
HAL Id: hal-04294958
https://hal.science/hal-04294958v1

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A Case Study on the ”Jungle” Search for
Industry-Relevant Regression Testing

Maria Laura Brzezinski Meyer, Hélène Waeselynck, Fernand Cuesta

To cite this version:
Maria Laura Brzezinski Meyer, Hélène Waeselynck, Fernand Cuesta. A Case Study on the
”Jungle” Search for Industry-Relevant Regression Testing. 23rd IEEE International Conference
on Software Quality, Reliability & Security (QRS 2023), Oct 2023, Chiang Mai, Thailand.
�10.1109/QRS60937.2023.00045�. �hal-04294958�

https://hal.science/hal-04294958v1
https://hal.archives-ouvertes.fr


A Case Study on the “Jungle” Search for Industry-Relevant Regression Testing

Maria Laura Brzezinski Meyer1,2,∗, Hélène Waeselynck2, and Fernand Cuesta1
1Renault Software Factory, Toulouse, France

2LAAS-CNRS, Université de Toulouse, France
mlbrzezins@laas.fr, helene.waeselynck@laas.fr, fernand.cuesta@renault.com

*corresponding author

Abstract—The optimization of regression testing (RT) has
been widely studied in the literature, and numerous methods
exist. However, each context is unique. Therefore, how to
tell which method is appropriate for a specific industrial
context? Recent work has proposed a taxonomy to aid in
answering this question. The approach is to map both the RT
problem and existing solutions onto the taxonomy, aiming to
determine which solutions are best aligned with the problem.
This paper presents a case study that evaluates the approach
in a real setting. The context is the development of R&D
projects at a major automotive company, in the domain of
connected vehicles. We used the taxonomy to characterize the
RT problem in terms of measurable effects, and to identify
the technically feasible solutions from a set of 52 papers. We
report on the beneficial aspects but also the difficulties of the
approach, due to unclear taxonomy elements, missing ones
and paper classification errors.

Keywords–Regression testing; taxonomy; industrial case study

1. INTRODUCTION

Regression testing (RT) verifies that the changes in the code
did not introduce new issues, that is, the software did not
regress. Since re-runing all tests is usually not practical, there
is a need for some test optimization. This is called the RT
problem and has been an active field of research for decades.
The methods that have emerged can be divided into three cate-
gories [1]: Test Suite Minimization (TSM), Test Case Selection
(TCS) and Regression Test Prioritization (RTP). TSM aims
to reduce the number of tests by removing redundant ones.
TCS addresses the dual problem of choosing which tests to
run. The selection is often related to the code changes: tests
that cover the modified parts of the code are selected. RTP
neither removes nor selects tests, but assigns them an order of
execution seeking to maximize early fault exposure. An RT
strategy may hybridize TSM, TCS and RTP. For example, a
minimization technique can be applied after the selection to
further reduce the number of tests. Or all tests are prioritized
but only the highest-priority ones are selected. Conceptually,
the three categories of methods are closely related. All of them
involve some comparative characterization of the tests, based
on which an optimal decision has to be taken (which tests to
remove, retain or execute first).
In the article titled “On the search for industry-relevant
regression testing research” [2], Ali et al. noted that, de-

spite the large body of work on the RT problem, there is
limited dissemination in industry. They identified two main
difficulties faced by practitioners. The first one comes from the
discrepancies in terminology between academia and industry:
it makes it harder for practitioners to search for methods in
the literature. The second one is the difficulty to assess the
relevance of the methods. The research is typically done in a
controlled environment, which differs from the complexity of
an industrial scenario.
In order to help practitioners to interpret, compare and contrast
the methods in the literature, Ali et al. [2] created a taxonomy.
When both the RT problem and existing solutions are mapped
onto the taxonomy, practitioners may more easily determine
which solutions are best aligned with their problem. The tax-
onomy has three parts to capture the practitioners’ concerns:
the industrial context, the desired effects of RT methods and
the input information they need (e.g., code changes, ...).
This paper presents an application and an evaluation of the
taxonomy to assist in a real RT problem. The context is
the development of R&D projects at Renault for connected
vehicles. We used the taxonomy to extract a set of 8 promising
methods out of 52 papers. The methods are currently being
experimented at Renault. We report on the beneficial aspects
but also the difficulties of using the taxonomy to identify the
applicable and relevant RT research.
The paper is structured as follows. Section 2 introduces the
background of this work. Section 3 describes the methodology
we used to apply and assess the taxonomy. The industrial RT
problem is first characterized by its context and desired effects
(Section 4). Then, Section 5 analyzes the feasibility of the
methods from the literature, based on the information items
they require. Section 6 analyzes how the desired effects can
be measured in the industrial context. Section 7 discusses the
threats to validity and Section 8 concludes the paper.

2. BACKGROUND AND RELATED WORK

Since the early papers in the 90s, regression testing has been
widely studied. Many surveys and systematic reviews have
been published to keep pace with the evolving research in the
area. In [2], the authors identified eleven reviews of software
RT literature between 2010 and 2017. New ones have been
published since that time, e.g., [3] [4] [5]. The existing
RT methods are diverse. They differ in the (combination of)
criteria to compare the tests: code coverage, code change
coverage, criticality of tested requirements, similarity of tests,
cost, historical effectiveness, ... The core RT algorithms are



also diverse, including predefined strategies, strategies opti-
mized by a metaheuristic search, as well as strategies based
on machine learning.
With so many methods, it is difficult to know which ones
to select and apply in a specific context. This is why Ali
et al. [2] introduced a taxonomy, allowing an alignment
between methods proposed in the literature and real industrial
contexts. The taxonomy focuses on industrial relevance and
applicability. It is divided into three parts: context, effect and
information. The purpose of the context part is to identify
the characteristics of an industrial environment that make
regression testing challenging. Three context factors are iden-
tified: system-related (size, complexity and type), process-
related (testing process and test techniques) and people-related
(organizational factors). The second part of the taxonomy
is the desired effect of a method, that is, the measurable
improvement reported with its implementation. The effects
are divided into three categories: test coverage related, test
efficiency and effectiveness, and awareness. Together, the
context and desired effects characterize an RT problem. Then,
the applicability of candidate solutions is determined by the
third part of the taxonomy. The solutions are characterized by
the information they utilize, like: development artifacts (from
requirements to binary code), information about test cases,
test execution attributes, test reports and issues revealed by
tests. If some information item is not available in the industrial
context, then the method is not feasible in this context. The
information part of the taxonomy is the most detailed one,
representing 50 out of a total of 68 attributes for all parts (see
these 50 attributes in Table 5).
The building of the taxonomy followed a principled approach,
starting from a literature review and involving practitioners at
several steps. The authors also demonstrated the mapping of 38
RT papers to the taxonomy. However, they did not demonstrate
the application of their taxonomy to address RT problems in
real-world scenarios. This paper provides such a real-world
scenario to study the use of the taxonomy.

