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A B S T R A C T 

The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of 
the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes 
a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an 

integro-differential equation (IDE) linking the ellipticity of isop ycnic surf aces to the equatorial mass-density profile. In contrast 
with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical 
solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we 
fully reco v er Clairaut’ s equation. Comparisons with Chandrasekhar’ s perturbative approach and with Roberts’ work based on 

virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of 
heterogeneous structures containing mass-density jumps is proposed through a modified IDE. 

Key words: gravitation – methods: analytical – planets and satellites: interiors – stars: interiors – stars: rotation. 
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 I N T RO D U C T I O N  

nveiling the internal structure of celestial bodies is a longstanding 
nd fundamental challenge in astrophysics. Theories have emerged 
hree centuries ago, with a principal interest in the Earth’s interior. In
he limit of slow rotation, Clairaut ( 1743 ) showed that the isopycnic
urfaces are spheroids, i.e. ellipsoids of revolution. Using the theory 
f Maclaurin ( 1742 ) for homogeneous spheroids, he obtained a 
econd-order, ordinary differential equation linking the flattening 
f isopycnics to the mass-density profile. This equation has been 
ore recently extended by Lanzano ( 1962 , 1974 ), the shape of the

xternal surface being expanded over Legendre polynomials P 2 n up 
o the n th order . Unfortunately, Clairaut’ s equation admits essentially
o analytical solutions (with some exceptions, see Tisserand 1891 ; 
archenko 2000 ). Slow rotators are accessible from the ‘modified’ 

ane-Emden equation in the form of series (Chandrasekhar 1933 ; 
o v etz 1968 ). Besides, Clairaut’s equation is limited to small
attenings (i.e. to low rotation rates), while many systems do not 
elong to the category of slow rotators. This is the case of the giant
lanets in the Solar System. For Jupiter and Ceres, the flattening 
arameter f ≈ 0.07, and this is even larger for Saturn (Tricarico 2014 ;
ambaux, Chambat & Castillo-Rogez 2015 ). Achernar represents 
n extreme configuration (Carciofi et al. 2008 ). New developments 
emain therefore necessary to model the structure of spinning objects, 
specially for moderate to fast rotation rates (e.g. Lanzano 1962 ; 
agazzo 2020 ). 
The determination of the gravitational potential of rotating bodies 

as al w ays demanded a high analytical effort or substantial com-
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utational resources, or both (this exceeds the present context). 
he spheroidal shape is appealing, as its gravitational potential is 
nown with a closed form (see e.g. Chandrasekhar 1969 ). Kong,
hang & Schubert ( 2015 ) have investigated the validity of the
ypothesis of spheroidal isopycnics by comparing of the ‘true’ shape 
btained by numerical means to ‘perfect’ spheroids. They showed 
hat discrepancies are small in amplitude. In fact, this remains true
t moderate/large rotation, but unsurprisingly fails close to the mass- 
hedding limit (Hachisu 1986 ). Using the gravitational potential of 
 heterogeneous spheroid, Roberts ( 1963 ) used the tensor Virial
heorem to derive equations valid for fast rotators, but no self-
onsistent solutions was produced. 

In Hur ́e ( 2022a , b , hereafter, P aper I and II, respectiv ely), we
av e inv estigated the conditions of equilibrium of a piece-wise,
eterogeneous system made of L homogeneous layers bounded 
y spheroidal surfaces. The theory of nested spheroidal figures of 
quilibrium (hereafter, NSFoE) assumes that these surfaces stay 
lose to confocality (in the sense of oblate spheroidal coordinates; see
ection 2 ) and that each layer can rotate at its own rate (V ́eronet 1912 ;
izyaev, Borisov & Mamaev 2015 ). A wide range of configurations

s then reachable, from quasi-spheres to very flat, disc-like objects. It
ust be pointed out that such solutions remain approximate, although 

he Virial parameter relative to the gravitational energy is very small
Staelen 2022 ). This is a consequence of Poincar ́e-Hamy theorems:
 rigidly rotating body with a spheroidal stratification is not an exact
gure of equilibrium. 1 In this article, we investigate the solutions in

