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ABSTRACT

The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of
the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes
a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an
integro-differential equation (IDE) linking the ellipticity of isopycnic surfaces to the equatorial mass-density profile. In contrast
with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical
solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we
fully recover Clairaut’s equation. Comparisons with Chandrasekhar’s perturbative approach and with Roberts’ work based on
virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of
heterogeneous structures containing mass-density jumps is proposed through a modified IDE.

Key words: gravitation —methods: analytical — planets and satellites: interiors — stars: interiors — stars: rotation.

1 INTRODUCTION

Unveiling the internal structure of celestial bodies is a longstanding
and fundamental challenge in astrophysics. Theories have emerged
three centuries ago, with a principal interest in the Earth’s interior. In
the limit of slow rotation, Clairaut (1743) showed that the isopycnic
surfaces are spheroids, i.e. ellipsoids of revolution. Using the theory
of Maclaurin (1742) for homogeneous spheroids, he obtained a
second-order, ordinary differential equation linking the flattening
of isopycnics to the mass-density profile. This equation has been
more recently extended by Lanzano (1962, 1974), the shape of the
external surface being expanded over Legendre polynomials Py, up
to the nth order. Unfortunately, Clairaut’s equation admits essentially
no analytical solutions (with some exceptions, see Tisserand 1891;
Marchenko 2000). Slow rotators are accessible from the ‘modified’
Lane-Emden equation in the form of series (Chandrasekhar 1933;
Kovetz 1968). Besides, Clairaut’s equation is limited to small
flattenings (i.e. to low rotation rates), while many systems do not
belong to the category of slow rotators. This is the case of the giant
planets in the Solar System. For Jupiter and Ceres, the flattening
parameter f~ 0.07, and this is even larger for Saturn (Tricarico 2014;
Rambaux, Chambat & Castillo-Rogez 2015). Achernar represents
an extreme configuration (Carciofi et al. 2008). New developments
remain therefore necessary to model the structure of spinning objects,
especially for moderate to fast rotation rates (e.g. Lanzano 1962;
Ragazzo 2020).

The determination of the gravitational potential of rotating bodies
has always demanded a high analytical effort or substantial com-
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putational resources, or both (this exceeds the present context).
The spheroidal shape is appealing, as its gravitational potential is
known with a closed form (see e.g. Chandrasekhar 1969). Kong,
Zhang & Schubert (2015) have investigated the validity of the
hypothesis of spheroidal isopycnics by comparing of the ‘true’ shape
obtained by numerical means to ‘perfect’ spheroids. They showed
that discrepancies are small in amplitude. In fact, this remains true
at moderate/large rotation, but unsurprisingly fails close to the mass-
shedding limit (Hachisu 1986). Using the gravitational potential of
a heterogeneous spheroid, Roberts (1963) used the tensor Virial
theorem to derive equations valid for fast rotators, but no self-
consistent solutions was produced.

In Huré (2022a,b, hereafter, Paper I and II, respectively), we
have investigated the conditions of equilibrium of a piece-wise,
heterogeneous system made of £ homogeneous layers bounded
by spheroidal surfaces. The theory of nested spheroidal figures of
equilibrium (hereafter, NSFoE) assumes that these surfaces stay
close to confocality (in the sense of oblate spheroidal coordinates; see
Section 2) and that each layer can rotate at its own rate (Véronet 1912;
Bizyaev, Borisov & Mamaev 2015). A wide range of configurations
is then reachable, from quasi-spheres to very flat, disc-like objects. It
must be pointed out that such solutions remain approximate, although
the Virial parameter relative to the gravitational energy is very small
(Staelen 2022). This is a consequence of Poincaré-Hamy theorems:
arigidly rotating body with a spheroidal stratification is not an exact
figure of equilibrium.! In this article, we investigate the solutions in
the case where the number £ of layers is infinite, which corresponds

'Only confocal surfaces can lead to an exact equilibrium when all layers
rotate in a synchronous manner. This equilibrium requires a mass-density
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to a fully heterogeneous body, and for a global rigid rotation. It is
therefore a natural continuation of Paper II. Another motivation of
the article is the case of moderate/fast rotators, characterized by a
significant oblateness or flattening (larger than a per cent typically).
It is therefore interesting to see to what extent classical theories,
which are often limited to slow rotation, remain valid or fail. In
this purpose, it is necessary to compare any analytical result with
numerical solutions. In the present case, this is achieved by using the
DROP code which solves the problem for a polytopic equation-of-
state (EoS), various flattenings and rotation profiles (Huré & Hersant
2017; Basillais & Huré 2021).

It is obvious that the present approach is not supposed to surpass
sophisticated models for stars and planets, which are dynamically
and thermodynamically more complex that what the hypothesis
made here allow. Stars are widely prone to mixing, transport and
circulation. Planets, closer to rigid rotation, have a more simple
layered structure (except at the very surface) and isopynics surfaces
are believed to be very close to spheroids, as suggested by the
inversion of gravitational moments (e.g. Hubbard 2013; Nettelmann
et al. 2021). After a brief summary on the theory NSFoE, we show
in Section 2 how the discrete set of equations can be converted into a
differential equation. For rigid, global rotation, this is equivalent to an
integro-differential equation (IDE) for the ellipticity of isopycnics.
In a first example, we feed this IDE with the numerical solutions
obtained from the self-consistent-field (SCF) method (e.g. Hachisu
1986), and show that this approach is not only coherent but quite
accurate. In Section 3, we study the behaviour of the equation in
the limit of small flattenings, which happens at slow rotation. In
particular, we show that the formalism is fully compatible with
classical theories, namely the fundamental second-order differential
equation established by Clairaut (1743), the solutions obtained by
Chandrasekhar (1933) from the ‘modified’ Lane-Emden equation.
We also make a comparison with the equation of Roberts (1963).
The question of internal jumps is addressed in Section 4, where we
derive a modified IDE and test it. In the concluding section, we
propose a criterion characterizing the transition from slow to fast
rotators, and give a few perspectives.

2 THEORY FOR HETEROGENEOUS BODIES

2.1 Equation set for the theory of NSFoE

We adopt the same theoretical background and same notations as in
Paper I and Paper II, which can be summarized as follows. We con-
sider £ oblate, non-intersecting spheroidal surfaces E;, j € [1, £]]
with semimajor axis a;, semiminor axis 0 < b; < a; and eccentricity

= /1 - b%/al, @

as depicted in Fig. 1. These surfaces define £ layers. We note with
index j > 2 the layer bounded by E;_ | and E; (we then have g; _
< a; and b;_; < bj). Index 1 corresponds to the deepest layer,
bounded by surface E; only. Furthermore, we assume that each layer
J is homogeneous, with mass density p;, and rotates rigidly around
the Z-axis at a rate ;. A key point in the theory of NFSoE is the
possibility of asynchronous motion of layers, ie. 2;_; # ;. In
this article, however, we will consider a subclass of configurations
characterized by synchronous rotations.

inversion, which, for stability reasons, is physically not tenable (Poincaré
1888; Hamy 1890; Volterra 1903).
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Figure 1. Typical configuration for a heterogeneous body with finite number
of homogeneous layers (£ in total) bounded by spheroidal surfaces E;.