3. METHODOLOGY

The study takes the perspective of an industrial company
wishing to improve its RT process. From a set of research
papers, the company would like to know which methods
to select for an experimentation in its context. The general
research question is whether the taxonomy is useful to aid in
this selection and in the preparation of experiments.
The study considers a set of 52 candidate papers. We first took
the 38 RT papers already mapped to the taxonomy. They are
displayed in Table 1, where we retain the same ID as in [2]
(from S1 to S38). These papers describe methods that were
identified as industry-relevant by the authors of the taxonomy
and their industrial partners. But none of these papers was
published after 2016, and their set does not reflect the growing
interest on machine learning (ML)-based methods. So we
felt the need to include additional papers. We considered a
recent literature review on ML-based RT research [5]. The
review classifies 29 papers depending on whether they use

Table 1. Selected papers on regression testing from [2]
ID Ref ID Ref ID Ref ID Ref
S1 [8] S11 [9] S21 [10] S31 [11]
S2 [12] S12 [13] S22 [14] S32 [15]
S3 [16] S13 [17] S23 [18] S33 [19]
S4 [20] S14 [21] S24 [22] S34 [23]
S5 [24] S15 [25] S25 [26] S35 [27]
S6 [28] S16 [29] S26 [30] S36 [31]
S7 [32] S17 [33] S27 [34] S37 [35]
S8 [36] S18 [37] S28 [38] S38 [39]
S9 [40] S19 [41] S29 [42]

S10 [43] S20 [44] S30 [45]

Table 2. Added papers on ML-based methods
ID Ref Method ID Ref Method
L1 [46] SL L8 [47] RL
L2 [6] SL L9 [48] RL
L3 [49] SL L10 [50] SL + RL
L4 [7] SL L11 [51] SL + NLP
L5 [52] UL L12 [53] SL + NLP
L6 [54] UL L13 [55] SL + NLP
L7 [56] RL L14 [57] UL + NLP

supervised learning (SL), unsupervised learning (UL), rein-
forcement learning (RL), natural language processing (NLP)
or a mix of them. We extracted a subset of 12 papers such
that each learning technique is covered, as well as each mix
of techniques. We also included two extra papers [6] [7], not
cited in the review, but which we had previously identified
as ML-based work with an industrial focus. Table 2 lists the
resulting set of added papers (L1, ... L14). We had to map
them to the taxonomy, and did so with a double check by
different authors.

The real-world scenario is a Renault project under develop-
ment. We had full access to its data. We also interacted with
the engineers working on the project all along the study. The
search for relevant methods followed three steps, shown in
Figure 1. Each step leverages the taxonomy for a different
purpose, in accordance with the role of the context, effect
and information described in [2]. Step 1 characterizes the
industrial RT problem in terms of a context and desired effects.
Step 2 identifies the feasible methods from the set of papers:
the utilized information must correspond to information items
available in the project. Step 3 keeps the feasible methods that
address the desired effects, and determines how to measure
these effects in the industrial context. Each step provides
feedback on the taxonomy. Hence, the general question about
the utility of the taxonomy is actually refined into three
research questions, one for each step.

• RQ1: Does the taxonomy help in describing a specific
industrial RT problem?

• RQ2: Does the taxonomy help in identifying the feasible
solutions in a specific industrial context?

• RQ3: Does the taxonomy help in finding ways to assess the
solutions in a specific industrial context?



Figure 1: Research structure.

Figure 2: Global view of Project A.

4. RT PROBLEM CHARACTERIZATION

Step 1 of the study characterizes the RT problem by an
industrial context and a set of desired improvements. This
section presents them. We then provide feedback about the use
of the taxonomy for exposing the important characteristics of
the problem.

4.1. Description of the context

The case study involves an R&D automotive project called
Project A in the rest of the paper. Figure 2 provides a high-
level view of its architecture. It is multi-system and composed
of several Electronic Control Units (ECUs) connected by a
CAN bus (represented by purple lines in Figure 2). The
two main components are the infotainment system and the
communication one. The infotainment constitutes the main
point of contact with the driver and passenger thanks to a
screen and connected equipment. This system is the vehicle
interface for navigation, sound, image, communication and
user settings of the car. The other system is in charge of
the communication between on-board systems and external
services. A cloud platform is used to store vehicle information
and to communicate with other external systems. An example
of external system considered in Project A is a smartphone
application to lock/unlock the doors of the car.
The case study focuses on the integration tests of the on-board
software. Table 3 summarizes the context factors based on the
taxonomy. Those factors are high-level. The user is expected
to put a short note why a given factor is challenging (e.g.,
“multi-language” put for the complexity factor). We provide
below a more extensive description.

Table 3. Context of Project A using taxonomy of [2]
Context factor Project A

Size Large-scale
Complexity Multi-languageSystem-

related Type of the system Automotive embedded
system

Testing process Weekly integration and
issues allocationProcess-

related Test technique Automatic and manual
Cognitive factors Not relevantPeople-

related Organizational factors Multiple companies

Each system is multi-language. The infotainment is mainly
in C, C++ and Java, while the communication is mainly in
C. Their development involves different companies. There is
one supplier for infotainment, one for communication and
Renault integrates both parts. We consider the tests done at
Renault. They run on a test bench that reproduces the on-board
architecture and manages the access to the external services.
The binary code of the software under test (SUT) is flashed
on the bench to update the ECUs. The size of the flashed
code is in the scale of 6 GB. The integration team first tests
the infotainment and communication separately, and then their
integration. A new binary code version is received weekly
from the suppliers.
There are two types of tests: automatic and manual. Automatic
tests run during the night and manual ones during the working
hours. All tests have a priority (P1, P2, or P3) determined by
the importance of the functional feature they check. When a
Fail is found, the tester conducts an analysis to determine the
origin of the problem: infotainment, communication or test
automation issue. Accordingly, the issue report is passed to
product or test automation managers, who assign a criticality
and priority to the issue. The criticality is defined by the impact
that the bug has on the client, with K1 corresponding to the
strongest impact, and K4 to the weakest one. The priority
determines the order in which the suppliers or test automation
team should fix the issues, using four levels of priority.
Test automation issues represent about 30% of the Fails of
automatic tests. This is not an unusual situation, and reflects
the complexity of the test environment for the embedded
software. Other authors have studied automotive projects using
hardware-in-the-loop test benches [58]. They reported from
74% up to 91% of Fails due to automation issues (unreliable