he case where the number L of layers is infinite, which corresponds
 Only confocal surfaces can lead to an exact equilibrium when all layers 
otate in a synchronous manner. This equilibrium requires a mass-density 
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Figure 1. Typical configuration for a heterogeneous body with finite number 
of homogeneous layers ( L in total) bounded by spheroidal surfaces E j . 
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o a fully heterogeneous body, and for a global rigid rotation. It is
herefore a natural continuation of Paper II. Another moti v ation of
he article is the case of moderate/fast rotators, characterized by a
ignificant oblateness or flattening (larger than a per cent typically).
t is therefore interesting to see to what extent classical theories,
hich are often limited to slow rotation, remain valid or fail. In

his purpose, it is necessary to compare any analytical result with
umerical solutions. In the present case, this is achieved by using the
ROP code which solves the problem for a polytopic equation-of-
tate (EoS), various flattenings and rotation profiles (Hur ́e & Hersant
017 ; Basillais & Hur ́e 2021 ). 
It is obvious that the present approach is not supposed to surpass

ophisticated models for stars and planets, which are dynamically
nd thermodynamically more complex that what the hypothesis
ade here allow. Stars are widely prone to mixing, transport and

irculation. Planets, closer to rigid rotation, have a more simple
ayered structure (except at the very surface) and isopynics surfaces
re believed to be very close to spheroids, as suggested by the
nversion of gravitational moments (e.g. Hubbard 2013 ; Nettelmann
t al. 2021 ). After a brief summary on the theory NSFoE, we show
n Section 2 how the discrete set of equations can be converted into a
ifferential equation. For rigid, global rotation, this is equivalent to an
ntegro-differential equation (IDE) for the ellipticity of isopycnics.
n a first example, we feed this IDE with the numerical solutions
btained from the self-consistent-field (SCF) method (e.g. Hachisu
986 ), and show that this approach is not only coherent but quite
ccurate. In Section 3 , we study the behaviour of the equation in
he limit of small flattenings, which happens at slow rotation. In
articular, we show that the formalism is fully compatible with
lassical theories, namely the fundamental second-order differential
quation established by Clairaut ( 1743 ), the solutions obtained by
handrasekhar ( 1933 ) from the ‘modified’ Lane-Emden equation.
e also make a comparison with the equation of Roberts ( 1963 ).

he question of internal jumps is addressed in Section 4 , where we
erive a modified IDE and test it. In the concluding section, we
ropose a criterion characterizing the transition from slow to fast
otators, and give a few perspectives. 

 T H E O RY  F O R  H E T E RO G E N E O U S  BODIES  

.1 Equation set for the theory of NSFoE 

e adopt the same theoretical background and same notations as in
 aper I and P aper II, which can be summarized as follows. We con-
ider L oblate, non-intersecting spheroidal surfaces E j , j ∈ [ [1 , L ] ]
ith semimajor axis a j , semiminor axis 0 < b j ≤ a j and eccentricity 

j = 

√ 

1 − b 2 j /a 
2 
j , (1) 

s depicted in Fig. 1 . These surfaces define L layers. We note with
ndex j ≥ 2 the layer bounded by E j − 1 and E j (we then have a j − 1 

 a j and b j − 1 < b j ). Index 1 corresponds to the deepest layer,
ounded by surface E 1 only. Furthermore, we assume that each layer
 is homogeneous, with mass density ρ j , and rotates rigidly around
he Z -axis at a rate �j . A key point in the theory of NFSoE is the
ossibility of asynchronous motion of layers, i.e. �j − 1 �= �j . In
his article, ho we ver, we will consider a subclass of configurations
haracterized by synchronous rotations. 
NRAS 527, 863–875 (2024) 

nversion, which, for stability reasons, is physically not tenable (Poincar ́e 
888 ; Hamy 1890 ; Volterra 1903 ). 
A fundamental parameter that controls the applicability of the
heory is the ‘confocal parameter’ c i , j , defined for each pair (E i , E j )
y 

 i,j = q 2 i,j ε
2 
i − ε2 

j . (2) 

his parameter is positive if a surface E i , interior to a surface
 j is, in terms of oblate spheroidal coordinates, more oblate than