A fundamental parameter that controls the applicability of the
theory is the ‘confocal parameter’ c; ;, defined for each pair (E;, E;)
by

o=t~ @

This parameter is positive if a surface E;, interior to a surface
E; is, in terms of oblate spheroidal coordinates, more oblate than
layer j. As quoted in the introduction, only systems with confocal
spheroidal surfaces (i.e. ¢; ; = 0 for all pairs) correspond to an exact
equilibrium (Poincaré 1888; Hamy 1890). Then, the equilibrium
of any layered systems in rigid rotation with non-zero confocal
parameters is necessarily approximate. As shown in Paper I and Paper
II, equilibria with |¢; j| < 0.3 typically are found to be very close to
numerical simulations obtained with the DROP-code (Huré & Hersant
2017; Basillais & Huré 2021). Besides, the c-parameter is generally
found to be slightly negative, meaning that isopycnic surfaces tend
to be more spherical with depth in the system, or equivalently, that
the ellipticity of isopycnics increases from the centre to the surface.
However, note that if models of stars and planets mainly agree on
such a ‘standard’ stratification, there is no argument or observational
proof that definitively rules out a reversal, for some objects. This
may depend on physical mechanisms at work and on the formation
process. Prolate shapes can be induced by circulations or magnetic
fields (e.g. Fujisawa & Eriguchi 2014, and references therein).

The starting point of the present work is (27) of Paper II, which
links the properties of all layers together. This is a set of coupled,
L — 1 algebraic equations, which read,

Cle

1
w8 B _ zp,H(a, &

i

i j€i
X [2arcsin _di& (1 +cij)
1+C,"/' ’
+ (1 — qu_jeiz) arcsin(g; j€;) — g j€iy/ 1 q, g , —2q; ;€ e,}

L
+Zﬁf+1(ai—1){ (e)+ (€ —¢ ] 3)
i=j

for j < L, where

pj=pjlpc,
o; = pj/Pjt1s
qi.; = ai/aj,
€ =bj/aj,

@
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and
). € . 3
M(e) =3 —2e )— arcsin(e) + 3 — —, 5)
€ €
is Maclaurin’s function defined by (see Paper I), and
~ Q;
Qj = ———= (6)

1T 2nGor
is the dimensionless rotation rate normalized to the mass density of
the uppermost layer (G is the gravitational constant). For j = £ (the
upper layer), we have

c _

~ €; i L€

Q7 = § Pivi(a; — 1)% {Zarcsin (%) (I+cic)
i=1 €i +cic

+ (1 —2q7 pe}) arcsin(qi c€;) — qi.cei/ 1 — g7 c€}

—2%,56;54- @)

2.2 From a discrete set of layers to a continuum

We now seek for equilibrium configurations where p is continuous
and derivable from the centre to the surface. We first consider
configurations without any mass-density jumps (mass-density jumps
are considered in Section 5). As each layer j has its specific mass-
density, and specific set of confocal parameters c; ;, the theory of
NSFoE is expected to be capable of such a prolongation, provided
these confocal parameters are all ‘small” enough. When £ drastically
increases, the extension of layer j in the equatorial plane is a; — a; _ |
= Aa; — 0. In a similar way, at the polar axis, we have b; — b; _ | =
Ab; — 0. Furthermore, the difference in the mass-density between
two consecutive layers is

—Pj = PcAp;
= Pﬁﬁj+|(aj -1 —0. 3)

Apj = pjt1

In these conditions, (3) can be rewritten as
é: €

= Z Ap; —; {2 arcsin _di&

; €; 1+ Cij

+(1 - Zqi%jeiz) arcsin(q; j€;) — qi €/ 1 — qiz_jeiz]

= 2
+ D Api {M(e,-) + S5 - e?)]. ©

i=j

) (I +ci j) —2qi j€i€;

In this form, we see that (9) has the convenient form for the
continuous case, as in the limit Ag; — 0 the sums over i tend to
integrals. To express these integrals, the equatorial radius of layer j
is rewritten in the form of the dimensionless, continuous variable

10)

w =

BIE

Equivalently, this is the semimajor axis of the isopycnic surface E(w )
= E;, normalized to the equatorial radius of the body. In a similar
manner, we associate

o =L, (11)

with the equatorial radius of layer i. As long as € # 1, we have a; —
0, otherwise a minimal radius is required. Yet, numerical solutions
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Figure 2. Eccentricity profile (left) prescribed for example. Functions «™
and " (right), defined by (A1) and (A2) respectively, versus @’ for @ €
{0.00, 0.25, 0.50, 0.75, 1.00} (labelled along the curves). Voided circles pin
the value of the functions on o’ = w.

obtained from the DROP-code (see Figs 4—7) show that the deeper
the layer, the smaller its flattening, namely Ve > 0, in agreement
with classical theories. Thus, in this work, we will freely take a; —
0, so that (w’, @) € [0, 1]%.

In the perspective of a continuous mass-density profile, we must
consider situations where the mass density vanishes onto the external
surface. In general, the adimensioning used for the discrete theory is
not appropriate and must be reconsidered. This is easily corrected.
In this purpose, we choose the central mass density p. = p; as the
new reference, instead of p.. The main parameters of layer j are then

b =P =5 xLL

e(w)_ pi;p, Xf],

Q(w)ziﬁcng_ixﬂ/%’ (12)
e(w) =¢j,

éw)=+1—-€eX(w)=¢,
where €(@) is the eccentricity of the isopycnic surface E(w) and

&(w) is its axis ratio. In a similar way, the confocal parameter is now
a continuous variable, namely, from (2)

2

co',w) = w—zez(af’) — X(w). (Ec,‘,,') (13)
> )
With these definitions, the left-hand side (LHS) of (9) becomes
= &2 = &2 AR
pj+1Qj+l~_ AN d(pSAZz)’ (14)
Ap; dp

while the right-hand side (RHS) of (9), more complex, can be written
in compact form as
p() ,
RHS of (9) — / dp(o k™ (@', @)
p(0)

p(1)
+/ dp(@ " (@', o), (15)
p(@)

where the two functions «™ and «°" are explicitly given in Ap-

pendix A; see (A1) and (A2). Formally, these depend on @, @', and
€,i.e.k =k(w’, w;€). As € depends on @’ or @, then there are only
two variables on input. Despite appearances, these functions behave
very well over the integration range. Among interesting properties,
we have k"(w, @) = k(= @ ). This is particularly important and
attractive for numerical applications. We also see that ¥"(z, 0) =
0 for @ # 0 (k™ is not defined for this value). The typical shape of
these functions is visible in Fig. 2(b), where we have plotted ™ and
k°" as functions of @’ for fives values of @ . For this example, we
have prescribed a parabolic profile for the eccentricity (see Fig. 2a),
as observed in many numerical experiments (see, e.g. configuration
A discussed below).

MNRAS 527, 863-875 (2024)
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It follows from (14) and (15) that (9) reads, in the continuous limit

d(pQ> _ dp [ [ .
_dp ):i/ dp(@ W™, o)
do do $(0)
A1)
+/ dp(@ " (o', @) |. (16)
p@)

This equation is the main equation of the present problem. It links
the eccentricity of the isopycnic surfaces and their mass density (in
fact, its derivative) to the variations of the rotation rate. It enables to
reach configurations where both the mass density and rotation rate
vary smoothly with the equatorial radius. We can apply the same
transformation to (7), and we obtain at the surface

o(1)
—Q%l):/p dp(m ™', 1). (17)
p(0)

We see that the RHS of (16) and (17) coincide for @ = 1, within a
factor (dp/d@)|»=1. So, the two LHS must also coincide for w =
1, which imposes the condition

d?

do

=0. (18)

w=I

Thus, the squared rotation has an extremum at the surface.

2.3 The case of global rigid rotation: the general IDE for the
eccentricity

We see that (16) is capable of modelling a wide range of situations,
from rigid to differential rotation, and independently, from homoge-
neous to heterogeneous mass-density profiles. In this work, we focus
on rigidly rotating bodies, so we have dQ = 0. It means that (18) is
naturally satisfied. Therefore, (16) becomes

p(@) )
_0? = / dp(@ ™ (@', @)
5(0)

(D)
+ / dp(m (', o). 19)
@)

This equation yields the rotation rate of the body once the configura-
tion is known through p(z ) and €(w ). Alternatively, it can be used
to constrain the solutions if the rotation law is prescribed in advance.
‘We can take the derivative of (19) with respect to . In this purpose,
we use Leibniz’s integral rule, namely, for a given derivable function
8

d [ * d

o | e =g+ [y Lo, 20)
X Jx o 0x

where xj is a constant. In the present case, it leads to

p(@) 9 .
/ 4P )
PO Loy

A1) P
+ / 4p()) (@', @) = 0, @1
() 0w

where we have used the property that « is continuous at o’ = @
(see above). In fact, the partial derivatives can be put in the form

drcin , de? ,
=dx(@' o) - 2—uo', o), (22)
o do
and
oxcout 2de2 (@) 23)
=-2—v(w),
ow do

MNRAS 527, 863-875 (2024)

0.01 0.05

0.00 ¢ 0.00
-0.01 -0.05
-0.02 -0.10
-0.03 -0.15
-0.04 -0.20
-0.05 -0.25
-0.06 -0.30
-0.07 -0.35
-0.08 -0.40
-0.09 -0.45 L L L L

00 02 04 06 08 1.0 00 02 04 06 08 1.0
@' @'

Figure 3. Function x (left panel) defined by (A3), and functions x and v
(right panel) defined by (A4) and (A5), respectively, versus @’ for & € {0.25,
0.50, 0.75, 1.00} (labelled along the curves). Voided circles pin the value of
the functions on @’ = w. The eccentricity profile used is the same as in
Fig. 2.

where x, ¢ and v are defined in the Appendix A; see (A3), (A4) and
(AS), respectively. Like «, these functions depend on 3 quantities,
w, w' and €, but implicitly only on the 2 space variables @ and
w’'. An illustration is given in Fig. 3 for the parabolic eccentricity
profile considered previously. An important property is that x (=,
w) =0 and u(@, @w) = v(w), which means that the derivatives of
the «-functions are equal at the connection, i.e.

aKou[

o' ow

aKm

o

(24)

o'=w
This is visible in Fig. 2(b). These functions have also a relatively

small amplitude, which, again, is very practical for any numerical
treatment. From (22) and (23), (21) becomes

p(@) de? pl@)
2/ dp(@")x (@', @) = i [/ dp(@" )@’ @)
£(0) @ L Jp0
A1)
+f dﬁ(w/)V(w’)} , (5)
p(@)
which then links directly the eccentricity of the isopycnic surfaces to
their mass density.
A consequence of (25) comes from the case @ = 0 (i.e. the centre
of the body). Indeed, at this point, we have

de?
do

(1)

X / dp(@ (') = 0. (26)

w=0 p(0)

As v(w’) < OVow’ [this is seen from its definition; see (A5) in

Appendix A] and dp < O from stability consideration, (26) yields
de?

= O7 27
o (e2))

=0

whatever the mass density profile.

2.4 A note on the condition of immersion

As early quoted in this section, an important hypothesis of the theory
of NSFoE is the non-intersection of the interfaces between layers. In
the continuous limit, this means that the isopycnic surfaces must not
cross each other. Two ellipses intersect if and only if the one with
the largest major axis has also the smallest minor axis. So, if the
polar radius b, i.e. the minor axis, is given by b(w)/R. = wé(w),
we require

d[wé(w)]

_ >

o 0. (28)
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It is easily shown from the definitions of € and € that

dlwé(w)] _ w de?
—_—— = ——. (29)
do 2€ dw
So, (28) can be written as
de? 2
ZM1=¢ , 30
) 60)

which then imposes an upper limit for the eccentricity gradient.
Note that requiring @ (de?/dw) = 2[1 — €*(w)]Vw € [0, 1] leads
to €2(w) = 1, i.e. the body would be infinitely flat.

2.5 The particular case of homogeneity: Maclaurin formula
recovered

A first check of the (25) is performed by considering the Maclaurin
spheroid. In this case dp = 0, and the mass density profile is

p) =H(] —w), €29

where H is Heaviside’s step function. In the sense of distributions,
the derivative of the mass density is

42 =—-6(1 —w), (32)
do

where § is Dirac distribution. We can now use (25) to obtain €, which
is the only unknown of the problem. However, for a body where the
mass density is a constant, the notion of isopycnic surfaces appears
as a non-sense. Yet, the Poincaré-Wavre theorem implies that for
a body where the rotation rate is constant on cylinders, isopycnic
and isobaric surfaces must coincide.? Rigid rotation has a rate which
is obviously constant on cylinders, so we can consider € as the
eccentricity of isobaric surfaces. It can be shown that (16) and (25)
become

02 = kM1, w), (33)

and

de?

- x v(l) =0, (34)
w

respectively, where we used the properties of the Dirac distribution.

From (AS), we see that v never vanishes, so the only solution to (34)

is

de?

— =0= Xw) = €X1), (35)

do

which means that isobaric surfaces are similar spheroids. So, by

expliciting «°*, (33) becomes

A & . 3

Q% = (3 — 2652) — aresin(e;) + 3— - = M(ey), (36)
€5 €5

where €, = €(1) and & = €(1) are values at the surface. As expected,

we fully recover the results from Maclaurin’s theory.

2.6 Checking the IDE from a numerical reference

Unfortunately, without any prior knowledge on the mass-density
profile or the eccentricity, (25) cannot solely be used to determine
any internal structure. However, we can test the reliability of the

2In fact, the theorem states equivalency between four propositions, two of
which are used in this discussion; see e.g. Tassoul (1978).
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above approach. In this purpose, we find more practical to rewrite
(25) in the form

e _ 2 [Jo dp@x (@' @) -
dor [R dp(@ @’ @) + [f,) dp(@ (')

The test then consists in computing both sides of this expression by
solutions obtained numerically from a Self-Consistent Field (SCF)-
method. We use the DROP code (Huré & Hersant 2017; Basillais &
Huré 2021) as the numerical reference. This code, which has been
extensively used, solves the full structure of rotating, self-gravitating
fluids for a wide range of flattenings, EoSs and rotation profiles.> A
fundamental ingredient is the closure relationship between pressure
p and mass density p. In the paper throughout, we use a polytropic
EoS, namely

p=Kp"™", (38)

where K and 7 (the polytropic index) are positive constants. Once the
SCF-cycle has converged, the mass-density p(R, Z) is known. Then,
we have to determine isopycnic surfaces, denoted S;, from centre to
surface. Clearly, isopycnics are not exact spheroids (in general, these
are slightly depressed in the middle), but any equilibrium surface S;
crosses the polar axis and equatorial axis respectively at points A;(0,
b;) and Bj(a;, 0) (see Fig. 1). From these two points, we can calculate
a ‘pseudo-eccentricity’, basically from (1). This pseudo-eccentricity
is then of the form €(z). We can then use this output, together with
the mass-density p(z ) along the equatorial plane to compute x, u, v
and the derivative of the pseudo-eccentricity de?/dz, and then check
(37). We will also compare our results to Clairaut’s integral equation,
i.e. (43), which will be discussed in Section 3, and to Roberts’ result,
which is given in our notations in Appendix B; see (B1).

There are four main sources of errors in this kind of numerical test.
First, DROP releases numerical solutions whose accuracy depends on
the resolution. Second, the determination of equilibrium surface S;
(and then, points A; and B;) is also not perfect. Next, the integrals in
the RHS of (37) are also sensitive to the quadrature scheme, as well
as the scheme for the derivative of the pseudo-eccentricities (here,
we use 2nd-order schemes). Obviously, we do not expect (37) to be
exactly satisfied. In turn, if both sides of this equation are very close
for a broad variety of configuration, then it proves the reliability of
the IDE.

2.7 An example

As a first illustration, we consider a rotating polytrope with surface
axis-ratio €& = 0.75 and polytropic index n = 1.5, hereafter Config-
uration A. It corresponds to a fast rotator (for comparison, Achernar
has an axis ratio in surface around 0.74; see Domiciano de Souza
et al. 2014), which is also one of the structures given in the tables
of Hachisu (1986). The mass-density, pseudo-eccentricity, and the
deviation of the outermost surface to an exact spheroid are displayed
in Figs 4(a)—(c) (left panels). The RHS and LHS of (37) are plotted
versus @ in Fig. 4(d). We see that the absolute deviation between
these two estimates (panel e) is much less than 1 per cent for most
radii, and even mess than 0.1 per cent in the outer part of the body.
This agreement is already remarkable as the confocal parameters
(centre and surface values) are marginally acceptable (i.e. c(w, 1)

3While the classical version of the DROP code is typically second-order
accurate in the mesh spacing, we have built an alternative version based
spectral method. This enables us to reach much high precision (in a shorter
computing time).
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Figure 4. Results for configuration A (¢, = 0.75, n = 1.5); see Table 1 for
global quantities. Left-hand side panels: outputs from the DROP code, i.e. (a)
eccentricity of the isopycnic layers (the dashed thin black line is the quadratic
profile used for Figs 2 and 3); (b) radial mass density; (c) the deviation of
the external surface from a spheroid. Right-hand side panels: Comparison
between this work and the output from DROP, i.e. (d) de?/dw as a function of
w; (e) decimal logarithm of the gap between the analytical methods and the
numerical reference for de?/de; (f) decimal logarithm of the gap between
DROP and this work for the rotation rate.

€ [ — 0.4375, 0]). The figure also shows that the approximation is
also valid for de?/dez, as the discrepancy with DROP is also of order
~1072 in this case. From panel f, we see that the rotation rate €2
deduced from (19) is not strictly a constant, as would be expected.
But, we see that it varies weakly and compares greatly with the
rotation rate yielded by DROP, with an error below a per cent. We see
that Roberts’ equation compare greatly with the numerical reference,
except at short (where a divergence is seen) and large radii (with an
error of ~ 3 per cent).

We have calculated the main global properties of the polytrope,
namely the mass M, the volume V and the angular momentum J, the
gravitational, kinetic and internal energies, W, T and U respectively
(see Appendix C) and compared with the tables of Hachisu (1986).
The results are reported in Table 1. We see that the values obtained
are slightly overestimated with the present approximation. This is
due to the boundary of the fluid, which is below the corresponding
spheroidal surface, as seen from Fig. 4(c). Thus, the volume of the
fluid, and all volume integrals following, are clearly greater than
the outputs of the numerical reference. Furthermore, the value of
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Table 1. Configuration A and corresponding global quantities. Results from
the tables of Hachisu (1986) are reported in the first column.

Configuration A

Hachisu (1986) DROPT This work
& «0.750 «0.750 <0.750
n «~1.5 «~1.5 «~1.5
M/[peR3] 0.430 0.43027 0.43280
V/R? 3.03 3.02976 3.14159
Q2 x2m 0.227 0.22663 *0.22760
J/IGpI R0/ 0.0356 0.03556 0.03609
—W/IGpZR?] 0.183 0.18345 0.18496
T/[Gp? R3] 0.00847 0.00846 0.00861
U/IGp2R3] 0.167 0.16652 0.16697
[VP/W| <1073 3x 1078 8 x 10~
Notes. < represents input data.
tSCF-method (Basillais & Huré 2021);
*Averaged, see equation (C7).
Table 2. Same legend as Table 1, but for configuration B.

Configuration B
Hachisu (1986) DROPT This work

& <—0.662 <0.662 <0.662
n 3.0 <~3.0 <~3.0
M /[pc R3] 0.0255 0.02545 0.02546
V/R? 2.30 2.24640 2.77298
Q2 x 21 0.0256 0.02563 *0.02567
J/[Gp3RIOY/2 0.00015 0.00016 0.00016
~W/[Gp2R?] 0.00140 0.00139 0.00139
T/[Gp? R3] 0.00001 0.00001 0.00001
U/IGpER3] 0.00137 0.00137 0.00137
[VP/W| <1073 1x10°8 8 x 1077

the Virial parameter, i.e. |[VP/W| ~ 8 - 10~* « 1, also validates the
approximation in this case.

2.8 On critical rotations

We can go further in the comparison by looking at an extreme con-
figuration, i.e. a configuration near the so-called ‘critical-rotations’
(Hachisu 1986), where matter at the surface is barely bounded to the
system. Such objects deviate largely from spheroids and we expect
the approximation to fail at this point.

We first consider configuration B, with a ‘soft” EoS (n = 3). The
configuration and its global properties are reported in Table 2 and the
results are plotted in Fig. 5. Surprisingly, the agreement between the
spheroidal approximation and the numerical reference is very good;
see Fig. 5(d) and Table 2. For & > 0.2, we see that the discrepancy
is < 1073 in relative. For shorter radii, the gap is wider, due to the
numerical precision of the derivatives, as the values themselves are
‘small’; so any discrepancy is amplified. The approximation seems to
stay valid at the surface, even though the deviation from a spheroid is
large (see panel c). This can be explained by the mass density curve,
namely panel a. Indeed, we see that, for w > 0.4, we have p(w)
<« pe, so the contribution of this part to the gravitational potential
(and thus, to the rotation rate and (25)) is negligible. So, as long
as the isopycnics for @ < 0.4 are close enough to spheroids, the
approximation is still valid.

We also have plotted in panel (d) of Fig. 5 the upper limit of the
immersion criterion, i.e. (30). Interestingly, the squared eccentricity

£20Z JaquiaAoN tZ uo 1sanb Aq £€8/92€//£98/1//ZS/3191e/Seluw/wod dno-olwapeoe//:sdiy Wwolj papeojumo(]



DROI;' outputs g,or/zparison
1.0 T p(?) pcv?m T 1.800 T e- mvslm T
DROP e (d)
1.600 [ This work
L 4 Clairaut
0.8 1.400 - Roberts
1.200 |- Immersion
o6 ' 1 1000
04| | 0.800 |
0.600 |
02| : E 0.400
0200 [ —* 1
00L&, oooo ==t
0 02 04 06 08 1 0 02 04 06 08 1
0.800 0.0 Il:telatlveI dewat:on VS z:'.) :
(®©)
0.700 1.0
0.600
-2.0
0.500
-3.0
0.400
-4.
0.300 0
0.200 -5.0
0.100 . . . . -6.0
0 02 04 06 08 1 0 02 04 06 08 1
i inti 2o 3
0.000 Surfa'ce elllp'se dew'atlon vsl; R/Ry 4.094 'Q /( rr'Gpc)x1'0 VS w'
(© )
-0.020 | : 4.092 :
-0.040 | 4.090
-0.060 | 4.088
-0.080 | 4.086
-0.100 | 4.084
-0.120 E 4.082
-0.140 L L . L 4.080
0 02 04 06 08 1 0 02 04 06 08 1

Figure 5. Same legend as for Fig. 4, but for configuration B (¢, = 0.662,
n = 3). The dashed black line represents the condition for immersion, i.e.
(30).

Table 3. Same legend as Table 1, but for Configuration C.

Configuration C

Hachisu (1986) prOPT this work
& «~0.442 «~0.442 «~0.442
n <~0.5 0.5 <~0.5
M/[pcR3] 0.767 0.77072 0.82697
V/R? 1.59 1.56633 1.85144
272? 0.939 0.94158 *0.93380
J/[Gp3RI01/2 0.199 0.19936 0.22563
—W/IGp?R3] 0.531 0.53568 0.59836
T/[Gp2R3] 0.0962 0.09672 0.10902
U/IGPXR?] 0.339 0.34230 0.35218
|[VP/W| <1073 1 x107* 5 x 1072

gradient seems to tend to this limit for @ = 1, i.e. at the surface. This
would imply that at the critical rotation, we have (db/da)|,=z, — O,
where we used the physical radii, namely the matter at the pole is
crushed.

Another example of critical rotation is displayed in configuration
C, where the EoS is ‘hard’ (n = 0.5). The configuration and its global
properties are reported in Table 3 and the results are plotted in Fig. 6.
Here, the agreement between the spheroidal approximation reported
here and the numerical reference is not good at all, with a relative
error of at least 10 per cent on de?/dzo and the global properties. Only
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Figure 6. Same legend as for Fig. 5, but for configuration C (€, = 0.442,
n=0.5).

the averaged rotation rate is correct, but we see from Fig. 6(f) that
the rate itself is not a constant anymore (with an amplitude of, again,
~ 10 per cent of the mean value). This disagreement is explained by
the large deviation of the external surface to a spheroid, which is not
cancelled by the mass density profile, i.e. () < 1 only very close
to the surface (w = 1). So, the deviation from a spheroid has here
a real impact, as the gravitational potential arising from this mass
distribution is significatively different from the one produced by a
spheroidally stratified object.

However, we observe once again that the immersion criterion joins
with the de?/dw -curve computed from DROP at e = 1, reinforcing
our conclusion of the previous example.

3 THE LIMIT OF SMALL FLATTENINGS

3.1 The IDE at first order

The case of slowly rotating structures is of great importance in
the context of planetary and stellar interiors (e.g. Chandrasekhar &
Roberts 1963; Zharkov & Trubitsyn 1970). Such situations suppose
that the deviation to sphericity is small, i.e. €2(zw) <« 1. While the
Earth or the Sun can probably be considered as slow rotators, this
does not seem to be the case of Jupiter and Saturn. The functions
defined by (A3)—(A5) can then be expanded at first order in €2. So,
we obtain
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3

x(@' @)= el [m7e* (@) — w’e*(w)] + O(e?). 39)
2w
, _ _1 w_/3
wo', w) = 33
e (L1370 L3 4
« [1 c (w)<2+5w2>+26 (w)} + 0,
(40
and
( ,)__1_32( ) + O(e*) 41)
V@) =3 - e@ €"),

respectively. Thus, at first order in €2, (25) becomes

1 d€2 p(@) w3 A1)
315 (/ dp(@) 3 +/ dﬁ(w’))
w 5(0) o p(@)

1 (@)

~ 7/ dp(@o"” [w e (w') — o’ ()] . (42)

w A
£(0)

Note that de?/de is already first order in €2, so the first order terms
arising from u and v can be neglected.

3.2 Clairaut’s equation recovered

Except in some particular cases, the mass density vanishes continu-
ously at the surface. By integrating (42) by parts, we obtain

@b de? | s o .
Tapm w € (w)pm
w 2
—/ do'p(@’) {Sw"‘ez(w/)—l— o’ —|, @3
0 do’
where
A 3 “ N ’ 2
pn(@) = — do’ p(w)w?, 44)
@ Jo

is classically called the mean density (e.g. Tisserand 1891; Ragazzo
2020), evaluated from the centre to the running radius. In this form,
(43) is suitable to eliminate the integral by differentiation. So, we
derive a second time with respect to the physical radius a = R.@w to
obtain

2,2 s 1.2 A
de 85 de 6(%-1)8&0. (45)

m

da? a ﬁm da

This result clearly recalls the fundamental equation derived by

Clairaut (1743), namely
0
=0. 46
((m ) ! o

e 604y
dp? " b (p) db

where f = 1 — +/1 — €2 is the flattening of the isopycnic surface, b
is its polar radius and

3
h) = / db'p(b')b"”. (47)

Let us show that (45) and (46) are fully compatible. At first order in
€2, we have 2f ~ €2 and b ~ a(l — €2/2), so

NN 1/, de de?
14+ = — |~ —. 48
db da [ + 2 (6 ta da da “8)

Now, as the derivatives and the function f itself are already of first
order in €2, only the ‘zeroth’ order in (4) is needed. At this order,
we have a ~ b and thus (p) ~ p,,. Hence, we conclude that (25)

MNRAS 527, 863-875 (2024)

Table 4. Same legend as for Table 1 but for configuration D, which is
compared with Chandrasekhar (1933) (first column).

Configuration D

Chandra. (1933) DrOPT this work
& 0.99008 <0.990 <0.990
n «~1.0 «~1.0 «~1.0
M/[peR3] 1.25799 1.25807 1.25806
V/R? 4.14641 4.14683 4.14690
Q2 x 2 «~0.01671 0.01671 *0.01671
J/IGpI R0/ 0.04244 0.04244
—W/IGpZR?] 1.19148 1.19148
T/[Gp?R:] 0.00274 0.00274
U/IGpER3] 1.18600 1.18599
[VP/W| 7 x 10712 1 x 107

is equivalent to Clairaut’s differential equation in the limit of small
flattenings, at first order in €2. Note that some authors (e.g. Ragazzo
2020) use the mean radius (a>b)'? instead of a or b. We can show by
the same reasoning that the equations would still agree at first order.

3.3 An example. Comparison with Chandrasekhar’s
perturbative approach

To illustrate the compatibility between Clairaut’s equation and (25),
let us consider the numerical solution computed from DROP for
a self-gravitating polytrope with € = 0.99 and n = 1, hereafter
configuration D; see Table 4 for the details of the configuration
and the associated global quantities. We have €2 = 0.0199, which is
expected to be ‘small enough’ for the expansions made in the previous
paragraph to be valid. We can therefore check our expansions as well
as Clairaut’s equation. The results are presented in Fig. 7 (same
panels as for configuration A). We notice that the e-profile is close
to a quadratic. We see, again, the excellent agreement between the
present approach and Clairaut’s equation. Also, we see that the global
quantities obtained with the IDE are close to the one obtained with
DROP, with between four to six digits shared on the values. As quoted
in the introduction, this is not a surprise, as Clairaut (1743) showed
that for small deviations from the sphere, i.e. small flattenings, the
isopycnic surfaces are ellipses in any meridian plane.

Moreover, slowly rotating polytropes have been studied by many
authors, in particular by Chandrasekhar (1933). His approach is
based on the Lane-Emden equation, supplemented by a small
amplitude, rotational field. The equilibrium is solved in the form
of series. Configurations with n = 1 (like configuration B) are
interesting because the results arising from this theory are purely
analytical and offer an interesting opportunity for comparisons. As
the dimensionless rotation rate 22 is an input in Chandrasekhar’s
work (while the axis ratio € is an output), the comparison is performed
by injecting the rotation rate provided by DROP into Chandrasekhar’s
equations. The results are reported in Table 2 (column 2). We
see that the comparison is satisfactory, the agreement being much
better than 1 per cent. Furthermore, the Virial quantities yielded by
the spheroidal approximation are in excellent agreement with the
numerical reference.

4 INTRODUCTION OF MASS-DENSITY JUMPS:
THE MODIFIED IDE

Mass-density jumps are usually associated with a sudden change
in the EoS or in the mechanism transporting matter or energy. It
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is therefore interesting to render the present method as flexible
as possible, and to account for such discontinuities. As often,
we consider jumps as zero-thickness transitions, while, in real
systems, these have always have certain spatial extension. Inspired
by Section 2.5, we can easily introduce mass-density jumps in the
present formalism by decomposing the mass-density profile as

K
P@) =D [h(@) = psi (@) Hw, — @), (49)

k=1

where /C is the number of heterogeneous domains and py(w) =
pi(@)/pe is the mass density inside domain number k (we still
normalize mass-densities to the central value p.). As for the discrete
case, we have set pic1(ww) = 0 to keep a single sum, which means
that the outer space is the very last domain, with index C + 1
and null mass density. There are therefore C jumps, located at
w = wy, k € [1, K]l. Note that (49) allows for configurations with
a surface discontinuity, i.e. at @ = 1. The derivative of this profile
writes

K
Z [% - del]H(wk — @)

k=1
- Z [oe(@) = Py 1 (@) 8(w — @). (50)
k=1

We can thus make use of the properties of the Heaviside and Dirac
distributions to generalize (25).

4.1 Piece-wise rotation and discontinuity in the ellipticity

Let us consider that each domain k € [1, K] rotates rigidly at its
own rate §2. So, for a given domain ky, we have @ € Jwy,—1, @y, [,
and (16) becomes*

ko=l o ds
- Qio = / dw’—dpk ™', @)
k=1 Y Pk-1 @
o] ds
+/ dw' (@, )
— do’
0
@k, ds
+ / d ’ pk K,Oul( /’ w_)
- do’
- N
+ Z ' da’ 2% K" (@', @)
do’ ’
k=ko ¥ Pk=1
ko—1
(473

-1
Pr(@ ™ (@, @), (51

where o, = pr(@r)/ Pr+1(y) is the mass density jump at each inter-
face k. A major question concerns the behaviour of this equation when
applied to two adjacent domains. To answer this point, we write
(51) at w_ = @y, — Aw (inside layer ko) and at wy = wy, + Aw
(inside layer ko + 1), with Az > 0. In the limit where Aw < 1, the

4We have introduced @ = 0 for convenience.
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difference in the rotation rates between @ _ and @ . satisfies

02 -2, =4Am

ko e ds 2
; 4Pk ’ de ’
X{Z/m,, S {ZX(w,wko)— i M(w,wko)]
k=1 k—1 wko
Koo dpy de?
- [Cam | e
k=ko+1 7 Phk=1 do’ dow ™
g — 1 . de?
- Z (@) | 2x (@, wy,) — - w(wy, Ti,)
— w ™
o — de?
+ Z m(wk)d— (@) ¢, (52)
w
k=ko+1 @k,

at first order in Az . If asynchronous motion is possible, then the
RHS of this expression must remain finite when Az — 0. We see
from (52) that this is possible only if the eccentricity undergoes a
discontinuity at wy,, namely

difz _ €]§0+l(wk0) - Gﬁo(wko)
do - Aw

Dy

; (53)

where ¢, is the eccentricity profile in the domain ky. Note that (52)
cannot be used to quantify this jump, as we assumed a continuous
eccentricity to arrive at this point. Indeed, if these jumps are
considered from the beginning, they would cause discontinuities in
the «-functions, x, w, and v, which makes the calculations far more
complex.

This ‘eccentricity jump’ only states that the interfaces between
layers are not isopycnic surfaces. The isopycnic in the inner layer
(the ‘core’) intersect the interface and is prolonged by another
isopycnic in the outer layer (the ‘envelope’) whose eccentricity
has no reason to be the same. This statement has two interesting
consequences: 1) the ‘eccentricity jump’ occurs not at a single value
of @ but on a whole range close to any interface; ii) the potential
of an incomplete Maclaurin spheroid being unknown analytically,
the continuous version of the NSFoE cannot describe systems with
rotational discontinuities.

4.2 Global, rigid rotation

By requiring Qi = ., Vk € [1, K], both sides in (52) are null in the
limit Aw — 0, meaning no eccentricity jump occurs for systems in
global rotation, so that the interfaces between layers are isopycnic
surfaces. As the RHS of (51) is constant, we can, as in the single-layer
case, take its derivative with respect to @ inside layer ko. We find

ko—1

o ds
[ [ e
Dk—1 Dko—1 dw
ko—1
o — 1 de?
- Z Lo, w) = S im
ko—1 Wi w d/\
{z/ [ o
k=1 Y Pk-1 Wky—1 do
ol — 1 Ko —
- Z d Px(@) (o, @) — Z k Pr(@i)v(wy)
073
k=1 k=kg
B dp P dpy
+ Z / dw/—v(w/)Jr/ do’' L u@) s, (54)
— do’ - do’
k=ko+1 k=1
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Table 5. Same legend as for Table 2, but for configuration A’.

Configuration A’

propf This work
& <~ 0.750
ni «~ 1.5
ny <~ 3.0
w1 é(wy) <~ 0.35
o8 0.35965
o «~ 2.0
M/[pcR3] 0.05722 0.05735
V/R? 2.92254 3.14519
27Q? 0.03765 *0.03768
J/[Gp3RIO1I/2 0.00048 0.00048
—W/[Gp?RZ] 0.00631 0.00633
T/[Gp?R]] 0.00004 0.00004
U/IGPER3] 0.00622 0.00623
[VP/W| 8 x 1077 1 x 1073

This expression is the IDE modified by the presence of jumps. Note
that it can be recast in the form of (37). As for the single-layer case,
(54) cannot be solved alone as we have a single IDE for IC + 1
unknown functions, namely the mass-density profiles g () and the
eccentricity €(z). A solution requires /C equations of state and
Bernoulli’s equations.

4.3 An example

Once again, we check the self-consistency of (54) by comparison
with a numerical solution from DROP; see Section 2.6. We see that
(54) can be written in the form of (37), i.e. we can obtain an equa-
tion of the form de?/dw = g(p, €, @). So, as before, we use DROP
outputs to compute both sides of (54) and we then compare the results.

Configuration A’ is a rotating body with surface axis ratio of
0.75, a core with polytropic index n; = 1.5 and semi-polar axis
w€(w) = 0.35 and an envelope with polytropic index n, = 3.
This system could correspond to a highly flatten object with a large
convective core (whose mean radius is ~ 40 per cent of the star’s
radius) and a big radiative envelope; it may thus be considered as a
very simple model for a fast-rotating high-mass star (M 2 1.2 My);
see e.g. Maeder (2009). The global quantities are given in Table 5 and
the results are plotted in Fig. 8. Again, the agreement between the
spheroidal approximation reported here and the numerical reference
is remarkable, within a few tenths of a percent (except for the
volume). The relative Virial parameter is also really good (1073
< 1), which validates more the approach. We see that both squared
eccentricity gradients compare really well to each other (see panel
d), the discrepancy being around ~10~3 in most of the object and
around ~1072 in the neighbouring of the mass density jump, which
is due to the numerical resolution in this region. Indeed, for each
cylindrical radius, the interface is described by two or three points,
which may not be enough to reach a good accuracy on the dynamics
of the eccentricity in this region. This peak is also seen in the Q2
curve (panel f), where the gap to the value yielded by DROP is also
about a few tenth of a per cent.

5 DISCUSSION

5.1 Summary

This article investigates the condition of equilibrium of a hetero-
geneous system with spheroidal isopycnic surfaces (axisymmetrical
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Figure 7. Same legend as Fig. 4, but for configuration D (& = 0.99, n =
1.0).

case). We have derived the main IDE of the problem in the case
where the rotation rate is constant onto the isopycnic surfaces, and
we have deduced the corresponding IDE in the special case of rigid
rotation. This IDE works for a wide range of rotation rates, not
only in the slow rotating limit as often considered. Using the DROP-
code as a numerical reference, we have proven the reliability of
the approach for various configurations, including fast rotators; see
configurations A and B. The IDE is fully compatible with Clauraut’s
equation in the case of slow rotation. Furthermore, we have seen a
correlation between the state of critical rotation and the criterion of
non-intersection of the isopycnics. As shown, mass-density jumps
can be taken into account in the model as long as there are no
rotational discontinuities.

5.2 Open questions and perspectives

(i) Rotational discontinuities. When rotational discontinuities
are present, an eccentricity jump is mandatory, meaning the interfaces
between layers were not isopycnic surfaces. The approximation of
spheroidal isopycnic then fails in this case. However, if the rotational
discontinuities (or equivalently, the eccentricity jumps) are small
enough, it should be possible to derive an IDE for this case, as the
range where the jump occurs becomes negligible. This point would
merit an additional work.

(ii) From slow to fast rotator: a criterion. In the limit of small
flattenings, our approach compares really well with the one developed
by Chandrasekhar (1933) and we were able to recover Clairaut’s
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Figure 8. Same legend as for Fig. 4, but for configuration A’, which is a
two-domain body (i.e. = 2) with a mass-density jump at @ = w| ~ 0.36
(marked with a vertical red dashed line; see Table 5).

equation at first order in &2. This addresses the question of the limit
between slow rotators (well described by Clairaut’s theory) and fast
rotators, which can be roughly answered as follows. Let us develop
v at second order in € (for convenience, we use v instead of x or
as it is a function of a single variable). From (A5), we directly obtain

1 2, 8
=—==— - — O(e%). 55
V(@) 37 15¢ () ]056(6)-1- (€”) (55)
Now, let n be the ratio of the fourth-order term to the second-order
term. We have

4
n=—eX(@). (56)
7
So, roughly, the error in the quantity de?/dzo made by using Clairaut’s
equation, i.e. (45), is of the order of 1. The corresponding axis ratio
at the surface is then

7
& >1/1—-n. 57
& =1/ 7" (57

We see that for configuration D (see Fig. 7d), which has an axis ratio
of 0.99 at the surface, the maximum error is of order 1072 (we do
not take into account the part = < 0.2, which is dominated by the
errors of the finite-difference scheme). This then corresponds to the
criterion (57).
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(iii) Can we expand the IDE at higher orders? As shown,
expanding the IDE at first order in €2 leads to Clairaut’s equation. It
would then be interesting to derive a second-order Clairaut equation,
basically by expanding the IDE to a second-order expansion in
€. This would be another approach to the expansion of Clairaut’s
equation than Lanzano (1962, 1974) who has performed a multipolar
expansion of the shape of the object. However, preliminary calcu-
lations indicate that the problem might not be any easier than the
equation set reported here. This point is still under investigation.

(iv) Do exact solutions to the IDE exist? As it is well known,
analytical solutions are always powerful tools for making models and
diagnosis tools, regarding observations. The existence of analytical
solutions to the IDE in the form p(e) would be very interesting, and
it already represents an exciting perspective. Clairaut’s equation is
known to have a few analytical solution (e.g. Tisserand 1891;
Marchenko 2000). Given the complexity of the IDE, we expect any
analytical solution to be only approximate. Solutions via a series
expansion or linearization for example would be interesting to seek
for.

(v) Towards 2D structures? As quoted, (25) is not sufficient in
itself to derive models for interiors of rotating bodies; it is the case of
Clairaut’s equation as well. The IDE has to be combined with an EoS
and to Bernoulli’s equation. However, the IDE enables to reduce the
number of dimensions of the problem, from two to one, through the
relationship p(€). The computation of the gravitational potential is
skipped in this process (in fact, it is already incorporated in the IDE).
This is very attractive, in particular in terms of computing time if a
large number of structures have to be computed (see below). We are
currently preparing an article dealing with the structure of spheroidal
stars and planets from an SCF-method (Hachisu 1986) through this
dimension reduction.

(vi) Inverse problems. Planets like Jupiter and Saturn do probably
not belong to the category of slow rotators. The IDE could therefore
be of great help in generating fast internal 2D structures (with
appropriate EoS), under the conditions of the hypothesis of the
NSFoE. Next, it would be easy to compute the gravitational moments
and to isolate solutions that match the values ‘measured’ by space
probes. Yet, as pictured by for example Miguel & Vazan (2023), high-
order gravitational moments mostly describe the outer layers of the
object, which is the most poorly described zone by the theory reported
here; see also Basillais & Huré (2023) (Paper III) and references
therein. As such, we expect only the first two moments to be accurate
enough. Furthermore, as quoted by Nettelmann et al. (2021), the
concentric Maclaurin spheroid (CMS) method by (Hubbard 2013)
has high computational needs, meaning that a scan of a given
parameter space is tedious. With a very fast algorithm, it could be
possible to identify places in the parameter space compatible with the
measured J,,, which could be further studied with more sophisticated
algorithms (e.g. the CMS method). Obviously, in the case of gaseous
planets, the presence of complex winds at the very surface is not
strictly compatible with the NSFoE (the 3D structure of a gaseous
planet with zonal winds has been studied by Kong, Zhang & Schubert
2016). This is worst in stars where meridional circulations are present
(see e.g. Zahn 1992).
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APPENDIX A: KERNEL FUNCTIONS

Let us write explicitly the kernel functions of the integrals of the
main equations of this work.
Yo €10, 1], Vo' € [0, @[, we have

E(w’ 220 , ,
' ) = @{ [1 - Z%Ew)} arcsin (M)

w

’ ’ 2.2 /
_we(w)(zg(w)_'_ l_w e(w)>
o

o2
+2 arcsin <&> [1+ (@', ZU)]},
wl+ (o, o)
(A1)
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Vo € [0, 1], Vo' € [w, 1], we have

(@', @) = [3 - 26X ()]
“w) , 1
m arcsin (G(w )) — % + 1. (A2)

One could be worried by the multiple divergences in «™ at @ =
0. Yet, in this case, we see that the first integral in (16) vanishes and
the divergences are then never taken into account in the calculations.

The property k™, w) = k®(w, @) is easily proven by
remembering c¢(w, @w) = 0.

The derivative functions of x™" and x°* written in equations (22)
and (23) are given by

, w?e(w) { ) (w%(zﬁ))
x(@', ) = ———— |arcsin [ ———

wie(w’) o
. w'e(w’)
— arcsin <—w o D) w))} , (A3)
(' @) = &) [r in( o'e(w’) > B w’e(w’)]
e, @)= () ares o1+ (@, @) wé(w) |’
(A4)
(@) = <2 arcsin(e(ar’)) — (AS)
W) = perom—y arcsin(e(w prrers

where x and p are defined for w € 10, 1], w’ € [0, w|[ and v is
defined for w’ € [0, 1].

Once again, we can easily prove that x (', w)=0and W(w, @) =
v(w, @), leading to the continuity in @’ = @ of the derivative of
the «-functions.

APPENDIX B: ROBERTS’ EQUATION
Equation (3.23) of Roberts (1963) reads

de? 167 o5 5 — y - D@
7{79 w E(w) TSM(W) 5 (@)
3 2w n (e(o

%?(W) { [3 — 262(0)] arcsi ( ( ))

—3e(w)@(w)i)(w>}

"2
= %ig’)e(w){ [3 — 2¢*(w)] arcsin (e(w))

do

—3e(w)é(w) } D(w), (B1)
where

/A / / 2
/w_p(w) { o’ de } (B2)
(@) ’

v _ o _ 2 _w e
Wm—hAdw 1) - 78

and

B 5 w'?eX(w')
3 wle(w)

D(w) = 471/ dew’
0

w’ de? {

zzr’,é(w/){ [1—-€(@)] [l

é(wm’)
w2 — 362(w’)]] }

oleX(w)

- B3
6 dwo’ (B3)
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APPENDIX C: ON THE VOLUME INTEGRALS
The quantities calculated in Tables 1-4 write

M= [dVp(w),

V = [dV (= jnR3E(D)),
J = [dVp(2)Qw)R?,
W=1[dVp(@)¥(w,0),
U=3[dVp(m),

T =1[dVp(@)Q*w)R>

(CH

So we need to express the volume element dV and the cylindrical
radius R as functions of the spherical polar angle 6 and @ . Along an
isopycnic surface, the spherical radius r reads

r /1 —eX(w)

= —. (2)
Re /1 — €2(w)sin?(0)

The Jacobian matrix J of the transformation from the Cartesian
coordinates to an isopycnic coordinate system (@, 6, ¢), where ¢ is
the spherical azimuthal angle, reads

or - - cos( . .
3= sin(6) cos(¢) % —r sin(#) sin(p)
~ F) . . ~0s(0) s .
J=| 35 sin(®)sin(p) % r sin(8) cos(¢p)

__rsin@)[1-€*(@)] 0

ar
dw cos(6) 1—€2(z) sin2(0)

(C3)
where (0r/0w ) reads
Lo JT-e@)
Ko~ \Ji= @)
w de? cos?(6)
T 24w i dll - e@swers
© The Author(s) 2023.
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So, the volume element is then given by

% _ di;(f)dwdedw
_ 1= €@)] [1 - E@)sin’(0)] — Z 4 cos’(0)
- [1 — €(w) sin?(6)]>/>
x w2\/1 — €X(w) sin(0)dw dodg. (C5)

The cylindrical radius is given by R = rsin (9), namely

R _@l- €2(w) sin(6) (C6)

R.  \/1—eXw)sin?(®)

All the integrals of (C1) can now be computed numerically (via a
trapezoidal rule for instance).

For the rotation rate, as it is not exactly a constant due to
the spheroidal approximation, we can obtain an mean value by
integrating over the moment of inertia, namely

_de,o(w)Q(w)R2 _1
)= &V owre '<_1>' P

This paper has been typeset from a TeX/IATgX file prepared by the author.
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