test infrastructures, incorrect tests). In Project A, the test
automation calls for a dedicated development and evolution
process. All automatic tests are implemented using Robot
Framework1, following a keyword-driven approach. The main
script of a test is concise, based on abstract keywords, but
relies on many lower-level resources (keyword libraries, code
libraries, configuration files). All in all, the automation code
of a test typically represent tens of thousands lines of code (>
10 KLOC), making it quite complex. A test is made available
to the integration team only when it has demonstrated a stable
correct behavior. If the testing of the SUT reveals an unstable
behavior or any other automation issue, then the test becomes
unavailable until it is repaired by the test automation team.
To ensure a stable behavior, the test design puts emphasis
on making each test a self-contained and standalone unit.
Each test is responsible for its complete set-up and clean-up,
including hardware reboots, the establishment of a connection
to the cloud, and so on. In this way, a test starts and ends in
a known state, and has no side effect on other tests.
Manual tests are also defined as standalone units. The tester
is free to perform them in any order that matches the priority
(P1 to P3, as previously explained). In practice, the tester may
happen to merge two tests of the same priority that require a
similar test bench configuration, in order to save the set-up
time. However, this is not always a good practice. A test may
need a known initial state like a “fresh boot”. If the test is
appended to another one without the reboot, its behavior is
less predictable. Spurious failures may occur. It is safer to
systematically do the set-up specified for the test.
The set-up and cleaning actions are important to achieve stable
tests, but are time-consuming. Due to them, the duration of
each test – automatic or manual – is typically in tens of
minutes (from 20 to 50 minutes). Running all tests would
take 7 nights and 9 working days, which would not fit into
a week. This time does not account for the analysis of the
tests, which must also be done during the week. The practice
is to have 2 nights and a half for running the automatic tests,
and about 2 days and a half for the manual ones. In the latter
case, this is an estimate, because the execution time of manual
tests cannot be precisely measured, nor clearly separated from
the analysis time. The manual tester immediately performs the
analysis when observing a Fail, before going to the next test.
The number of executed tests thus depends on the Fails of
the week. The engineers estimate that, on average, 50% of the
working time is spent on running the manual tests and 50%
on analyzing them.
At the beginning of each week, the integration teams decides
which tests will be executed. For manual tests, it is not un-
common that the low-priority ones end up not being executed,
due to lack of time. Moreover, some tests tend to be rarely
selected. As a result, some tests are not executed for months.

4.2. Desired Effects
The taxonomy proposes three broad categories of improve-
ments: in test coverage, in efficiency and effectiveness, and in

1https://robotframework.org/

Table 4. Desired effects for Project A using the taxonomy
Desired effects

Feature coverageTest coverage Input (Pairwise)
Reduction of test suite
Reduced testing time +
Improved precision

Decreased time for fault detection ++
Reduced need for ressources

Fault detection capability +
Severe fault detection +

Efficiency &
effectiveness

Reduced cost of failure
Awareness Transparency of testing decisions

increasing awareness. For the engineers of Project A, the focus
is on efficiency and effectiveness. For this, the taxonomy has
several refined objectives shown in Table 4. We discuss below
the ones that are the most desirable for Project A.

Following discussions with engineers, the two main objectives
are (i) to decrease the time to find faults and (ii) to avoid
tests that are never or rarely executed. The sooner the faults
are found, the earlier the analysis of these bugs and the
faster feedback to the system suppliers and test automation
team. Moreover, tests should not be left behind for a long
period of time. Otherwise, regression problems may remain
unnoticed until late in the project. All in all, the test selection
and prioritization could be more efficient than it is currently:
it would ideally execute the failing tests first, at the very
beginning of the week, and also ensure a circulation of the
tests across weeks, none of them being forgotten. In terms of
the taxonomy, the decreased time for fault detection clearly
corresponds to the first objective, while the circulation of the
tests is not explicitly mentioned.

Some supplementary objectives are desired but assigned less
importance in the short term. For both manual and automatic
tests, a reduced testing time would make the bench available
for other projects. Ideally, the usage time of the bench could
go from two and a half days to just one day for manual tests,
and from two and a half nights to one night for automatic tests.
However, the mere reduction in time would not be enough. It
would be imperative to maintain the fault detection capability.
If such is not the case, the reduced testing time should at least
maintain, if not improve, the severe fault detection capability.
As mentioned in the description of the context, each issue has
a criticality. So, it may be acceptable to find less faults if the
most critical ones are found.

To sum up, the short-term objectives revolve around a more
efficient use of the currently available testing time, while
longer-term objectives would consider reducing this time. Note
that the solutions might be different for manual and automatic
tests. For example, the decreased time for fault detection does
not have the same meaning if the analysis is done on the fly
(manual tests) or after the nightly execution (automatic tests).
For automatic tests, a fine-grained ordering may not be needed,
provided that the failing tests occur in the first night.



4.3. Feedback on the taxonomy (RQ1)

The most helpful part of the taxonomy concerned the desired
effects, which allowed the identification and prioritization of
objectives. The context factors were deemed too high level to
fully characterize an industrial problem. However, they were
found relevant to guide the discussions with the engineers.
The discussion of desired effects revealed a missing one: the
circulation of the tests. The taxonomy does not include it. Still,
at least one paper analyzed by the authors of the taxonomy pro-
poses a method that ensures the circulation of the tests (S26).
One of the ML-based papers we analyzed (L9) also do. But
none of them lets this appear as a measured effect. According
to the methodology used to build the taxonomy, the circulation
of the tests would then not qualify as a desired effect because
“an effect has to be demonstrated as a measurement”. We
could find another paper in the literature that mentions the
circulation of tests, and that explicitly demonstrates this effect
(along with other ones) [59]. We believe that forgotten tests are
a recurring problem in many industrial settings, and propose
to add their avoidance in the taxonomy. Section 6 will further
discuss the evaluation of this effect.

RQ1 (aid in describing the problem): The context part
is too high-level, but the effect part proved very helpful. A
missing effect is the circulation of the tests.

5. ANALYSIS OF RT METHODS FEASIBILITY

Step 2 of the study explores the feasibility of the methods
proposed in the set of 52 papers. A method is considered as
technically feasible if it is based solely on information items
that are available in the industrial context. First, a taxonomy-
based analysis is done, which uses the items mentioned in the
taxonomy. Both the papers and Project A are mapped to the
taxonomy, allowing a comparison of the required and available
items. It yields a classification into feasible and infeasible
methods. Then, we assess the outcomes of the previous
analysis by browsing through the papers, and by manually
determining whether each method is really (in)feasible in the
context. The section ends by feedback on the use of the
taxonomy to analyze feasibility.

5.1. Taxonomy-based analysis of feasibility

Table 5 shows the mapping of Project A and papers to the
taxonomy. The first two columns display the information items
of the taxonomy. The third one indicates which items are
available for Project A. It can be compared with the fourth
column that lists the papers requiring an item. For example,
looking at the first item: the changes in requirements are not
tracked in Project A, so that the method described in S21 is not
feasible. For Project A, a star is marked (X*) if the information
is indirectly available: it may be derived from other available
data, or replaced by an estimate.
For papers Si, the table simply reproduces the mapping done
by the taxonomy authors. For Project A and the papers Li, the
mapping is ours. Obviously, it depends on our understanding

of the taxonomy. This is worth mentioning since we experi-
enced difficulties in interpreting some of the items.

1) Test execution time appearing at different places. In [2],
the authors provided the following explanation: as an attribute
of a test case it is an estimation; as an attribute of a test
execution, it is measured at runtime; and as an attribute of the
test reports, it is further recorded and maintained. However,
it was unclear to us why and how to distinguish these cases.
We had a look at papers exemplifying them. For instance, the
mapping of S29 has the execution time for both test cases
and test executions. But the paper merely mentions an option
to take time into consideration. There is no detail on time
estimation, measurement or recording. As another example, we
could not understand why time in S32 (test executions) does
not have the same mapping as in S3 and S15 (test reports).
We finally took the following mapping decisions. For project
A, we considered all three execution time items as available.
Strictly speaking, the measured execution time (in test exe-
cutions or reports) is available for automatic tests only. We
marked the information as indirectly available due to manual
tests, for which we only have an estimate. For the mapping
of papers Li, we decided not to delve into considerations of
estimated, measured or recorded values. If a paper used the
duration of tests, we mapped it to test case/execution time, and
considered the information as available for Project A.

2) Items referring to faults, failures or issues. We feel that the
terminology would have deserved an explanation. Is a failure
different from a Fail verdict? Is so, there is no added value of
test reports/link to failures compared to test reports/verdicts.
For instance, we could not explain the different mappings of
papers S4 (verdict only) and S18 (verdict + link to failures):
both compute failure rates in a test time window. Paper
S4 is additionally mapped to test cases/link to faults, but
seems more concerned with failures (their frequency, their
severity) than faults (i.e., the investigated causes of failures).
We observed that, in many papers, “faults” and “failures” are
used interchangeably. In Project A, we have data for both.
The investigation of faults is tracked by an issue management
system. Not all Fails yield the opening of an issue, and there
may be a single issue opened for multiple failing tests.
We did the mapping as follows. We ignored the item test
reports/link to failures. Rather, we used test reports/verdicts to
indicate that a method needs the recording of the fails. Some
methods do not consider the raw fails, and need a traceability
between the tests and the revealed faults. For them, we decided
not to distinguish whether the recording is in the direction
from tests to faults (test cases/link to faults), or from faults to
tests (issues/link to test case). Indeed, one item can be derived
from the other by reversing the links. For papers Li, we chose
issues/link to test case to represent any relation between tests
and faults. The direction of the link is the most frequent one
when using an issue management system. For Project A, we
explicitly marked both directions as available. We also marked
test cases/fault detection probability as indirectly available:
estimates can be derived from historical data.



Table 5. Information for Project A using the taxonomy of [2] and mapping of the set of papers
Information Project A State of the Art Papers

No of changes in a requirement S21
Fault impact X S21

Subjective implementation complexity X S21
Perceived completeness X S21
Perceived treaceability X S21

Requeriments

Customer assigned priority X S21, S33, L14
System models S13-S18, S27, S35Design

artifacts Code dependencies S19, S20, S37, L10

Code change / Revision history S1, S2, S5, S7, S8, S24, S25, S38,
L1, L2, L3, L10, L13

Source file S2, S7, S8, S30, S37, L11Source
code No of Contributors S32

Class dependencies S6Intermediate
code Code changes (method or class) S2, S6, S28, L1, L10, L11

Revision history X S6, S29
Component changes S9-S12, S31Binary

code Binary files X S6, S9-S12, S23, S29
Target variant S26
Type of test S26, L14

Model coverage S13-S20
Functionality coverage S3, S4

Static priority X S26
Age X S26, L11

Fault detection probability (estimated) X* S22, S29, S33, L13

Execution time (estimated) X S22, S29, L4, L7, L8,
L9, L10, L12, L13

Cost (estimated) X* S22, S33, L12
Link to requirements X S21, S22

Link to faults X S4, S21

Test
cases

Link to source code S6-S8, L2
Execution time X* S29, S32
Database-states S36

Invocation counts S28
Invocation chains S28, S31

Runtime component coverage S31
Method coverage S28, L1, L6

Code coverage S5, S23, S29, S37, S38,
L2, L3, L5, L11, L13

Browser states S36

Test
executions

Class coverage S6, L10
Execution time X* S3, S4, S13-S18, S28

Verdicts X S1-S4, S13-S18, S26, S32, S34,
L1, L2, L4, L6, L7, L8, L9, L10, L11

Severity X S28, S33
Link to packages and their revisions S1

Link to branch S32
Build type S32

Link to failure S13-S18
Test session S13-S18, S26

Test
reports

Variant under test S32
Link to fixed file / link to source code S24, S25, L2, L3

Fix-time X* S32

Link to test case X S24, S25, S37, L3,
L12, L13, L14Issues

Failure severity X S3, S4, L12, L14



Table 6. Technically feasible methods according to
the taxonomy or a manual labeling (differences in bold)

Labeling method Selected papers

Taxonomy-based labeling S22, S33, S34,
L4, L7, L8, L9, L12

Manual labeling (ground truth) S3, S22, S26, S34,
L4, L7, L8, L9

3) Test session (in test reports). It seems obvious that any RT
process involves test sessions. However, only a few papers Si
are mapped to this item, and we could not understand what
makes them different. We decided to ignore this item.
Subject to our interpretation, the taxonomy-based analysis
retains 8 out of the 52 papers. They are shown in the first
row of Table 6. They use items like the execution time of
tests, their cost, their historical effectiveness (fail verdicts,
severity of the fails, issues found by the tests), the tested
requirements and their priority. All these items are available
in Project A. Most of the eliminated paper require design
or code artefacts that Project A does not have, as well as
coverage information. A few papers are eliminated due to other
causes: they consider variability data in multiple variants and
code branches (S26, S32), or need to monitor the number of
changes in requirements (S21).

5.2. Manual feasibility analysis by reading the papers

To assess the aid provided by the taxonomy, we need some
ground truth. For this, we performed a manual labeling. We
went through all papers, and labeled them as feasible or
not in the context of Project A. As shown in Table 6, four
papers were misclassified by the taxonomy. There are two false
positives (S33, L12) and two false negatives (S3, S26). The
classification errors are due to two causes: some papers are not
correctly mapped to the taxonomy, and the taxonomy misses
important items.
While reading the papers, we had several disagreements with
the mapping proposed for the papers Si in [2]. The dis-
agreements are reported in Table 7. They concern as much
as 50% of papers Si. Most of the time, the disagreement
did not affect the final feasibility label. But it did in three
cases: S3, S26 and S33. Paper S3 was considered as the
same approach as S4. Both were eliminated due to the use
of functionality coverage information. But only S4, which
extends S3, uses this information: S3 is actually feasible in the
context of Project A. Paper S26 was also wrongly eliminated.
It is supposed to use test cases/target variant. While variability
is mentioned in the paper, the authors explain that they could
not retrieve the information and present a method that does not
use it. The type of tests is also not used. For S33, the error
is in the opposite direction. The paper was retained but uses
data items that were forgotten in the mapping (functionality
coverage and configuration variants), making it unfeasible.
The other cause of misclassification is when the taxonomy
misses an item that is important for feasibility. Since the
taxonomy was built from a literature review, it reflects the set
of reviewed papers. As mentioned, this set had few methods

Table 7. Disagreements with the mapping of papers in [2]
ID Disagreements

S3 Same mapping as S4 (same authors),
but actually uses less information

S9-S12 Needs the source code of user functions,
as well as links from test cases to the code

S13-S18

Focuses on product lines, but no
variability-related item is marked.
All papers have the same mapping

while they consider different data subsets

S19-S20 Wrong mapping to design artefacts/code
dependencies (uses a black-box model)

S26 Wrong mapping to test cases/target variant
(does not use variability data)

S27 Needs the model coverage of test cases

S29
Wrong mapping to test cases/fault

detection probability (the paper merely says
that fault detection could be added)

S32 Needs the cost of test cases

S33 Needs the functionality coverage and
target variant of test cases

S35 Needs the model coverage and
target variant of test cases

based on machine learning. By adding a bunch of papers to
represent these methods, we could get new information items.
Such was the case for L12. It applies NLP techniques and
require a natural language description of test cases. There is
no item for this in the taxonomy. The paper was labeled as
feasible, but actually Project A lacks the required information.
A similar missing element is the natural language description
of issues, required by L14. Project A has this information,
however L14 is unfeasible due to another reason (type of test).
Although it does not cause any problem for our classification,
it may yield a misclassification in other contexts where the
information is not available.

5.3. Feedback on the taxonomy (RQ2)
The availability of information was found an effective criterion
to separate which methods are applicable in a given context.
For Project A, only 8 out of the 52 papers fulfill this criterion
(ground truth). Having read the papers, we are quite confident
that the methods are technically feasible in our context.
However, their identification via the taxonomy was hindered
by understanding issues and paper classification errors.
We had a hard time trying to understand the meaning of some
information items. What is the difference between execution
time for test executions and for reports? What do the many
links between tests and failures (or faults, issues) mean? What
is a test session? We ended up reading numerous papers just
to determine how to interpret the taxonomy. We missed a user
guide explaining the rationale and meaning of the items.
While browsing through the papers already aligned to the
taxonomy, we had disagreements with as much as 50% of the
mappings. They concern grouping papers from the same au-
thors while there are differences in the approaches, forgetting
items, or marking items that the authors mention but actually
do not use. For Project A, the inaccurate mappings caused
three classification errors (S3, S26 misclassified as unfeasible,



Table 8. Addressed Effects
Addressed effects Method

Reduced testing time S3, L4, L7, L8, L9

Decreased time for fault detection S3, S22, S26, L4,
L7, L8, L9

Fault detection capability S26, S34
Severe fault detection S3

Circulation of the tests S26, L9

and S33 misclassified as feasible). The inaccuracies reported
in Table 7 could be fixed, but there is no maintained repository
to update the mappings for future usage.
Other classification errors were due to missing elements in
the taxonomy. They concern natural language artefacts used
by some machine learning papers. The incompleteness of the
taxonomy is unavoidable, as new approaches are continuously
added by researchers. Keeping the taxonomy in line with the
state of the art would again require a maintenance effort.

RQ2 (aid in selecting the feasible methods): The informa-
tion items are difficult to interpret, and several papers are
inaccurately mapped to the taxonomy. A documentation and
maintenance effort would be needed to make the taxonomy
more usable.

6. EVALUATION OF RT METHODS

Step 3 of the study focuses on the evaluation of the candidate
methods. Table 8 shows the alignment between the desired
effects (from Step 1) and the ones addressed by the feasible
methods. The most desired effects are in bold. The circulation
of the tests is not in the taxonomy but added for completeness.
All the methods have at least one effect in common with
Project A, and are thus potentially relevant. However, their
relevance cannot be decided based on published results. They
must be experimented in the industrial context. To prepare the
implementation of experiments, we must gain closer insights
into the measurement of effects. For this, we had a look at all
papers (feasible or not) mapped to each desired effect.

6.1. Decreased time for fault detection

The decreased time for fault detection is measured by 19
papers. Among the used metrics, one stands out and appears
in 12 papers: APFD (Average Percentage of Faults Detected)
and its variant NAPFD (Normalized APFD). APFD was first
introduced in [60]. It measures how early an ordered test suite
reveals the faults. It requires that the faults are known, the tests
that reveal each fault are known, and the full suite is executed.
If the faults and their revealing tests are unknown, the metric
may use the raw information of the failing tests. The variant
NAPFD [61] addresses cases where not all tests are run and
thus only a certain percentage of faults (or fails) are detected
compared to the full suite. Note that neither APFD nor NAPFD
is well-suited when there are few faults. As an alternative, we
found that some authors focus on the first detection only. The
metric can be relative to the number of tests (as in L1) or to
test execution time (as in L9).

0.0 0.2 0.4 0.6 0.8 1.0
APFD

  Optimum

  Historical

Figure 3: APFD for optimal and historical orders of manual tests.

In project A, the number of revealed faults is quite different
for automatic and manual tests.
The nightly automatic tests check mature functionalities that
rarely fail. Most of the weeks, all executed tests pass. When
there are Fails, they are linked to few issues (max 3 in a week).
Hence, an APFD-like metric is not adequate. Moreover, since
the test results are analyzed during working hours, the precise
ordering of the tests during the night is not so useful. From
historical data, the first fault (if any) most often surfaces in the
first night. In the cases with 2 or 3 faults, there are detections
after the first night. Accordingly, appropriate metrics could
be the times to first and last detection with the granularity of
nights. A candidate method should not degrade the time to first
detection, and should make the last detection occur earlier.
In contrast, the manual tests reveal more faults and a fine-
grained prioritization is useful. A classical APFD metric is
possible. Figure 3 shows its application to historical data.
Although a subset of tests were executed each week, NAPFD
would not be appropriate to analyse the history of Project A.
Indeed, we do not know the percentage of faults compared
to the full test suite. Rather, we have to consider that the
full test suite of a week is exactly the set of tests that ran
during this week, and the faults are only the ones revealed
by these tests. Using this interpretation, the historical APFD
measures the adequacy of the execution order chosen by the
tester, given the selection of the week. In Figure 3, we also
give the APFD for an (hypothetical) optimal order of tests,
where the revealing ones are always put first. The comparison
between the historical and optimal order shows that there is
room for improvement.
We thus retain APFD for manual tests, and the time to first
and last detection for automatic tests (measured with the
granularity of a night). The metrics will allow us to evaluate
the 7 feasible methods that address the effect (see Table 8).

6.2. Circulation of the tests
For the circulation of the tests, the taxonomy does not help. No
paper from the set measures this effect, although some address
it (S26, L9). Outside the set of papers, we identified relevant
work in [59]: the authors check that no test is forgotten in
three months of execution. This suggests a measurement of
the worst case time between two executions of a test.
We applied this metric to historical data over a period of one
year. The worst case is more than 3 months for manual tests,
and 6 months for automatic ones. If one considers the time
to run the complete suite (respectively 9 working days and 7
nights), there is room for improvement. Each week uses 2.5
days and nights for running the tests, so a complete cycle



would last less that one month. This shows that it is feasible
to decrease the worst case.
The candidate methods are obviously S26 and L9. We also
consider augmenting the other methods with a circulation
effect. A method will then fill only x% of the test time budget,
the remaining (100 − x)% being filled by tests according
to their seniority of execution. To allow an evaluation on
historical data, we will consider that the tests ran during the
first x% must be a subset of the tests that really ran during
the project, possibly ordered differently. This will allow us
to explore tradeoffs between the circulation of the tests and
the decreased time for fault detection supplied by the original
methods.

