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place into IoT- and CPS-based industrial systems∗
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Abstract

Industry 4.0 has fueled research for almost a decade now. Beyond production efficiency, it has
raised sustainability issues and societal challenges. However, these have mainly been driven by
technological developments until now, putting aside the human and societal aspects. Faced with
the emergence of paradigms such as Industry 5.0, it becomes clear that societal considerations
are back on the technological and scientific stages. This paper is interested in the place that have
been given to the human in last year’s industrial research. More specifically, the focus have been
set on the human aspect into Industry 4.0’s main pillars: Cyber-Physical Systems and Internet
of Things. Therefore, this work proposes a Systematic Literature Review on the subject. To
apprehend the progress of research towards industrial systems as complex socio-technical ones,
the retrieved literature has been analyzed through two frameworks: the enabling technologies for
Industry 5.0 and the grounding concepts of systemics.

Keywords: Industry 4.0; Industry 5.0; Human-Systems Integration (HSI); Systematic Literature
Review (SLR); Internet of Things (IoT); Cyber-Physical Systems (CPS)

1 Introduction
For the last decade, the initiative Industrie 4.0 [1], along with number of other national programs
(Industrie du futur, High Value Manufacturing Catapult, Made in China 2020, etc.) have been taken
as reference background for the development of industrial systems. By their impact, these initiatives
are today commonly recognized as part of the 4th industrial revolution, also known as Industry 4.0,
and globally responding to the same precepts [2]. Initially, Industry 4.0 was aimed to "address and
solve some of the challenges facing the world today such as resource and energy efficiency, urban
production and demographic change" [1]. From an industrial viewpoint, the most important challenge
and maybe the easiest to apprehend, might be to head towards continuous resource productivity,
and efficiency gains delivery across a globalized value network.

∗The authors gratefully acknowledge the financial support of the CPER 2015-2020 Projet Cyber-Entreprises of
Programme Sciences du numérique, through regional (Région Lorraine, Grand EST), national (DRRT, CNRS, INRIA)
and European (FEDER) funds used to extend the TRACILOGIS Platform
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To deal with demographic and social changes, Industry 4.0 have raised the attention on the need
to rethink work organization. For instance, facing skilled workforce shortage, industries need to
preserve their workers to extend their working lives, and to keep them productive longer. To this end,
research on systems, such as smart assistance ones, have known a consequent growth. Notably, the
recent appearance of the Operator 4.0 concept, proposing a vision for human-automation symbiosis
by enhancing "human’s physical, sensitive and cognitive capabilities by means of human cyber-physical
system integration" [3], can be evoked. These systems are designed to release workers from routine,
wearing or dangerous tasks, to refocus them on creative and value-added activities. Besides, these
developments equally aim to support flexible work organisation that, beyond being resilient, would
enable workers to better combine their work and private lives, improving their work-life balance.
Hence, it can be assessed that, in its initial conception, Industry 4.0 was destined to address and solve
both technical and societal challenges, relying in particular on last decade’s technological advances
concerning Internet of Things (IoT) and Cyber-Physical Systems (CPS). This led to the rise of the
debate around new Work 4.0 paradigm in Germany [4], questioning the societal implications of
Industry 4.0 into everyday work. Yet, it is today assumed that Industry 4.0 have stayed focused on
CPS- or IoT-based general purpose technologies (technology-driven progress), somehow missing its
societal scope.

To influence this dynamic, recent years have seen the appearance of a new paradigm, proposed as a
societally-driven complement to Industry 4.0’s hallmark features: the Industry 5.0. Broadly, Industry
5.0 can be seen as a corrective “patch” or “add-on” to the Industry 4.0, focusing on human-centric
design, sustainability, and resilience. That is not to say that the technology is out of scope. Emphasis
will be placed on technologies as a set of complex systems, combining technologies such as smart
materials and embedded / bio-inspired sensors, enabling, securing, and strengthening human safety,
well-being, and interactions into and with the industrial system, such as Augmented or Virtual
Reality, collaborative robotics, etc. To this end, recent works of the [5, 6], involving European Union’s
technology leaders, proposed a set of relevant and enabling technologies for Industry 5.0. Besides,
the reports from European commission [5, 6] equally point out the fact that a systemic approach for
Industry 5.0 is necessary to support the above-mentioned technological enablers. Indeed, Industry
5.0 and its technologies are expected to face the social, ecological, economic, governmental and
political challenges, left aside by Industry 4.0. Consequently, with regard to the industrial community
research fields, the challenge is to strengthen human’s trust and acceptance concerning those new
technologies, developing inter- and trans- disciplinary in future works (to make engineering, life &
social sciences, humanities, etc. converge), and ensuring their broad-scale implementation across
value chains and ecosystems (scalability). Moreover, the concepts of sustainability, resiliency and
humain centric approach are complex by nature, with different meanings depending on the scientific
discipline, the field of application, the time scale and the scale of industrial systems (current industrial
system or new one), as well as the transformations/impacts they can have on new industrial system
organizations These led the authors to consider mainly one dimension and in particular: the question
of the integration of the human component into the IoT- and CPS-based industrial systems. How is
this integration envisioned, from a "system" viewpoint? What is the current state of development of
so-called human-centred technologies? Thus, the paper proposes a Systematic Literature Review
(SLR) focusing on the global integration of industrial systems’ actors as a network of interconnected
assets (artefacts & humans, objects & agents) within complex-adaptable systems [7]. Notably, what
will be studied is the place given to the human component by the new concepts such as the IoT
and CPS paradigms, to identify their potential for more human-centred development. This will help
identifying the challenges to be explored to reach this vision of industry 5.0.
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To this end, the rest of this article is organized as follow. 2nd section will provide a global overview
of the IoT and CPS notions, as grounding concepts for Industry 4.0. The 3rd section will detail the
methodology used to perform the SLR, based on Kitchenham’s recommendations [8]. Then, the 4th

section presents the first numerical results of the methodology, along with a general analysis focused
on quantitative aspects. This section also contains observations concerning 3 forms of sociability
structuring 4 types of social systems, that can be made when taking a closer look to place of human
aspects into IoT and CPS’s different developments. The 5th section is conducting qualitative analysis
on the retrieved literature through 2 specific frameworks, questioning the "system" vision presents
in the research results (systemic analysis), and the current development state of Industry 5.0’s
technological enablers. 6th section brings discussion elements while the last one concludes the paper
and proposes some research directions.

2 IoT and CPS: an overview
The importance of the CPS and IoT concepts have steadily been growing in the literature for the
last decades. The notion of CPS is generally recognized as the main pillar of Industry 4.0. Due to its
wide range of potential applications, this concept enjoys great popularity in the scientific literature
although it is rather recent [9]. However, popularity and novelty make it a concept whose definition
and limits are rather blurred. Besides, it is also often associated with the IoT, which appeared a
little earlier. It seems that preferences in the use of the terms CPS and IoT are observed from
one scientific community to another or from one geographical area to another. Thus, CPS will be
preferred in mechatronics, and IoT will be preferred in computing societies [10, 11]. The term CPS
will also be found more often on the American continent than on the European or Asian ones, where
IoT will be preferred. However, these two concepts are in fact different and have to be differentiated.

Among the multitude of definitions that can be found in the literature, we will consider the IoT
as: “an open and comprehensive network of intelligent objects that have the capacity to auto-organize,
share information, data, resources, reacting and acting in face of situations and changes in the
environment” [12]. In this definition, IoT is clearly seen as a link between physical objects within a
system composed of multiple objects. Regarding CPS, it seems relevant to keep its initial definition
provided by Lee: “physical and engineered systems whose operations are monitored, coordinated,
controlled and integrated by a computing and communication core. This intimate coupling between
the cyber and physical will be manifested from the nanoworld to large-scale wide-area systems of
systems. And at multiple time-scales” [9]. The CPS concept therefore expresses a “coupling” between
physical objects and their digital representation/twin. Considering these two definitions, we define
a system as being composed of objects and their digital representations. This system is organized
along 2 axes: the first one, representing the physical world; the second one representing the digital
world (i.e. cyber). The IoT would then correspond to the horizontal connectivity/synchronization
between objects and the notion of CPS would call the vertical connectivity/synchronization between
objects and their digital representation [13] (Fig. 1). Hence, it can be assessed that CPS and IoT are
constituting the 2 of today’s main enabling paradigms for Cyber-Physical Systems’ networking, and
then for Industry 4.0, relying on the integration of objects, their virtual representation, and humans,
as networks within complex-adaptable systems. Yet, these visions stay techno-centered, focused on
machine-machine interactions.
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Figure 1: CPS & IoT [13]

3 Methodology for Systematic Literature Review
This section will expose the research protocol, accordingly with the SLR guidelines provided by
Kitchenham [8]. The SLR methodology will allow to provide the most representative possible state
of the art concerning the human dimension in CPS and IoT -related paradigms regarding different
industrial context. Note that the general manufacturing control pole identified in the introduction is
not included in the scope of this search, for previous works that will be presented hereafter already
provided extensive review of the subject. To ensure the quality of this SLR, the paper selection
method has been established using the 4 following recommendations from the Centre for Reviews
and Dissemination (CRD)’s Database of Abstracts of Reviews of Effects (DARE)1 [14].

• Relevant search-string and at least 4 databases shall be used to cover most of the related works;

• Inclusion and exclusion criteria must be explicit and appropriate, ensuring the relevance of the
study;

• Accordingly to a set of pre-established criteria, the quality and validity of included studies shall
be assessed;

• Included studies shall be synthesized, with emphasis on their relevant data/contents.

To conduct this study, more than 10 scientific digital libraries and databases have been identified.
Yet, after a first search iteration, some turned out to be unsuitable for a search strings-based targeted
search, or for results mass-extraction. Ultimately, the 8 following databases and digital libraries
were used for this study: ACM2, BASE3, HAL4, IEEE Xplore5, Science Direct6, Scopus7, Taylor &
Francis Online8, and Web of Science9.

1DARE: https://www.crd.york.ac.uk/crdweb/ShowRecord.asp?ID=32004000332&ID=32004000332
2ACM Digital Library: https://dl.acm.org
3Bielefeld Academic Search Engine: https://www.base-search.net
4Archive ouverte HAL: https://hal.archives-ouvertes.fr
5IEEE Xplore: https://ieeexplore.ieee.org
6Science Direct: https://www.sciencedirect.com
7Scopus: https://www.scopus.com
8Taylor & Francis Online: https://www.tandfonline.com
9Web of Science: https://www.webofscience.com
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Search strings have been built based on 3 sets of keywords, each relating to one aspect of the
search. The first one, searched by S1, aims to review literature related to the CPS and IoT paradigms
and their variants. To this end, the terms "Cyber-Physical Systems" and "Internet of Things" have
been decomposed for more inclusion. The second search string, S2, aims to limit the search to
industrial context, using terms "manufacturing", "production" and "industry". The third one, is
grounded on the keywords commonly used when considering the human aspect in literature, identified
in previous studies [15, 16]: "human", "anthropocentric" and "social" (S3). The search strings are
presented below, formatted using Boolean logic, as usual for digital library querying. These were
eventually adapted, to better suit libraries’ particular specifications.

S1 : "(internet AND of AND thing*) OR (cyber* AND physical* AND system*)"

S2 : "manufacturing OR production OR industr*"

S3 : "human* OR anthropo* OR socio* OR social*"

The query R supporting this SLR will then be the association of S1, S2, and S3. Consequently,
the literature scan will consist in querying each of the bibliographic database previously listed with
the following search.

R = S1 AND S2 AND S3: "((internet AND of AND thing*) OR (cyber* AND physical* AND
system*)) AND (manufacturing OR production OR industr*) AND (human* OR anthropo*
OR socio* OR social*)"

The papers selection and exclusion process was carried out in 3 stages. First selection step
occurred directly during databases querying, with the following criteria:

• To avoid papers with no close bound to the search, the string R was not used for a full-text
search, but focused on papers topic i.e.: title, abstracts and keywords;

• English-written papers: for the sake of homogeneity, and to guarantee the international scope
of the study;

• Timespan: 1990 - 2021, for IoT and CPS paradigms are no prior to 1999.

Second step was performed upon the aggregation of the results from initial search R into each
database:

• Removal of duplicates;

• Removal of papers not consistent with initial research criteria;

• Removal of non-JCR publications. Only publications indexed to the Journal Citation Re-
port(JCR), a reference framework attesting the quality of a journal, were targeted.

Third and last step was performed manually by the authors upon the remaining papers:

• Title, abstract & keywords analysis: removal of papers that are not closely related to the
searched topic, and enables a first general analysis of the literature;

• Full-text reading: removal of papers for which an ambiguity persists, enabling an in-depth
analysis of the literature.
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In absolute terms, these two consecutive filtering shall be performed before any further analysis.
However, full-text readings can only be performed on available documents, whose may turn out to be
considerably fewer than those identified after the title-abs-key analysis. Moreover, considering the
time required for the careful reading and understanding of a journal paper, this last step has to be
conduced on an consequently narrowed amount of papers. For these reason, the general analysis of
the literature was performed right after the title, abstract & keywords filtering, upon the metadata
extracted from retained papers. Then, full-text reading and in-depth analysis were conduced upon
the retrieved available papers.

4 General analysis
Table 1 presents the results of the query R for each one of the databases previously exposed. Figure
2 synthesizes the followed papers-retrieving methodology and its step by step results. Thanks to this
selection process, the initial sample of more than 3 500 results was significantly reduced down to 149
exploitable bibliographic entries.

Table 1: Number of papers retrieved from each database

Queried databases Results for R

ACM 91
BASE 42
HAL 49

IEEE Xplore 361
Science Direct 150

Scopus 1671
Taylor & Francis 7

Web of Science 1186

Total 3557

First noticeable thing is that, despite the fact that the search is covering a period from 1999 to
2021, only papers from 2011 to 2021 were retrieved. In addition, Figure 3 shows that a consequent
and steady raise of interest could only be noted from 2016. It can therefore be assessed that the
question of humans’ place in CPS and IoT literature regarding industrial issues is rather recent, even
thought those concepts are independently much older and studied.

Second, each contribution has been associated to the nationality of its authors’ home universities.
It then can be observed that around 40% of the retrieved papers are international collaborations.
Besides, figure 4 reveals that China is by far today’s main contributor, having produced or participated
to more that 30% of current literature. Unsurprisingly, since this study is questioning the future of
industrial systems, the others main international contributors being among the most industrialized
ones (Spain, USA, UK, Germany, India, Italy, Canada, France, etc.).

Third observation concerns the journals represented by this sample. The 149 retrieved papers
have been published into 84 different JCR journals, which is a relatively high number. Hence,
11 journals presents 3 times of more are representing 42% of the sample (Fig. 5). Most of these
journals being related to industrial engineering, computer sciences, or technological research, those
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Figure 2: Papers retrieving methodology

approaches can be stated as largely dominating the retrieved literature. For instance, the largely
represented IEEE Access is relating to general engineering and computer & material sciences.
Among the most represented ones, the IEEE Transactions on Industrial Informatics, Computers &
Industrial Engineering, Journal of Manufacturing Systems, IEEE Internet of Things Journal, Sensors,
Future Generation Computer Systems, International Journal of Production Research,or Computers in
Industry journals can equally be cited. Nonetheless, several journals seems to be focused on more
safe (Process Safety and Environmental Protection), sustainable (Sustainable Computing-Informatics
& Systems), and human-centric (Applied Ergonomics, Social Behavior and Personality, International
Journal of Human-Computer Studies) developments.

The fourth and last element highlighted by this sample’s analysis is the co-authorship among
papers. The analysis of the sample’s metadata shows that only 48 out of the 567 retrieved authors
and co-authors proved to have participated to 2 or more papers. In addition, even if the interest for
the subject is rising since 2016, the authors retrieved by the co-authorship mapping only published
between 2018 and 2020. This globally denotes a rather new interest for the subject, led by small
independent, yet international communities.
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Figure 3: Number of papers published per year

Figure 4: Number of papers published per country

It can be summarized that research concerning the human dimension in industrial systems
regarding the CPS and IoT paradigms has only recently become an important subject. Advances in
this field are today notably supported by strongly industrialized countries, with great international
cooperation. Yet, the subject is still emerging and the research community fragmented. Based on
a first reading, more than 10 IoT and CPS variants can already be identified. Those variants can
be considered as mostly differing by their application domain, enabling technologies, and system
structuring & organization. Table 2 already summarizes the main characteristics of the most notable
ones. Two aspects in these variants seem particularly relevant to study in this work. First, to
characterize and analyze these systems’ approach regarding the human factor, a systemic framework
will be established and used. Then, the enabling technologies supporting these systems will equally
be analyzed through a second framework. Next sections details these frameworks more precisely and
will presents the result of the literature analysis through them.
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Figure 5: Journals representation in retrieved sample
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Table 2: IoT and CPS variants in retrieved sample
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5 Systemic and Technological analysis
This section details the analysis of the retrieved sample through 2 frameworks: one systemic, the
other technological. Table 3 details more precisely these frameworks Each of these analysis is
supported by a graph presenting the research interest shown in the analyzed literature sample for
each of the frameworks axes. It goes without saying that a publication can be related to several
categories. The first analysis conduced onto the retrieved sample was intended to confront it to
the 4 basic grounding concepts of systemics [49], namely Interaction/Interrelations, Wholeness,
System/Organization, and Complexity. The second analysis conduced onto the retrieved sample was
intended to confront it to the technological enabling framework for Industry 5.0. According to the
report from the [5], this framework is organised around 6 interrelated axes, namely Human-centric
solutions & human-machine-interaction, Bio-inspired technologies & smart materials, Real time based
digital twins & simulation, Cyber safe data transmission, storage & analysis technologies, Artificial
Intelligence and Technologies for energy efficiency & trustworthy autonomy.

5.1 Systemic Framework analysis
5.1.1 Interaction/Interrelations

If, from a static viewpoint, a system can be defined as a set of interacting elements, then it can be
deduced that the nature of a system emerges from both the nature of its component and the nature
of their interaction. Concerning the Interaction/Interrelations concept, the notion of interaction
focuses on the relationships between the elementary components of a complex system taken two
by two. It can relates to influences or exchanges of matter, energy or information among system’s
components, the nature of these interactions being even more important to know than the one of the
components themselves. More specifically, the study of the IoT and CPS variants presented by table
2 showed that human aspect integration into CPS and IoT systems was realized through different
interaction or sociability models (Table 4), ultimately aiming to ease the integration of human or any
social systems into automated production systems [50, 7]. The first model is proposing interactive
interfaces or embedded sensing systems to enable human-system interaction. The second one uses
the structure of existing social network services, that are offering numerous features and data to

Table 3: Systemic and Technological frameworks
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k Interaction/Interrelations
Wholeness
System/Organization
Complexity
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Human-centric solutions & human-machine-interaction
Bio-inspired technologies & smart materials
Real time based digital twins & simulation
Cyber safe data transmission, storage & analysis technologies
Artificial Intelligence
Technologies for energy efficiency & trustworthy autonomy
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establish a socialization-based internet. The last model relates to the design of an industrial system
as a society, linking smart connected objects through a typology of social relationships. Thus, the 3
following types of sociability can be identified:

• Social interactions based on peer-to-peer communication interfaces, where almost any interaction
among two agents can be considered social. This approach is mostly found in Multi-Agent
Systems (MAS) research field;

• Human-inspired social relationship based sociability model, where human-inspired social re-
lationships are transposed into technical or socio-technical systems to structure them. For
instance, those social relationships can be based on anthropological sociology works such as
Fiske’s ones [51].

• Social-Network Services (SNS) based approach as a media for social interaction, where "social
interaction" refers to the use of Social Networking platforms’ architectures to structure human-
human, machine-human, or machine-machine data exchanges. Social Networking platforms
and services being commonly referring to services such as Facebook or Twitter, due to the vast
amount of data they could provide, or more occasionally to specifically developed platforms;

The use of these 3 sociability types to study the literature sample shows a certain unbalance
(table 4). The majority of the studied literature considers social interactions as simple peer-to-
peer communication interfaces either between systems and systems, or between human and system
(around 57%). Besides, approximately 26% of the papers, mainly supporting SIoT developments, are
considering social interactions as SNS-based approaches. These two approaches are in fact clearly
expressing a neat distinction between human and technical systems. Yet, the systemic vision of
socio-technical systems implies to consider technical and human systems as a whole, and only in few
works are social interaction considered as an extension of human sociological models to technical
systems.

Table 4: Sociability type distribution in the retrieved sample

Sociability type References

Social interactions based on
peer-to-peer communication

interfaces

[37, 52, 2, 21, 29, 31, 53, 54, 55, 56, 57, 28, 58, 59, 60, 61,
62, 26, 18, 63, 64, 25, 46, 65, 27, 66, 17, 67, 68, 20, 69, 47,
48, 70, 71, 22, 72, 38, 73, 74]

Social-Network Services based
approach as a media for social

interaction

[36, 41, 42, 30, 45, 43, 34, 40, 75, 32, 76, 77, 78, 79, 80, 39,
35, 33]

Human-inspired social
relationship based sociability

model
[19, 81, 23]

5.1.2 Wholeness

Considering the wholeness basic concept, it is defined as expressing "both the interdependence of
elements of the system and the coherence of the whole" [49]. This definition can be associated
with the words of Ludwig von Bertalanffy when defining its General System Theory (GST): "You
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cannot sum up the behavior of the whole from the isolated parts, and you have to take into account
the relations between the various subordinated systems and the systems which are super-ordinated
to them in order to understand the behavior of the parts"[82]. This idea theorizes the emergence
phenomenon occurring within complex systems: at the global level are appearing properties that
can not be deduced from elementary properties. Wholeness defends the idea that a system is more
than the sum of its parts, but also of its interactions with other systems of whatever nature. More
particularly, in our context, this concept implies to consider technical and human systems as a whole.
To this end, 4 types socio-technical systems, based on these 3 types of sociability can be identified
(see figure 6). When considering fully technical system, the P2P Communication Interface-based
sociability model is supporting technical systems of communicating objects. When considering both
human and machines, this same sociability model simply supports technical systems interacting with
humans. A system of communicating objects structured by SNS-based sociology is called a social
network of communicating objects. Finally, a system of human and cyber-physical agents structured
by human-like social relationship (anthropo-social model) is called a social network of socio-technical
agents. Table 5 and figure 7 are showing the distribution of our sample regarding this framework.
On these elements, it emerges quite clearly that systems are today still not really considered as
intrinsically socio-technical ones. Instead of that, it can be stated that the quasi-totality of papers are
considering human/social and technical systems as two separate entity. In these papers, contributions
are mostly relatives to communication interfaces or mechanics/relationships transposition between
one kind of system and another.

Figure 6: The 4 types of social systems
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Table 5: Socio-technical systems distribution in the retrieved sample

System type References

Technical systems of
communicating objects [62, 24, 67, 43, 52]

Technical systems interacting
with humans

[37, 62, 66, 69, 65, 20, 38, 68, 83, 76, 26, 35, 55, 21, 64, 73,
28, 59, 72, 58, 71, 17, 29, 22, 84, 25, 31, 79, 53, 60, 32, 80,
54, 56, 85, 48, 63, 57, 61, 86]

Social networks of
communicating objects

[81, 39, 38, 78, 40, 35, 42, 30, 24, 75, 18, 87, 44, 88, 45, 31,
46, 70, 74, 77, 32, 80, 2, 33, 47, 48, 23]

Social networks of
socio-technical agents [36, 19]

Figure 7: Number of publications regarding the system’s nature

5.1.3 System/organization

The system/organization basic concept can be summarized as focusing on the organization of the
constituents of a system as a coherent whole. It can be considered as the very grounding of systemic
approach. According to the Systems Engineering Body of Knowledge (SEBoK) 10, the most commonly
used definition of a system found science is given by the GST: "A System is a set of elements in
interaction" [82]. To this broad definition, the works from [89] and [90] added two aspects: first,
the system’s element are in dynamic interaction and second, they are organized according to a goal.
In the context of systemic approach, this concept will refer to what makes this set of dynamically
interacting and goal-pursuing elements a coherent whole [49]. This coherence is achieved through

10SEBoK: https://www.sebokwiki.org/wiki/GuidetotheSystemsEngineeringBodyofKnowledge(SEBoK)
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the organization of the elements. Here, organization refers to both a structural and a functional
aspect i.e.: how is built/arranged the whole, and what this arrangement allows it to do. This
arrangement can be done in 2 ways: organization in modules/subsystems, that integrates pre-existing
systems as broader systems, and organization in hierarchical levels, new properties are produced
and added at each level. In the industrial context, this relates to the notion of control modes and
architectures that have been detailed in the 1st chapter. Notably, system/organization is expressed
by the intrinsic centralized or decentralized nature of the considered (sub)systems (i.e.: hierarchy,
heterarchy, isoarchy). This nature can be found at different levels, from the global system’s control
architecture [17], to the local functioning of a specific subsystem such as resource sharing module [77].
Even if this organizational aspect is not part of the initial search, Table 6 shows that it is observable
into many of the systems exposed in the retrieved papers. Equally, a clear tendency to develop
decentralized systems can be noted. This can be simply explained by the very nature of SIoT-based
systems, upon which many developments are today conduced but also by the new vision of good work
for digital age with some new expectations (income and social security, considering co-determination,
participation and corporate culture as a whole, variety as the new normal: a life-phase approach
rather than rigid work models...) [7], leading to the emerging new socio-technical systems combining
Lean thinking and production practices with new technologies and human factors [91, 92].

Table 6: Organization type distribution in the retrieved sample

Organization type References

Hierarchical [56, 45, 43, 62, 26, 18, 24, 27, 80, 38, 33]
Heterarchical [52, 2, 21, 29, 31, 42, 30, 62, 75, 64, 17, 32, 48, 77, 78, 79, 38]

Isoarchical [65, 20]

5.1.4 Complexity

The last basic concept of the systemic approach, complexity, refers to the difficulties for analytical
and rationalist methods to fully apprehend systems. In a complex system, many components of
various nature are interacting with each other, generating emergent and non-linear behaviors, and
conferring the system spontaneous ordering characteristics and adaptation abilities. A system’s high
degree of organization, uncertain or unstable environment, and more globally the impossibility to
identify, quantify and master all the elements and relationships at stake are likely to explain these
phenomena. Undoubtedly, current and future industrial systems are complex. Computerization and
the addition of the cyber world to the physical one pushed back the factories’ borders, multiplying
the number of agents, data, exchanges, etc. tangible or not and overwhelming traditional system
synthesis methods [93]. Complexity is the concept that gives full meaning to the development of
systemic approaches for, without it, classical analytical methods would have been enough to fully
apprehend and master all kind of systems. This complexity has not been studied in detail here.
However, the models studied show the dominance of non-analytical approaches, such as MAS or
Knowledge Management ones, to deal with it.
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5.2 Technological Framework analysis
5.2.1 Human-centric solutions & human-machine-interaction

The Human-centric solutions & human-machine-interaction pole is presented as aiming to techno-
logically support and enhance human physical and cognitive abilities. To develop the supportive
dimension, a first focus has been set on enhancing the system/machines’s grasp of different physical or
cognitive human factors (Table 7). To do so, recent research have focused on the development of tech-
nologies for human speech, gesture, action and intention recognition & prediction [58, 53, 63, 25, 84, 73]
or aiming to track humans’ mental or physical strain & stress [36, 41, 63, 85, 68, 76, 72]. On the other
hand, to enable the human to get a better grasp of their environment and to better interact with the
system/machines, technologies mixing virtual and real worlds have taken a more and more important
place. This is the case of Virtual Reality (VR) simulating a virtual and immersive environment with
which the user can interact [61], Augmented Reality (AR) superposing in real time virtual elements
and information to the real world [86], and Cross or Mixed Reality (MR) going even beyond VR
and AR merging physical and cyber worlds to create an interactive cyber-physical hybrid reality,
in which humans can evolve [59]. As for the enhancing dimension, focus has been set on both
physical and cognitive capabilities. In the retrieved literature, cognitive enhancement is mostly
achieved by developing flexible interfaces or technological devices providing relevant data/information
to the user, and developing its sensing, learning and decision-making abilities [21, 59, 19, 67, 69].
When saying "physical enhancement", one would immediately think of exoskeletons-type devices
and working gears. Yet, safety and physical condition tracking devices [85, 22] are equally part of
human physical empowerment as part of industrial systems, along with remotely piloted devices [61].
This last device category calls for the 6th aspect of the pole identified by the European Commission:
Human-Robot collaboration, or Cobotics, that is receiving considerable attention in the literature
[29, 26, 19, 25, 65, 27, 66, 79, 80, 72].

Table 7: Human-centric solutions & human-machine-interaction

Focus References

Multi-lingual speech and
gesture recognition and

human intention prediction
[56, 58, 61, 63, 25, 84, 71, 73]

Tracking technologies for
mental and physical strain

and stress of employees
[36, 41, 63, 66, 85, 68, 76, 71, 72]

Augmented, virtual or mixed
reality technologies, for

training and inclusiveness
[53, 59, 61, 86, 85]

Enhancing physical human
capabilities (Exoskeletons,
bio-inspired working gears,

and safety equipment

[21, 29, 61, 85, 69, 22]

Enhancing cognitive human
capabilities [21, 28, 59, 18, 19, 25, 67, 69, 48, 38]

Cobotics [29, 26, 19, 25, 65, 27, 66, 79, 80, 72]
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5.2.2 Bio-inspired technologies & smart materials

The Bio-inspired technologies & smart materials pole is focusing on the potential applications of
bio-inspired technologies and processes into the industrial landscape. According to the European
Commission report, those could be integrated with either green properties (Self-healing/repairing,
recyclability, re-usability of wastes into raw materials, etc.), or with properties inspired by or adapted
to biological systems (living, lightweight and intrinsically traceable materials, embedded biosensors,
ergonomic systems). As highlighted in Table 8,3 of these tracks particularly stand out in our
sample. The most represented one would concern the development and implementation of embedded-
and bio- sensors technologies as key technological components for Human System Integration, by
tracking and enhancing human physical & cognitive abilities [31, 63, 76, 71, 80]. Then comes the
focus on ergonomics. While sensing technologies can be presented as HSI enablers, ergonomics is
their application framework, for it consists in a multidisciplinary research field aiming for human’s
comfort, safety and productivity increase within its work environment [68]. Better ergonomics being
achievable, for instance, through better operator positioning [72], thanks to technologies such as
virtual, augmented or cross reality [59], or by better workshop organisation and visual clues [64]. The
last property addressed into the studied sample is the self-healing and repairing ability of system’s
components. This last property is implicitly concerning smart products and materials, such as
self-healing polymers [94]. Yet, when considering physical or cyber systems, developing self healing
and repairing starts with the development of health, errors and failures detection. To this end, works
have been conduced aiming to track industrial assets health as part of a social network of things [42],
or to detect and treat time series outliers to ensure data quality [34]. We can assume that the other
above-mentioned properties (living, lightweight, intrinsically traceable, recyclable, or re-usable as raw
materials) are missing from our research sample for these notions were not aimed at by the search
string R.

Table 8: Bio-inspired technologies & smart materials

Focus References

Self-healing or self-repairing [42, 34, 26]
Lightweight /
Recyclable /

Raw material generation from
waste /

Integration of living materials /
Embedded sensor technologies

and biosensors [31, 56, 63, 67, 32, 76, 71, 79, 80, 73]

Adaptive / responsive
ergonomics and surface

properties
[59, 64, 68, 72]

Materials with intrinsic
traceability /
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5.2.3 Real time based digital twins & simulation

The Real time based digital twins & simulation pole (c.f. Table 9) is focusing on products, processes,
systems and systems’ components modeling and simulation for optimization, testing or security
purposes. One of the greatest challenges in today’s industrial systems still lies in their control.
Perfectly controlling any system implies in the first place to have a perfect knowledge of it. In
the context of complex large-scale industrial systems, only relevant multi-scale models can provide
this knowledge. For this reason, many works are today aiming to develop reference meta-models,
frameworks, and architectures for industrial systems control [36, 53, 46, 83], for analyze and learning
purposes [36, 53], or even for trust evaluation [46]. What modeling equally makes possible is the
simulation of products and processes that can be used for their optimization [56], or to measure
impact of different variables on the system and its environment (physical, social, environmental,
etc.) [52, 2, 57, 60, 95]. But maybe the most trendy technology of this pole in current research
concerns the development of Digital Twins. Digital Twin consists in a virtual replica of a physical
system, product, resource or even human that can be used for design [83], monitoring [54, 58, 70] or
optimization [56]. More specifically, in the studied sample, monitoring applications are the ones that
are mostly retrieved and are mainly considering HMI and HSI finalities. Yet, systems monitoring
aspects equally naturally covers real-time systems modeling, simulation and maintenance issues, for
which Digital Twins can be of great use. By integrating physical assets in the cyber space, Digital
Twins can be considered as one of the main enabling technologies for CPS development in the context
of future industrial systems [17, 80, 23].

Table 9: Real time based digital twins & simulation

Focus References

Digital twins of products and
processes [54, 56, 58, 83, 70]

Virtual simulating and testing
of products and processes [21, 56, 45, 75]

Multi-scale dynamic
modelling and simulation [36, 53, 30, 88, 43, 75, 46, 27, 17, 83, 47, 95, 78, 80, 38, 23, 74]

Simulation and measurement
of environmental and social

impact
[52, 2, 57, 60, 95]

Cyber-physical systems and
digital twins of entire systems [58, 17, 78, 80, 23, 74]

Planned maintenance [42, 40, 20]

5.2.4 Cyber safe data transmission, storage & analysis technologies

The harmonious integration of these new technologies into current already complex industrial systems
is one of their major challenges today. A key to achieve integration lies in these technologies’ capacity
for interoperability with each other, and with pre-existing systems, to form a coherent system of
systems. This need for interoperability can be found at every level, whether it concerns structural &
organizational aspects (such as enterprise systems’ interoperability [43]), or technical and applied
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ones (such as cyber & physical systems overlapping thanks to visualization interfaces for Cross, Mixed
or Enhanced reality [59, 35]).

To enable and support this interoperability, the Cyber safe data transmission, storage & analysis
technologies pole (c.f. Table 10) is focusing on the management and securing of the large amount of data
that are and will be generated by all the previously enunciated technologies. From their acquisition
thanks to sensors technologies or their creation by model-based simulation to their exploitation
into real-time and multi-scale models, Digital Twins, etc. data management implies many aspects
that already constitute the spine of today’s industrial computer systems. Networked, wireless or
not, sensors nowadays enable consequent data acquisition and transmission into industrial systems.
Notably, last decades’ consequent raise of embedded internet-connected devices (smartphones, tablets,
laptops, etc.) have seen the emergence of the concept of "Social sensing", where human-related data
are directly collected through these nomadic connected devices [31, 76]. After acquisition, data need
to be efficiently and safely transmitted, stored, processed and analyzed. The great novelty regarding
those tasks lies in fact in the size and complexity of data sets, for which traditional data processing
methods and application software prove insufficient. The need to fill this gap fostered the development
and use of Artificial Intelligence (AI) technologies and techniques. Notably, Big data management
aims to make data usable for further analytic or learning application [71]. This learning aspect has
taken a particularly important place in today’s research. Current computing capacities coupled to
the vast amount of available data have revived the development of neural networks and of machine,
deep, and reinforced learning technologies. These can find very concrete industrial applications, for
instance through modeling [36, 53], decision making and support [42, 24], human action recognition
[61, 84, 73], human-machine interaction [58, 71, 33], or even human behaviors transposition to
networked assets [75]. Hence, it can be assessed that data and computer systems’ importance is
vital for industrial systems. In the context of a globalized and hyper competitive economy, the
development of scalable and multi level cyber security takes on its full meaning. Various approaches
can be found in literature, from physical identification systems for access and authorization providing
[55, 62] to data and assets trustworthiness evaluation [46]. In this search for secure, efficient and
interoperable data management, a last aspect was identified: data traceability. If not particularly
treated as the main topic of retrieved papers, identification and traceability issues can be retrieve in
literature as an underpinning requirement in data management [55, 40, 24].

5.2.5 Artificial Intelligence

The Artificial Intelligence pole (Table 11) is mainly focusing on advanced data analysis and learning
technologies. Advanced data analysis aims to handle and analyze complex, interrelated and dynamic
data sets from different origin and scales. Thanks to AI, either causality- or correlation-based
relation and network effects within various systems (artefactual or human), can be analyzed and
transformed into exploitable data sets for modeling or learning technologies. Yet, while "traditional"
correlation-based AI can identify correlation between actions and disturbances in psychomotor work
[57] to build predictive experience-based models [87], causality-based AI (or causal AI) goes further.
Based on the precise identification of cause and effect relationships between variables, causal AI
is focused on the understanding of intrinsic systems’ mechanisms. Hence, while correlation-based
AI will be able to provide more or less accurate predictions (according to its training model and
available data set), causal AI aims to provide reliable decision-making models and tools [96, 97].
Hence, causality based-models have to handle even more complex, yet fundamental, mechanisms.
These concepts are underpinning the Swarm/Distribute intelligence technologies, aiming to make
"clever" behaviors appear from stigmergy among a population of agents structured by simple rules.
From a practical standpoint, beyond their analysis abilities, AI technologies are today the subject of
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Table 10: Cyber safe data transmission, storage & analysis technologies

Focus References

Networked sensors [31, 42, 30, 88, 76, 79, 73]
Data and system

interoperability [30, 59, 43, 39, 35]

Scalable, multi-level cyber
security [29, 55, 62, 66, 81, 79, 72]

Cyber-security/safe cloud
IT-infrastructure [46]

Big data management [58, 71, 23]
Traceability [55, 56, 40, 24, 85, 48, 79, 23]

Data processing for learning
processes [36, 53, 56, 42, 58, 61, 24, 75, 84, 71, 33, 73]

Edge computing [34]

great expectations regarding their ability to learn. AI research field covers many learning technologies,
the most common ones being usually classified into Supervised, Unsupervised, and Reinforcement
learning broad categories [98]. Aside from these 3 categories, Deep learning has today become
extremely important in research landscape as a 4th full-fledged approach [75, 25, 33, 73]. Deep
learning can be seen as based on Neural Network architectures, able to process the huge amount
of data previously mentioned, to reach and even surpass performances of human experts in many
domains. Industrial applications of Deep learning would today consists in human-activity recognition
for Human-Robot Interaction (see human-centric solutions & human-machine-interaction pole),
skills and requirements matching of tasks and operators [25, 20, 70, 33], or to enable systems to
autonomously handle unexpected issues (which is one of the main issues regarding automated systems)
[87, 20, 70]. Another interest of Deep-learning lies in recent developments of the Artificial Neural
Network technologies aiming to reproduce biological (human- or animal-like) neural networks (e.g.:
convolutional neural network [58]). These would later contribute for instance to enable/ease individual
& human-centric AI [33, 73], or brain-machine interfaces conception.

5.2.6 Technologies for energy efficiency & trustworthy autonomy

The Technologies for energy efficiency & trustworthy autonomy pole is focusing on neutralizing
the environmental impact related to all these new technologies’ energy consumption (Table 12).
Tomorrows’ industrial systems will require huge amount of energy, in a world where the need for
a sustainable development has become self evident. According to European Commission [5], focus
should be set on renewable energy sources, Hydrogen and Power-to-X technologies, Smart dust and
energy autonomous sensors development & integration, and low energy data transmission & data
analysis. In the retrieved sample these elements are standing out, even if out of search range at
first glance, through Energy Mobility Networks [52], Green/Energy-efficiency IoT [77] and AI [75] or
Prosumer Community development [39].
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Table 11: Artificial Intelligence

Focus References

Causality-based and not-only
correlation-based AI /

Show relations and network
effects outside of correlations [36, 88, 46, 81, 47, 71, 73]

Ability to respond to new or
unexpected conditions

without human support
[87, 20, 70]

Swarm intelligence /
Brain-machine interfaces /

Individual, person-centric AI [33, 73]
Informed deep learning [58, 75, 25, 33, 73]

Skill matching of human and
tasks [25, 20, 70, 33]

Secure energy-efficiency AI [75]
Ability to handle and find

correlations among complex,
interrelated data of different
origin and scales in dynamic
systems within a system of

systems

[57, 58, 87, 20, 73]

Table 12: Technologies for energy efficiency & trustworthy autonomy

Focus References

Integration of renewable
energy sources [52, 77]

Support of Hydrogen and
Power-to-X technologies /

Smart dust and energy
autonomous sensors /

Low energy data transmission
and data analysis [63, 65, 77, 39]

Figure 8 summarizes the research interest for each of the 6 axes of the technological enablers
for Industry 5.0. It appears that the Technologies for energy efficiency & trustworthy autonomy
is the least covered aspect, barely reaching 5 papers (7%). Then comes Artificial Intelligence
and Bio-inspired technologies & smart materials axes, covered by respectively 15 (22%) and 17
(25%) papers. Human-centric solutions & human-machine-interaction, Real time based digital twins
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& simulation, Cyber safe data transmission, and storage & analysis technologies axes are taking
particular importance in the literature, being present in more than 30 out of the 68 papers (more
than 44%). If it is not surprising to see the human aspect particularly standing out, since it is one
of the main aspect of the search R, the fact that Digital Twins and real-time simulations-related
technologies are taking an important place in research needs to be pointed out. Those are usually
seen as ways to cope with emergent phenomenons within complex systems. Figure 8 shows that, what
lies beneath Industry 5.0’s technological enablers is in fact a search to deal with complex industrial
systems, where both humans and industrial assets could be considered as one single socio-technical
system.

Figure 8: Number of publications regarding the technological framework

6 Discussion
In this paper, a SLR questioning the place given to the human into current and future industrial
systems, and more specifically regarding IoT and CPS developments, has been conducted. It has
shown the great, recent, and collaborative international interest for the subject, but equally a certain
lack of global vision. The retrieved papers have been analyzed through both a systemic and a
technological framework, aiming to tackle a Technology, Organization and Human triptych [7]. This
literature analysis has notably highlighted the existence of many IoT and CPS derivative, aimed at
developing socio-technical systems and fostering more human-integrative systems. Regarding the
systemic framework, and based on previous works [50], these approaches have been classified into 4
categories corresponding to the 4 types of socio-technical systems previously exposed, and presented
by figure 9. If this figure, failing to present the actual date of appearance or importance of each of
these variant (volumetry), is not suitable to present any conclusion, it can nonetheless be used as an
aggregation basis for a further research.

To deepen the elements presented in this study, the Web of Science scientific database has been
searched, for each of the IoT and CPS variant listed in table 2 and present in figure 9. For each
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Figure 9: IoT and CPS variants’ distribution regarding the 4 types of socio-technical systems

acronym presented here (except "IoT" and "CPS", which could be retrieved in any of these searches
and therefore bias the results), the full-name of the approach has been exactly Title-Abstract-
Keywords-searched, and the number of papers retrieved per year saved. Then The results have
been grouped by type of socio-technical approach, as presented by figures 6 and 9. Results of this
aggregated search are presented by figure 10. Overall, the recent and strong rise of these approaches
in the literature is clearly observable there. Equally, what can be stated here is the clear dominance
of broad technical approaches such as Industrial IoT (IIoT) or Cyber-Physical Production Systems
(CPPS). Nonetheless, approaches focusing on the development of social networks of communicating
objects, or human-system interaction systems, such as Social IoT or Social CPS, are significant. The
social networking of socio-technical agents is hardly present though.

Besides, the technological framework showed that today’s human centric technologies were both
support and enabling tools for a better consideration of the human and its variability (related to
its physical or cognitive conditions). Notably, the omnipresence of embedded internet-connected
devices coupled to the recent progresses of technologies such as new causal AI, explainable AI, Digital
Twins, or Augmented/Virtual/Mixed reality, can be seen as a vectors of tangibility [99], making the
system more understandable and thus more acceptable. Also, the bio-inspired technologies and smart
materials, easing human-system inclusion, can be cited as example of promising advances. Those can
either be taken as human-machine interaction enhancers, or decision-making supports, guaranteeing
human integrity and well-being at work. Hence, these new technologies are not only making the
concept of Human-Centered Design credible, but they equally constitute an acceptability vector for
future IoT- and CPS-based systems and their developments. However, new issues and challenges are
raised concerning data source management, for instance regarding security and respect for private
life, impacting those technologies’ social acceptability and their adoption.

7 Conclusion
To conclude, this literature study has shown the great interest for human-centricity in today’s
industrial research. Besides, what has been enlightened is that the development of actual socio-
technical systems has to rely on the 4 grounding concepts of systemics: interactions, wholeness,
organization, and complexity. By studying these concepts more closely, the authors have established a
classification of socio-technical systems, from networks of communicating objects to social networks of
socio-technical agents. Yet, even if many promising developments have been identified, the literature
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Figure 10: Results per year for each of IoT and CPS variants into Web of Science, aggregated accordingly
to their distribution regarding the 4 types of socio-technical systems

shows a clear predominance of the 2 human-system interfacing and social relationships’ transposition
to technical systems approaches. The research has stayed strongly focused on the development of
technical devices and approaches for a better consideration of the human aspect into manufacturing
systems. What seems to be lacking today is a generic framework within which these approaches can
find their place, and that can be a basis for the development of future socio-technical systems.

Hence, enabling the consideration of future industrial systems as complex socio-technical ones,
where both human and industrial assets would be considered as a coherent whole will require to
bridge many gaps. Though, several leads can already be foreseen. From an engineering viewpoint,
the raise of HSI as a full-fledged research field carries great potential to better integrate human,
thanks to the convergence of both new technologies and multidisciplinary fields (complexity science,
organizational theory, cognitive sciences, etc.). Another approach would be to design future systems
as human mechatronic societies [100], or based on human societies schemes. This would start by
identifying, defining, and formalizing the social relationships occurring within those to apply them to
industrial assets [101].

As a conclusion, the limitations of this study should be discussed. This review could be used
as a beginning for future researches, since some references have been filtered during SLR process.
Therefore, by filtering differently with other criteria, with less focus on technological assets for
example, this SLR study could be expanded to other dimensions. Moreover, papers dealing with
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societal aspects such as governmental policies, ethics, or sustainable development found in the
analyzed papers were not developed in this study. Yet, the deep changes that will be brought to
manufacturing landscape by Industries 4.0 & 5.0’s assets and technologies will inevitably have societal
repercussions. To cope with this transition, factors such as workers’ income, social security, skills
and knowledge will have to be considered through participative, inclusive, and empowering work
organizations which goes beyond the current vision of CPS and IoT based systems the study needs to
be enlarged to other production paradigms like Lean Production Systems and their complexity [102].
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