ayer j . As quoted in the introduction, only systems with confocal
pheroidal surfaces (i.e. c i , j = 0 for all pairs) correspond to an exact
quilibrium (Poincar ́e 1888 ; Hamy 1890 ). Then, the equilibrium
f any layered systems in rigid rotation with non-zero confocal
arameters is necessarily approximate. As shown in P aper I and P aper
I, equilibria with | c i , j | � 0.3 typically are found to be very close to
umerical simulations obtained with the DROP -code (Hur ́e & Hersant
017 ; Basillais & Hur ́e 2021 ). Besides, the c -parameter is generally
ound to be slightly ne gativ e, meaning that isop ycnic surf aces tend
o be more spherical with depth in the system, or equi v alently, that
he ellipticity of isopycnics increases from the centre to the surface.
o we ver, note that if models of stars and planets mainly agree on

uch a ‘standard’ stratification, there is no argument or observational
roof that definitively rules out a reversal, for some objects. This
ay depend on physical mechanisms at work and on the formation

rocess. Prolate shapes can be induced by circulations or magnetic
elds (e.g. Fujisawa & Eriguchi 2014 , and references therein). 
The starting point of the present work is (27) of Paper II, which

inks the properties of all layers together. This is a set of coupled,
 − 1 algebraic equations, which read, 

αj 
˜ �2 

j − ˜ �2 
j+ 1 

αj − 1 
= 

j−1 ∑ 

i= 1 

˜ ρi+ 1 ( αi − 1) 
ε̄i 

ε3 
i 

×
[

2 arcsin 

( 

q i,j εi √ 

1 + c i,j 

) 

(1 + c i,j ) 

+ 

(
1 − 2 q 2 i,j ε

2 
i 

)
arcsin ( q i,j εi ) − q i,j εi 

√ 

1 − q 2 i,j ε
2 
i − 2 q i,j εi ̄εj 

]

+ 

L ∑ 

i= j 

˜ ρi+ 1 ( αi − 1) 

[
M ( εi ) + 

2 

ε2 
i 

(
ε2 
j − ε2 

i 

)]
(3) 

or j < L , where ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˜ ρj = ρj /ρL 

, 

αj = ρj /ρj+ 1 , 

q i,j = a i /a j , 

ε̄j = b j /a j , 

(4) 
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Figure 2. Eccentricity profile (left) prescribed for example. Functions κ in 
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nd 

 ( ε) = (3 − 2 ε2 ) 
ε̄

ε3 
arcsin ( ε) + 3 − 3 

ε2 
, (5) 

s Maclaurin’s function defined by (see Paper I), and 

˜ 
j = 

�j √ 

2 πGρL 

. (6) 

s the dimensionless rotation rate normalized to the mass density of
he uppermost layer ( G is the gravitational constant). For j = L (the
pper layer), we have 

˜ 2 L 

= 

L ∑ 

i= 1 

˜ ρi+ 1 ( αi − 1) 
ε̄i 

ε3 
i 

[
2 arcsin 

( 

q i, L 

εi √ 

1 + c i, L 

) 

(1 + c i, L 

) 

+ (1 − 2 q 2 i, L 

ε2 
i ) arcsin ( q i, L 

εi ) − q i, L 

εi 

√ 

1 − q 2 i, L 

ε2 
i 

− 2 q i, L 

εi ̄εL 

]
. (7) 

.2 From a discrete set of layers to a continuum 

e now seek for equilibrium configurations where ρ is continuous 
nd deri v able from the centre to the surface. We first consider
onfigurations without any mass-density jumps (mass-density jumps 
re considered in Section 5 ). As each layer j has its specific mass-
ensity, and specific set of confocal parameters c i , j , the theory of
SF oE is e xpected to be capable of such a prolongation, pro vided

hese confocal parameters are all ‘small’ enough. When L drastically 
ncreases, the extension of layer j in the equatorial plane is a j − a j − 1 

� a j → 0. In a similar way, at the polar axis, we have b j − b j − 1 ≡
 b j → 0. Furthermore, the difference in the mass-density between 

wo consecutive layers is 

ρj = ρj+ 1 − ρj = ρL 

� ̃  ρj 

= ρL ̃

 ρj+ 1 ( αj − 1) → 0 . (8) 

n these conditions, ( 3 ) can be rewritten as 

˜ ρj+ 1 ̃  �2 
j+ 1 − ˜ ρj 

˜ �2 
j 

� ̃  ρj 

= 

j−1 ∑ 

i= 1 

� ̃  ρi 

ε̄i 

ε3 
i 

[
2 arcsin 

( 

q i,j εi √ 

1 + c i,j 

) 

(1 + c i,j ) − 2 q i,j εi ̄εj 

+ (1 − 2 q 2 i,j ε
2 
i ) arcsin ( q i,j εi ) − q i,j εi 

√ 

1 − q 2 i,j ε
2 
i 

]

+ 

L ∑ 

i= j 

� ̃  ρi 

[
M ( εi ) + 

2 

ε2 
i 

( ε2 
j − ε2 

i ) 

]
. (9) 

n this form, we see that ( 9 ) has the convenient form for the
ontinuous case, as in the limit � ̃  ρi → 0 the sums o v er i tend to
nte grals. To e xpress these integrals, the equatorial radius of layer j
s rewritten in the form of the dimensionless, continuous variable 

 ≡ a j 

R e 
. (10) 

qui v alently, this is the semimajor axis of the isopycnic surface E( � )
E j , normalized to the equatorial radius of the body. In a similar

anner, we associate 

 

′ ≡ a i 

R e 
, (11) 

ith the equatorial radius of layer i . As long as ε1 �= 1, we have a 1 →
, otherwise a minimal radius is required. Yet, numerical solutions 
btained from the DROP -code (see Figs 4 –7 ) show that the deeper
he layer, the smaller its flattening, namely ∇ε > 0, in agreement
ith classical theories. Thus, in this work, we will freely take a 1 →
, so that ( � 

′ , � ) ∈ [0, 1] 2 . 
In the perspective of a continuous mass-density profile, we must 

onsider situations where the mass density vanishes onto the external 
urface. In general, the adimensioning used for the discrete theory is
ot appropriate and must be reconsidered. This is easily corrected. 
n this purpose, we choose the central mass density ρc = ρ1 as the
ew reference, instead of ρL 

. The main parameters of layer j are then ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

ˆ ρ( � ) ≡ ρj 

ρc 
≡ ˜ ρj × ρL 

ρ1 
, 

ˆ �( � ) ≡ �j √ 

2 πGρc 
≡ ˜ �j ×

√ 

ρL 
ρ1 

, 

ε( � ) ≡ εj , 

ε̄( � ) = 

√ 

1 − ε2 ( � ) ≡ ε̄j , 

(12) 

here ε( � ) is the eccentricity of the isopycnic surface E( � ) and
¯( � ) is its axis ratio. In a similar way, the confocal parameter is now
 continuous variable, namely, from ( 2 ) 

( � 

′ , � ) = 

� 

′ 2 

� 

2 
ε2 ( � 

′ ) − ε2 ( � ) . 
(≡c i,j 

)
(13) 

With these definitions, the left-hand side (LHS) of ( 9 ) becomes 

˜ ρj+ 1 ̃  �2 
j+ 1 − ˜ ρj 

˜ �2 
j 

� ̃  ρj 

→ 

d( ̂  ρ ˆ �2 ) 

d ̂  ρ
, (14) 

hile the right-hand side (RHS) of ( 9 ), more complex, can be written
n compact form as 

HS of (9) → 

∫ ˆ ρ( � ) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) κ in ( � 

′ , � ) 

+ 

∫ ˆ ρ(1) 

ˆ ρ( � ) 
d ̂  ρ( � 

′ ) κout ( � 

′ , � ) , (15) 

here the two functions κ in and κout are explicitly given in Ap- 
endix A ; see ( A1 ) and ( A2 ). Formally, these depend on � , � 

′ , and
, i.e. κ ≡ κ( � 

′ , � ; ε). As ε depends on � 

′ or � , then there are only
wo variables on input. Despite appearances, these functions behave 
 ery well o v er the inte gration range. Among interesting properties,
e have κ in ( � , � ) = κout ( � , � ). This is particularly important and

ttractive for numerical applications. We also see that κ in ( � , 0) =
 for � �= 0 ( κ in is not defined for this value). The typical shape of
hese functions is visible in Fig. 2 (b), where we have plotted κ in and
out as functions of � 

′ for fives values of � . For this example, we
ave prescribed a parabolic profile for the eccentricity (see Fig. 2 a),
s observed in many numerical experiments (see, e.g. configuration 
 discussed below). 
MNRAS 527, 863–875 (2024) 
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It follows from ( 14 ) and ( 15 ) that ( 9 ) reads, in the continuous limit 

− d( ̂  ρ ˆ �2 ) 

d � 

= 

d ̂  ρ

d � 

[ ∫ ˆ ρ( � ) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) κ in ( � 

′ , � ) 

+ 

∫ ˆ ρ(1) 

ˆ ρ( � ) 
d ̂  ρ( � 

′ ) κout ( � 

′ , � ) 

]
. (16) 

his equation is the main equation of the present problem . It links
he eccentricity of the isopycnic surfaces and their mass density (in
act, its deri v ati ve) to the variations of the rotation rate. It enables to
each configurations where both the mass density and rotation rate
ary smoothly with the equatorial radius. We can apply the same
ransformation to ( 7 ), and we obtain at the surface 

− ˆ �2 (1) = 

∫ ˆ ρ(1) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) κ in ( � 

′ , 1) . (17) 

e see that the RHS of ( 16 ) and ( 17 ) coincide for � = 1, within a
actor (d ̂  ρ/ d � ) | �= 1 . So, the two LHS must also coincide for � =
, which imposes the condition 

d ̂  �2 

d � 

∣∣∣∣
�= 1 

= 0 . (18) 

hus, the squared rotation has an extremum at the surface. 

.3 The case of global rigid rotation: the general IDE for the 
ccentricity 

e see that ( 16 ) is capable of modelling a wide range of situations,
rom rigid to differential rotation, and independently, from homoge-
eous to heterogeneous mass-density profiles. In this work, we focus
n rigidly rotating bodies, so we have d ̂  � = 0. It means that ( 18 ) is
aturally satisfied. Therefore, ( 16 ) becomes 

− ˆ �2 = 

∫ ˆ ρ( � ) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) κ in ( � 

′ , � ) 

+ 

∫ ˆ ρ(1) 

ˆ ρ( � ) 
d ̂  ρ( � 

′ ) κout ( � 

′ , � ) . (19) 

his equation yields the rotation rate of the body once the configura-
ion is known through ˆ ρ( � ) and ε( � ). Alternatively, it can be used
o constrain the solutions if the rotation law is prescribed in advance.

e can take the deri v ati ve of ( 19 ) with respect to � . In this purpose,
e use Leibniz’s integral rule, namely, for a gi ven deri v able function
 , 

d 

d x 

∫ x 

x 0 

d y g( x , y ) = g( x , x ) + 

∫ x 

x 0 

d y 
∂ 

∂x 
g( x , y ) , (20) 

here x 0 is a constant. In the present case, it leads to 
 ˆ ρ( � ) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) 
∂ 

∂� 

κ in ( � 

′ , � ) 

+ 

∫ ˆ ρ(1) 

ˆ ρ( � ) 
d ̂  ρ( � 

′ ) 
∂ 

∂� 

κout ( � 

′ , � ) = 0 , (21) 

here we have used the property that κ is continuous at � 

′ = � 

see abo v e). In fact, the partial deri v ati ves can be put in the form 

∂ κ in 

∂� 

= 4 χ ( � 

′ , � ) − 2 
d ε2 

d � 

μ( � 

′ , � ) , (22) 

nd 

∂ κout 

∂� 

= −2 
d ε2 

d � 

ν( � 

′ ) , (23) 
NRAS 527, 863–875 (2024) 
here χ , μ and ν are defined in the Appendix A ; see ( A3 ), ( A4 ) and
 A5 ), respectively. Like κ , these functions depend on 3 quantities,
 , � 

′ and ε, but implicitly only on the 2 space variables � and
 

′ . An illustration is given in Fig. 3 for the parabolic eccentricity
rofile considered previously. An important property is that χ ( � ,
 ) = 0 and μ( � , � ) = ν( � ), which means that the deri v ati ves of

he κ-functions are equal at the connection, i.e. 

∂ κ in 

∂� 

∣∣∣∣
� 

′ = � 

= 

∂ κout 

∂� 

∣∣∣∣
� 

′ = � 

. (24) 

his is visible in Fig. 2 (b). These functions have also a relatively
mall amplitude, which, again, is v ery practical for an y numerical
reatment. From ( 22 ) and ( 23 ), ( 21 ) becomes 

 

∫ ