 cells were
treated with DMSO or DAPT at 10 µM for 7 days. RNAs were extracted
using the Nucleospin II kit (Macherey-Nagel). Experiments were per-
formed in triplicate. The tumor cell content was visually estimated
before RNA extractions. Barcoded Illumina compatible libraries were
generated from 750ng of total RNA for each sample using TruSeq
StrandedmRNA Library Preparation Kit (Illumina, San Diego, California,
U.S.,). Libraries were sequenced using the Illumina HiSeq 2000/2500 or
illumina NovaSeq platforms in the 100bp paired-end mode. FASTQ
samples were generated after demultiplexing the resulting BCL files.

RNA-seq data processing. Raw data were processed using an in-house
pipeline developed at the Institut Curie Bioinformatics Core Facility,
following standard analysis in the field and available at https://github.
com/bioinfo-pf-curie/RNA-seq. Briefly, readmapping and counting were
performed using STAR version 2.5.3a aligner75. The human reference
genome hg19 and the mouse reference genome mm10 were used. The
10 ATRT RNA-seq data were combined with 9 from Andrianteranagna
et al.76 and 29 from Leruste et al.13 to form a cohort of 49 RNA-seq
samples that were re-analyzed from FASTQ files using the same pipeline.

RNA-seq statistical analysis. For each of the human and mouse
datasets, all genes having 0 counts in all samples were filtered out
before subsequent analyses. Variance stabilization process was then
applied using the rlog() function of DESeq2 version 1.30.1 (Love et al.77)
Bioconductor package. Genes having rlog counts lower than7.5 in 99%
or more of the samples were filtered out. Only the 5000 top variable
genes (based on IQR) were kept for the unsupervised analyses.

Principal component analyses (PCA) were performed using the
prcomp() function of the R base package stats on centered and scaled
data. Hierarchical clustering analyses were conducted using the
Heatmap() function of the ComplexHeatmap version 2.6.2 (Gu et al.78)
Bioconductor package. Pearson correlation and Ward’s method were
used respectively as similarity metric and linkage method. Consensus
clustering analyses were conducted to estimate the stability of
the number of clusters. They were performed with the Consensu-
sClusterPlus version 1.54.0 (Wilkerson and Hayes79) (Bioconductor
package using the same metrics of similarity and linkage as set for the
hierarchical clustering. All other settingswere set by default except the
pFeature thatwe set to 0.8. The ComplexHeatmap packagewas used to
visualize the consensus clustering result.

The Uniform Manifold Approximation and Projection (UMAP)80

non-linear dimensionality reduction algorithm was applied for visua-
lization purpose. UMAP analyses were performed using the umap
(version 0.2.7.0) CRAN packages.

Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)81 was
conducted using the mixOmics framework version 6.14.1 (Rohart
et al.82) Bioconductor package. The optimal number of component as

well as the number of gene per component were determined by run-
ning the perf() and tune.splsda() functions using 3-fold cross-validation
repeated 50 times. Finally, sPLS-DA analysis was run using the splsda()
function using 3 components with respectively the 90, 100 and 50
previously selected genes (Supplementary Fig. 2B).

Differential gene expression analyses were performed using
DESeq() function of the DESeq2 package using the filtered raw
counts. Resulting p-values were corrected using the Benjamini and
Hochberg method (a.k.a. FDR). Immune cells and stromal cells infil-
tration scores were computed using the ESTIMATE version 1.0.1183

R-Forge package, a marker-based single sample gene set enrichment
method. Immune cells (T cell CD8+, T cell CD4+, T cell regulatory, NK
cell) relative fraction were computed using deconvolution-based
quanTIseq algorithm (Finotello et al., 2019; Sturm et al., 2019)
implemented in the immunedeconv version 2.0.4 R Bioconductor
package. Analyses were performed inside R environment (ver-
sion 4.0.2).

Functional enrichment analyses on human dataset were per-
formed using the web application available in https://www.gsea-
msigdb.org/gsea/msigdb/annotate.jsp and the GSEA tool (version
2.2.3) on the GO:BP gene set collection (version 7.4). Functional
enrichment analyses on mouse dataset were performed using the
GSVA (version 1.38.2) bioconductor package and themsigdbr (version
7.4.1) CAN package.

Gene expression array data processing and analysis. Eight
Smarcb1flox/flox;Rosa26-CreERT2 mouse primary RT affymetrix
(MOE430 2.0 array type) samples from Han et al.7 were re-analyzed.
Data were normalized using the RMAmethod implemented in the affy
version 1.70.0 Bioconductor package with the custom Brain array CDF
annotation packages version 23.0.0 (http://brainarray.mbni.med.
umich.edu/Brainarray/Database/CustomCDF/23.0.0/entrezg.asp).
Gene filteringwas performed using the PCAbased approach described
in Lu et al. (2011) and implemented in the pvac version 1.40.0 Bio-
conductor package. Hierarchical clustering was performed using the
ComplexHeatmap version 2.9.4 Bioconductor package. GSEA are
applied using the GSEA software version 2.2.3 and the MSigDB data-
base version 5.2downloaded fromhttps://www.gsea-msigdb.org/gsea/
msigdb/. Data analyses were performed using R environment
(version 4.1.1)

Mouse RNA-seq and gene expression array data integration. 8
mouse RT affymetrix data and 16 mouse RT RNA-seq data were com-
bined based at gene level. The two datasets were previously normal-
ized, filtered and scaled separately beforemerging. Platform technical
effect was assessed using PCA and corrected using linear model
implemented in comBat() function of SVA version 3.40.0 Bioconductor
R package. Hierarchical clustering was applied to the combined data-
set using the ComplexHeatmap version 2.9.4 package and the 5000
most variable genes (based on IQR). Euclidean distance and Ward
linkage method were used.

Human and Mouse gene expression data integration. Human and
mouse RNA-seq data were merged based on the orthologous genes
(16864) between the two species identified using biomaRt package
version 2.48.3. Genes having an expression lower than a threshold
equals to 6 regularized counts in more than ¾ of the samples were
filtered out. Sample-wise correlation between human and mouse
datasets using genes of interest was performed based on the Pearson’s
method. Organism effect correction was applied using the ComBat()
function of the SVA package version 3.40.0 before unsupervised
clustering on the merged dataset. The 1000 most variable genes
(based on IQR value) were kept for the hierarchical clustering per-
formed on the merged dataset. The analyses were conducted within R
environment (version 4.1.1).
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DNA methylation array
DNA methylation array data processing. Infinium methylationEPIC
array data from 54 human ATRT samples were collected (30 were
retrieved from et al.13) and processed using RnBeads package version
1.6.1 (Assenov et al., 2014) Bioconductor package. All samples and all
probes were kept after quality control. Probe intensities were nor-
malized using the rnb.execute.normalization() function with the “illu-
mina” method. Probes outside CpG context (2991 probes), targeting
single nucleotide polymorphisms (17369 probes) or targeting X and Y
chromosomes (19457 probes) were all filtered out before subsequent
analysis.

DNA methylation array statistical analysis. Beta-value at probe level
were extracted usingmeth() function. For a given CpG site, beta-value
is the ratio of signal from methylated probes relative to signal from
bothmethylated andunmethylatedprobes. The 5,000highest variable
probes (based on beta-value IQR) among the retained probes
(828,109) were selected for the unsupervised analyses. Hierarchical
clustering samples was performed with the Heatmap() function of
ComplexHeatmap package. Euclidean and 1-Pearson were used as dis-
tance metrics respectively for probes and samples clustering. Ward’s
method was used as linkage criterion for both sample and probes
clustering. The UMAP non-linear dimensionality reduction algorithm
was applied for visualization purpose using the umap R package.
Leucocytes infiltration scores were computed based on the leucocytes
unmethylated probes (LUMP) identified by Aran et al.84. For a given
sample, this score is calculated as 1 substracted by the mean LUMP
beta-values divided by 0.85. Lymphocytes score was computed, for
each sample, as the mean of the lymphoid-specific hypermethylated
probes identified by Killian et al.85. Data processing and analyses were
performed inside R environment (version 4.0.2).

Human gene expression and DNA methylation data integration
Gene expression (RNA-seq) and DNA methylation (EPIC array) data
(“early”) integration were performed using the kernel-based method
implemented in mixKernel version 0.7 CRAN package12. The analysis
was conducted on the 43 samples in which both RNA-seq and DNA
methylation data are available. For RNA-seq dataset, the rlog count
matrix including only the 2,000 most variable genes (based on IQR
value) was used while for DNA methylation dataset, the beta-value
matrix including only the 5000 most variable genes (based on IQR
value) was considered. The kernel matrix of each dataset was com-
puted using the compute.kernel() function with the “linear” kernel
method. The two kernel matrices were combined using the combine.-
kernels() function with the “full-UMKL” option. PCA as well as UMAP
were applied on the meta-kernel using respectively the prcomp()
function of the R base package stats and the umap version 0.2.7.0
CRAN package. Alluvial diagrams were generated using the alluvial
version 0.1-2 CRAN package. Data analysis was performed inside R
environment (version 4.0.2).

Single cell RNA sequencing (scRNA-seq)
Tissue processing and cell population enrichment for human
samples. Fresh tumor samples were cut in small pieces then dis-
sociated 30min at 37 °C in CO2-independent medium (Gibco) + 0,4 g/l
of human albumin (Vialebex) with Liberase TL (Roche) 150mg/ml and
DNase 1 (Sigma) 150mcg/ml. Dissociated cells were then filteredwith a
40mm cell strainer, then washed and resuspended with C02-
independent medium + 0,4 g/l of human albumin. Cells were then
continuously maintained on ice or at 4 °C. In case of lot of blood cells,
the Debris removal kit (Miltenyi Biotec) was used according to the
manufacturer’s protocol. To enrich in tumoral cells (human samples)
the Tumor Cell Isolation Kit (Miltenyi Biotec) was used according to
the manufacturer’s protocol. Cells were then resuspended in PBS+
BSA 0.04%. Samples were prepared for concentration of 800 cell/mcl.

Tissues were processed within 2 h after tumor resection and loaded in
10x Chromium instrument within 4 h.

Preparation of single cell suspensions for mouse samples. Fresh
tumor samples were cut in small pieces then dissociated 30min at
37 °C in CO2-independent medium (Gibco) + 0,4 g/l of human albumin
(Vialebex) with Liberase TL (Roche) 150mg/ml and DNase 1 (Sigma)
150mcg/ml. Dissociated cells were then filtered with a 100mm cell
strainer, then washed and resuspended with C02-independent med-
ium + 0,4 g/l of human albumin. Cells were then continuously main-
tained on ice or at 4 °C. In case of lot of blood cells. Cells were then
resuspended in PBS + BSA 0.04%. Samples were prepared for con-
centration of 800 cell/mcl. Tissues were processed within 2 h after
tumor resection and loaded in 10x Chromium instrument within 4 h.

Single cell RNA sequencing. Sample preparations were loaded on a
10x Chromium instrument (10x Genomics) and libraries were prepared
using a Single Cell 3’ Reagent Kit (V2 chemistry, 10X Genomics)
according to the manufacturer’s protocol, targeting 1000 recovered
cells per sample. Single cells were included and barcoded into droplets
together with gel beads coated with unique barcodes, uniquemolecular
identifiers (UMI), and poly(dT) sequences, followed by in droplet
reverse transcription to generate barcoded full-length cDNA. cDNA was
subsequently recovered from droplets, then cleaned up with Dynabead
MyOne Silane Beads (Thermo Fisher Scientific), then amplified with the
following protocol: 98 °C-3min; 12x (98 °C-15s, 67 °C-20s, 72 °C-1min);
held at 4 °C. Amplified cDNA product was cleaned up using the SPRI
select Reagent Kit (Beckman Coulter). Indexed libraries were con-
structed following these steps: 1. Fragmentation, end repair and A-tail-
ing; 2. Size selection with SPRI select beads; 3. Adaptor ligation; 4. Post-
ligation cleanup with SPRI select beads; 5. Sample index PCR and final
cleanup with SPRI selects beads. Library and quality assessment were
achieved using dsDNAHigh Sensitivity Assay Kit and Bioanalyzer Agilent
System. Indexed libraries were tested for quality, equimolarly pooled
and sequenced on an Illumina HiSeq2500 using paired-end 26 ×98bp
as sequencing mode, targeting at least 50,000 reads par cell.

scRNA-seq data pre-processing. Raw data generated by the seqen-
cing Illumina HiSeq2500 platform were pre-processed using the cell-
ranger (version 3.1.0, https://support.10xgenomics.com/single-cell-
gene-expression/software/pipelines/latest/what-is-cell-ranger) includ-
ing demultipexing, mapping with the hg19 or the mm10 reference
genome, gene counting and aggregation steps.

scRNA-seq cell filtering. Single sample adaptive filtering strategy was
applied to remove “bad cells” in both human and mouse samples. The
number of detected genes and the percentage of mitochondrial RNA
were considered as the filtering criteria. Cells with both a low number
of genes and a high proportion of mitochondrial RNA were discarded.
The threshold of the minimum number of detected genes was set as
the 5th percentile of the distribution of the number of detected genes
in all cells (Supplementary Figs. 10A and 12A). The thresholds of the
maximumproportion of mitochondrial genes were set individually for
each sample based on the visual inspection of the plot of the number
of detected genes versus the percentage of mitochondrial gene
(Supplementary Figs. 10B and 12B). In addition, cell clustering was
performed in individual sample to check if some covariates such as the
number UMIs per gene ration (UMIs/gene) drive the clustering of cells
(Supplementary Fig. 10D). For IRT003 samples, two clusters (3 and 4,
Supplementary Fig. 10D) are characterized by a relatively low UMIs/
gene and, therefore, cells belonging to these two clusters of IRT003
were not included in the integrated dataset.

Since mouse samples were not FACS-sorted, additional filtering
aiming to remove non-tumoral cells was performed based on the
expression of Ptprc, Epcam, Smarcb1 genes (Supplementary Fig. 13).
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The three samples were first integrated using the CCA-based Seurat
version 3.2.2 methods before UMAP embedding.

scRNA-seq data integration. scRNA-seq data integration was per-
formed using the CCA-based approach described in Stuart et al.86 and
implemented in Seurat version 3. Data integration quality was assessed
by plotting the cell cycle phases on the integrated data (Supplemen-
tary Figs. 11D and 11D).

scRNA-seq cell clustering. PCA was applied to reduce the dimen-
sionality of the integrated data using the RunPCA() function. The
integrated data matrix was previously scaled using the ScaleData()
function before PCA. The clustering was conducted using the graph-
based modularity optimization Louvain algorithm implemented in
Seurat v3. KNNgraph isfirst built using the FindNeighbors() function on
a user defined number of PCs. Then, the clustering was performed
using the FindClusters() function with a specific resolution. Since the
clustering result depends on the chosen number of PCs and the
resolution value and we do not have an a priori about the expected
number of clusters in our dataset, we choose to explore our data by
running the clustering algorithm using different combination of
number of PCs (from 12 to 50 increment by 1) and resolutions (from 0
to 1.5 increment by 0.1). The IKAP approach published in Chen et al.87

was used to perform this recursive clustering and to assess their sta-
bility. In addition, iterative clustering was also applied by removing
cells belonging to well-defined clusters and re-running the clustering
with the remaining cells. This approach leads to the identification of 10
clusters which can be obtained using a 12 PCs with a clustering reso-
lution equals to 0.2 and recapitulating all the possible clusters identi-
fied throughout the analyses performed above. UMAP was used to
visualize the clustering result in reduced two dimensions.

scRNA-seq cluster marker genes and cell type annotation. To bio-
logically annotate the identified clusters, differential expression ana-
lyses in one versus others manner using the FindAllMarkers() function
were carried out to identify marker genes for each cluster. The default
Wilcoxon Rank Sum test was applied. Genes with a log2(fold-change)
higher than 0.5, an adjusted p-value lower than 0.01 and detected in
more than 25% of the cells of the given cluster were defined as gene
markers for this cluster. These markers were investigated by
knowledge-based using literature curations to identify the biological
closest cell type of the cluster. In addition, on-line data bases such as
http://mousebrain.org/, http://dropviz.org/, https://portal.brain-map.
org/ and https://www.proteinatlas.org/ were used to explore marker
genes cell type.

scRNA-seq gene regulatory network analysis. Gene regulatory net-
work (GRN) analysis was conducted using the SCENIC framework16. For
more details about the analysis steps, please refer to Sande et al.88.

The pyscenic programm version 0.10.3 was used to conduct the
analysis. For the analysis of human samples, the TFs list (containing
1,839 human TFs) downloaded from https://github.com/aertslab/
pySCENIC/blob/master/resources/ on August 7th, 2020, the cis-
Target database (https://resources.aertslab.org/cistarget/) and the
human motif annotation table downloaded from https://ressources.
aertslab.org/cistarget/motif2tf/ on August 12th 2020 were for the
analysist. For the analysis of mouse samples, the TFs list (containing
1721 mouse TF) downloaded from https://github.com/aertslab/
pySCENIC/blob/master/resources/ on January 20th 2022, the cis-
Target database and the mouse motif annotation table downloaded
from https://ressources.aertslab.org/cistarget/motif2tf/ on January
20th 2022 were used. The regulon specificity score (RSS) was com-
puted for each cluster and for each regulon in order to identify the
most specific regulon compared to other clusters. Python version
3.6.11 was used for the analysis.

scRNA-seq trajectory inference (TI) and pseudotime analysis. TI
analyses were conducted using reverse graph embedding approaches
implemented in (1) ElPiGraph version 1.0.0 (Albergante et al., 2020) R
package and based on the elastic principal graph89 and (2) the Mono-
cle3 version 0.2.3.0 (Cao et al.17) R package and based on the Partition-
based graph abstraction (PAGA)90. For the ElPiGraph tool, both the
computeElasticPrincipalTree() and the computeElasticPrincipalCurve()
function were run using 30 nodes. Lambda and Mu parameters were
set to 0.01 and 0.1 respectively. All other parameters are set to their
default values. For the Monocle3 tool, the dimensionality of the data
was reduced using UMAP (based on 12 PCs) before cell clustering and
graph inference. TI analyses were conducted within R version 4.0.2
environment.

scRNA-seq RNA velocity analysis. RNA velocity analysis was per-
formed using the scVelo version 0.2.3 (Bergen et al.19) tool using the
dynamical modeling. Spliced and unspliced matrices were generated
separately for each sample in loom file using the velocito tool version
0.17.1791. RNA velocity was estimated using the marker genes for con-
sidered clusters and visualized on the embedding UMAP coordinates
generatedbyMonocle3 (seeTI analysis part). RNAvelocity analysiswas
performed inside python version 3.7.8 environment.

scRNA-seq ligand-receptor interaction analysis. Ligand-receptor
interaction analysis was performed using the cellPhoneDB
framework49. To conduct this ligand-receptor interaction analysis, the
cellphonedbbinary (version 2.1.7) was run on the integrated expression
matrix including all genes. Only ligand-receptor interaction with mean
higher than 0.075 and a p-value lower than 0.05 were considered as
significant interaction. The analysis was conducted inside Python
3.7.10 environment.

scRNA-seq differentiation state prediction. Cell differentiation state
wasestimatedusing theCytoTRACE44 tool (version0.3.3, Gulati et al.44)
with default options. CytoTRACE assesses the relative differentiation
state of each cell using a predictive model based on the gene counts
(number of expressed genes) and the average expression of genes that
are highly correlated with gene counts (see Gulati et al.44 for more
details). For each cell, it generates a score between 0 and 1 indicating a
relatively more differentiated and less differentiated state. The ana-
lyses were conducted inside R 4.0.2 environment.

Single nucleus data analysis
Single nucleus data of an ATRT sample (ATRT5) localized in the pineal
area published in Jessa et al.6 was re-analyzed. Gene read counts per
cell (generated by cellranger) were provided by the author. Very basic
data filtering was applied. Nuclei having number of detected genes
lower than the 5th percentile were filtered out. Sequencing depth
normalisation was performed using the logNormalize function of
Seurat (Version 3.2.2). Dimensionality reductionusing PCAwas applied
to the dataset using the 2000 highly variable genes (Seurat flavor).
Gene marker expressions were assessed using the heatmap density
produced by the nebulosa92 R package (Version 1.0.1) on a UMAP
embedding visualization based on the 12 first PCs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed data included in this study have been deposited in
NCBI’s Gene Expression Omnibus and accessible through GEO Super-
Series accession number GSE242090. Cell lines bulk RNA-seq data are
available through GEO accession number GSE241733. Bulk RNA-seq
data of mouse rhabdoid tumor model are accessible through GEO
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accession number GSE241734. Mouse gene expression array (Affyme-
trix®) from Han et al., 2016 are available in GEO under accession
number GSE64019. Single cell RNA-seq data from mouse model are
deposited inGEOunder accession codeGSE241736 Single cell RNA-seq
data from human primary ATRT are deposited in GEO under accession
code GSE241737 Bulk RNA-seq data of human primary ATRT are
accessible throughGSE241831 accession code. Bulk RNA-seq data from
Andrianteranagna et al., 2021 are stored in GEO under accession code
GSE175891. Bulk RNA-seq data from Leruste et al., 2019 are deposited
in dbGaP database under accession code phs001915.v1.p1. DNA
methylation array (Illumina Infinium MethylationEPIC) data are
accessible throughGSE242089 code.DNAmethylation array data from
Andrianteranagna et al., 2021 are available in GEO under accession
number GSE175892. Source data are provided with the manuscript,
without restriction. Source data are provided with this paper.

Code availability
The codes are available in GitHub following the link: https://github.
com/bourdeautlab/LobonIglesias2023.
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