6.3. Long-term objectives

The long-term objectives in Project A are to reduce the testing
time while maintaining the (severe) fault detection capability.
The testing time per week would ideally go down to just one
night for automatic tests and one working day for manual
tests. We analyzed the historical data to know whether this
time would be sufficient to run the tests that reveal the faults.
For automatic tests, it is possible to catch all faults in one
night. However, for manual tests, it is not always possible to
reveal all faults in just one day, as there are more faults and
thus more tests to run. If just the severe faults are considered
-– the ones having the impact K1 or K2 (cf. Section 4.1) –,
the execution time will be less then one day, so they all could
be revealed in the first day. Hence, reaching the objectives
may be hard but not impossible.
The objective of reducing testing time is mentioned in numer-
ous papers: S5 − S18, S23 − S25, S27, S28, S30 − S32,
S35 − S37, L2, L4, L8 and L9. In most of the cases there
is a comparison between the execution time with and without
the selection, either in absolute numbers or in percentages. For
Project A, we do not need to measure this effect, as the desired
time reduction is fixed. The key is rather the measurement of
the fault revealing power in the reduced time.
Fault detection capability is measured in S7, S8, S13−S21,
S24 − S26, S28, S29, S34, L2, L6, L11 and L14. The
metrics used in these papers can be divided into four types:
the absolute number of detected faults, the detection rate per
test case, the percentage of detected faults – which is the recall
metric – and the combination of recall and precision (i.e. F-
Measure). For manual tests, the recall is the most adequate
metric, since we would like not to miss faults. For automatic
tests, as there are few faults, the recall is less appropriate. We
will rather use the absolute number of detected faults.
We also checked the papers for severe fault detection capa-
bility. In S3 and S4, the APFDc metric is used. Introduced in
[62], this metric considers that test cases do not have the same
cost in terms of running time or fault severity. Like APFD, it
requires the full suite to be executed, and is thus not relevant to
methods aiming at test time reduction. In S21, a new metric is
introduced: it computes an average severity of faults detected
(ASFD) for each requirement. This is not our objective, so
it is not relevant. We eventually decided to use NAPFD and

recall for manual tests, restricting the measurements to the set
of severe faults. In this way, we evaluate whether the reduced
suite (one day) misses any severe fault of the full suite (2.5
days), and whether the most critical revealing tests occur early.
For automatic tests, we will simply use the absolute number
of severe faults detected in the first night.

6.4. Feedback on the taxonomy (RQ3)

The taxonomy aided in finding metrics to assess the desired
effects. The mapping relevantly pointed to papers that measure
these effects. We could gain an overview of alternative metrics,
choose the ones we will use and evaluate the margins for
improvement in the industrial context. Still, there may be some
reservation with respect to the granularity of the taxonomy.
The effect part is much less detailed than the information one,
which had a fine-grained list of items utilized by the methods.
Similarly, the effects could be explicitly refined into metrics.
This would have saved time in the identification of metrics,
allowing us to concentrate on the preparation of experiments.

RQ3 (aid in the evaluation of solutions): The taxonomy
was helpful to decide how to measure the desired improve-
ments. A refined list of metrics would make the taxonomy
even more helpful.

7. THREATS TO VALIDITY

Concerning the threats to internal validity, we can mention
the subjective interpretation of the taxonomy elements. We
mapped 14 new papers to the taxonomy. To mitigate the
introduction of a personal bias in the process, we double-
checked the mapping. Moreover, we explicitly reported the
difficulties we encountered and explained the related mapping
decisions. We also double checked the disagreements we
had on the mapping of the original set of papers. Another
threat is the choice of the articles to represent ML-based
methods. We made sure that diverse categories of methods
were included (supervised learning, unsupervised learning,
reinforcement learning and natural language processing). But,
like in the original work to build the taxonomy, there is no
claim for completeness. In particular, the information part of
the taxonomy may have more missing elements than the ones
we identified. A last internal threat concerns the understanding
of the industrial RT problem. It was addressed by several
meetings as well as direct discussions with engineers. Besides,
we could consolidate our understanding by consulting the data
of Project A, which was made fully available to us.
This case study applies the taxonomy to a specific industrial
context, which may represent a threat to external validity. Each
practitioner has a very unique RT process. However, the 3-step
methodology we adopted is generic and intended to serve in
any context. The difficulties we reported also do not seem
specific to Project A. Hence, we believe that our experience
may benefit other researchers and practitioners.



8. CONCLUSION

This study contributes to a line of research on how to
asses industrial relevance and applicability of RT methods.
It presents a real-world scenario in which practitioners search
for solutions to their specific problem. The taxonomy proposed
in [2] serves as an alignment between the numerous published
methods and the industrial problem.
The taxonomy introduces a decomposition into context, effects
and information factors. They capture different aspects to
consider, forming a principled base from which we derived
a three-step approach to tackle the real world scenario. The
first step characterizes the problem independently from any
solution. The second one studies the feasibility of solutions
based on the alignment between the required and available in-
formation items. The third step studies the alignment between
the desired effects of solutions and the effects addressed by
the methods. It also prepares the experimental measurement of
these effects in the industrial context. Applied to the Renault
scenario, this approach successfully identified a set of eight
promising RT methods, together with a set of metrics to
evaluate them. Using the metrics, we also studied the margins
for improvement in the current RT process.
While the principle of considering context, effects and infor-
mation factors proved successful, the lower-level content of the
taxonomy was not as useful as it could have been. The use
of the taxonomy was hindered by hard-to-interpret elements,
missing elements or insufficiently detailed ones, and errors in
the classification of candidate methods. Our experience thus
shows that the taxonomy needs improvement. A means to
manage the improvement would be to deploy and maintain
a public repository. Users would find updated versions of the
taxonomy, a documentation, a database of papers mapped to
the taxonomy, and could contribute by feedback. The version
published in [2] may not be considered as a finished product.
Regarding the real-world scenario, the study continues with the
experimentation of the methods. Four methods have already
been implemented. They are being applied to the historical
project data, confirming the relevance of some.

ACKNOWLEDGMENT

The authors would like to thank the teams at Renault Software
Factory that work on Project A for their help.

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimiza-
tion, selection and prioritization: A survey,” Softw. Test.
Verif. Reliab., vol. 22, no. 2, pp. 67–120, Mar. 2012.

[2] N. B. Ali, E. Engström, M. Taromirad, M. R.
Mousavi, N. M. Minhas, D. Helgesson, S. Kunze, and
M. Varshosaz, “On the search for industry-relevant re-
gression testing research,” Empirical Software Engineer-
ing, vol. 24, no. 4, pp. 2020–2055, 2019.

[3] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tu-
meng, “Test case prioritization approaches in regression
testing: A systematic literature review,” Information and
Software Technology, vol. 93, pp. 74–93, 2018.

[4] J. A. Prado Lima and S. R. Vergilio, “Test case pri-
oritization in continuous integration environments: A
systematic mapping study,” Information and Software
Technology, vol. 121, p. 106268, 2020.

[5] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand,
“Test case selection and prioritization using machine
learning: a systematic literature review,” Empirical Soft-
ware Engineering, vol. 27, no. 2, 2022.

[6] D. Marijan, A. Gotlieb, and M. Liaaen, “A learning algo-
rithm for optimizing continuous integration development
and testing practice,” Softw. Pract. Exp., vol. 49, no. 2,
pp. 192–213, 2019.

[7] A. Sharif, D. Marijan, and M. Liaaen, “Deeporder:
Deep learning for test case prioritization in continuous
integration testing,” in 2021 IEEE Int. Conf. on Software
Maintenance and Evolution (ICSME), 2021, pp. 525–
534.

[8] E. D. Ekelund and E. Engström, “Efficient regression
testing based on test history: An industrial evaluation,”
in 2015 IEEE Int. Conf. on Software Maintenance and
Evolution (ICSME), 2015, pp. 449–457.

[9] J. Zheng, “In regression testing selection when source
code is not available,” in 20th IEEE/ACM Int. Conf.
on Automated Software Engineering (ASE’05), 2005, pp.
752–755.

[10] R. Krishnamoorthi and S. Sahaaya Arul Mary, “Factor
oriented requirement coverage based system test case
prioritization of new and regression test cases,” Inf. Softw.
Technol., vol. 51, no. 4, pp. 799–808, 2009.

[11] A. Pasala and A. Bhowmick, “An approach for test suite
selection to validate applications on deployment of cots
upgrades,” in 12th Asia-Pacific Software Engineering
Conference (APSEC’05), 2005, pp. 361–364.

[12] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An
information retrieval approach for regression test priori-
tization based on program changes,” in 37th IEEE/ACM
Int. Conf. on Software Engineering (ICSE), vol. 1, 2015,
pp. 268–279.

[13] J. Zheng, B. Robinson, L. Williams, and K. Smiley,
“Applying regression test selection for cots-based ap-
plications,” in 28th Int. Conf. on Software Engineering
(ICSE ’06), 2006, pp. 512–522.

[14] S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin,
D. Sundmark, and S. Larsson, “Towards earlier fault
detection by value-driven prioritization of test cases
using fuzzy topsis,” in 13th Int. Conf. on Information
Technology: New Generations (ITNG 2016), 2016, pp.
745–759.

[15] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy,
“The art of testing less without sacrificing quality,” in
37th IEEE/ACM International Conference on Software
Engineering (ICSE 2015), 2015, pp. 483–493.

[16] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritiza-
tion for continuous regression testing: An industrial case
study,” in 2013 IEEE Int. Conf. on Software Maintenance
(ICSM), 2013, pp. 540–543.



[17] S. Wang, A. Gotlieb, S. Ali, and M. Liaaen, “Automated
test case selection using feature model: An industrial case
study,” in 16th Int. Conf. on Model-Driven Engineering
Languages and Systems (MODELS), 2013, pp. 237–253.

[18] M. U. Janjua, “Onspot system: Test impact visibil-
ity during code edits in real software,” in 2015 10th
Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), 2015, pp. 994–997.

[19] Q. Li and B. Boehm, “Improving scenario testing process
by adding value-based prioritization: An industrial case
study,” in Int. Conf. on Software and System Process
(ICSSP), 2013, pp. 78–87.

[20] D. Marijan, “Multi-perspective regression test prioritiza-
tion for time-constrained environments,” in 2015 IEEE
Int. Conf. on Software Quality, Reliability and Security
(QRS), 2015, pp. 157–162.

[21] S. Wang, S. Ali, A. Gotlieb, and M. Liaaen, “Automated
product line test case selection: industrial case study
and controlled experiment,” Softw. Syst. Model., vol. 16,
no. 2, pp. 417–441, 2017.

[22] E. Engström, P. Runeson, and G. Wikstrand, “An empir-
ical evaluation of regression testing based on fix-cache
recommendations,” in 3rd Int. Conf. on Software Testing,
Verification and Validation (ICST), 2010, pp. 75–78.

[23] J. Anderson, S. Salem, and H. Do, “Improving the
effectiveness of test suite through mining historical data,”
in 11th Working Conf. on Mining Software Repositories
(MSR), 2014, p. 142–151.

[24] G. Buchgeher, C. Ernstbrunner, R. Ramler, and
M. Lusser, “Towards tool-support for test case selection
in manual regression testing,” in 2013 IEEE 6th Int.
Conf. on Software Testing, Verification and Validation
Workshops (ICSTW), 2013, pp. 74–79.

[25] S. Wang, S. Ali, and A. Gotlieb, “Cost-effective test suite
minimization in product lines using search techniques,”
J. Syst. Softw., vol. 103, pp. 370–391, 2015.

[26] G. Wikstrand, R. Feldt, J. K. Gorantla, W. Zhe, and
C. White, “Dynamic regression test selection based on
a file cache an industrial evaluation,” in 2nd Int. Conf.
on Software Testing Verification and Validation (ICST),
2009, pp. 299–302.

[27] M. Lochau, S. Lity, R. Lachmann, I. Schaefer, and
U. Goltz, “Delta-oriented model-based integration testing
of large-scale systems,” Journal of Systems and Software,
vol. 91, pp. 63–84, 2014.

[28] M. Skoglund and P. Runeson, “A case study of the
class firewall regression test selection technique on a
large scale distributed software system,” in Int. Symp.
on Empirical Software Engineering (ISESE), 2005, pp.
74–83.

[29] S. Wang, S. Ali, T. Yue, O. Bakkeli, and M. Liaaen,
“Enhancing test case prioritization in an industrial setting
with resource awareness and multi-objective search,”
in 38th IEEE/ACM Int. Conf. on Software Engineering
Companion (ICSE-C), 2016, pp. 182–191.

[30] E. Engström, P. Runeson, and A. Ljung, “Improving re-

gression testing transparency and efficiency with history-
based prioritization – an industrial case study,” 4th IEEE
Int. Conf. on Software Testing, Verification and Validation
(ICST), pp. 367–376, 2011.

[31] P. Devaki, S. Thummalapenta, N. Singhania, and
S. Sinha, “Efficient and flexible gui test execution via test
merging,” in Int. Symp. on Software Testing and Analysis
(ISSTA), 2013, pp. 34–44.

[32] L. White, K. Jaber, B. Robinson, and V. Rajlich, “Ex-
tended firewall for regression testing: an experience re-
port,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 20, no. 6, pp. 419–433, 2008.

[33] S. Wang, S. Ali, and A. Gotlieb, “Minimizing test suites
in software product lines using weight-based genetic
algorithms,” in 15th Annual Conf. on Genetic and Evo-
lutionary Computation (GECCO), 2013, pp. 1493–1500.

[34] S. Vöst and S. Wagner, “Trace-based test selection to
support continuous integration in the automotive indus-
try,” in Int. Workshop on Continuous Software Evolution
and Delivery (CSED@ICSE), 2016, pp. 34–40.

[35] R. Carlson, H. Do, and A. Denton, “A clustering ap-
proach to improving test case prioritization: An indus-
trial case study,” in 27th IEEE Int. Conf. on Software
Maintenance (ICSM), 2011, pp. 382–391.

[36] L. White and B. Robinson, “Industrial real-time regres-
sion testing and analysis using firewalls,” in 20th IEEE
Int. Conf. on Software Maintenance (ICSM), 2004, pp.
18–27.

[37] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan,
and M. Liaaen, “Multi-objective test prioritization in
software product line testing: An industrial case study,”
in 18th Int. Software Product Line Conference (SPLC),
2014, pp. 32–41.

[38] S. Huang, Y. Chen, J. Zhu, Z. J. Li, and H. F. Tan,
“An optimized change-driven regression testing selection
strategy for binary java applications,” in 2009 ACM
Symp. on Applied Computing (SAC), 2009, pp. 558–565.

[39] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov,
“An empirical evaluation and comparison of manual and
automated test selection,” 29th ACM/IEEE Int. Conf. on
Automated Software Engineering (ASE), pp. 361–371,
2014.

[40] J. Zheng, B. Robinson, L. Williams, and K. Smiley,
“A lightweight process for change identification and
regression test selection in using cots components,” in
5th Int. Conf. on Commercial-off-the-Shelf (COTS)-Based
Software Systems (ICCBSS), 2006, pp. 137–143.

[41] E. Rogstad and L. Briand, “Cost-effective strategies for
the regression testing of database applications: Case
study and lessons learned,” Journal of Systems and
Software, vol. 113, pp. 257–274, 2016.

[42] A. Srivastava and J. Thiagarajan, “Effectively prioritiz-
ing tests in development environment,” in 2002 ACM
SIGSOFT Int. Symp. on Software Testing and Analysis
(ISSTA), 2002, pp. 97–106.

[43] J. Zheng, L. Williams, and B. Robinson, “Pallino: Au-



tomation to support regression test selection for cots-
based applications,” in 22nd IEEE/ACM Int. Conf. on
Automated Software Engineering (ASE), 2007, pp. 224–
233.

[44] E. Rogstad, L. Briand, and R. Torkar, “Test case selection
for black-box regression testing of database applica-
tions,” Information and Software Technology, vol. 55,
no. 10, pp. 1781–1795, 2013.

[45] M. Hirzel and H. Klaeren, “Graph-walk-based selec-
tive regression testing of web applications created with
google web toolkit,” in Software Engineering (work-
shops), 2016.

[46] F. Palma, T. Abdou, A. Bener, J. Maidens, and S. Liu,
“An improvement to test case failure prediction in the
context of test case prioritization,” in 14th Int. Conf.
on Predictive Models and Data Analytics in Software
Engineering (PROMISE), 2018, pp. 80–89.

[47] T. Shi, L. Xiao, and K. Wu, “Reinforcement learning
based test case prioritization for enhancing the security
of software,” in 2020 IEEE 7th Int. Conf. on Data Science
and Advanced Analytics (DSAA), 2020, pp. 663–672.

[48] J. A. P. Lima and S. R. Vergilio, “A multi-armed bandit
approach for test case prioritization in continuous inte-
gration environments,” IEEE Transactions on Software
Engineering, vol. 48, no. 2, pp. 453–465, 2022.

[49] M. Mahdieh, S.-H. Mirian-Hosseinabadi, K. Etemadi,
A. Nosrati, and S. Jalali, “Incorporating fault-proneness
estimations into coverage-based test case prioritization
methods,” Information and Software Technology, vol.
121, p. 106269, 2020.

[50] A. Bertolino, A. Guerriero, B. Miranda, R. Pietran-
tuono, and S. Russo, “Learning-to-rank vs ranking-to-
learn: Strategies for regression testing in continuous
integration,” in ACM/IEEE 42nd Int. Conf. on Software
Engineering (ICSE), 2020, pp. 1–12.

[51] B. Busjaeger and T. Xie, “Learning for test prioritization:
an industrial case study,” in 24th ACM SIGSOFT Int.
Symp. on Foundations of Software Engineering (FSE),
2016, pp. 975–980.

[52] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering
test cases to achieve effective & scalable prioritisation
incorporating expert knowledge,” in 8th Int. Symp. on
Software Testing and Analysis (ISSTA), 2009, pp. 201–
212.

[53] R. Lachmann, S. Schulze, M. Nieke, C. Seidl, and
I. Schaefer, “System-level test case prioritization using
machine learning,” in 15th IEEE Int. Conf. on Machine
Learning and Applications (ICMLA), 2016, pp. 361–368.

[54] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using
semi-supervised clustering to improve regression test
selection techniques,” in 4th IEEE Int. Conf. on Software
Testing, Verification and Validation (ICST), 2011, pp. 1–
10.

[55] N. Medhat, S. M. Moussa, N. L. Badr, and M. F. Tolba,
“A framework for continuous regression and integration
testing in iot systems based on deep learning and search-

based techniques,” IEEE Access, vol. 8, pp. 215 716–
215 726, 2020.

[56] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige,
“Reinforcement learning for automatic test case prioriti-
zation and selection in continuous integration,” 26th ACM
SIGSOFT Int. Symp. on Software Testing and Analysis
(ISSTA), pp. 12–22, 2017.

[57] P. Kandil, S. Moussa, and N. Badr, “Cluster-based test
cases prioritization and selection technique for agile
regression testing,” Journal of Software: Evolution and
Process, vol. 29, no. 6, 2016.

[58] C. Jordan, P. Foth, A. Pretschner, and M. Fruth, “Unre-
liable test infrastructures in automotive testing setups,”
in 2022 IEEE/ACM 44th Int. Conf. on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP),
2022, pp. 307–308.

[59] P. Erik Strandberg, W. Afzal, T. J. Ostrand, E. J. Weyuker,
and D. Sundmark, “Automated system-level regression
test prioritization in a nutshell,” IEEE Software, vol. 34,
no. 4, pp. 30–37, 2017.

[60] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test
case prioritization: an empirical study,” in IEEE Int. Conf.
on Software Maintenance (ICSM), 1999, pp. 179–188.

[61] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial
interaction regression testing: A study of test case gener-
ation and prioritization,” in IEEE Int. Conf. on Software
Maintenance (ICSM), 2007, pp. 255–264.

[62] S. Elbaum, A. Malishevsky, and G. Rothermel, “In-
corporating varying test costs and fault severities into
test case prioritization,” in 23rd Int. Conf. on Software
Engineering (ICSE), 2001, pp. 329–338.


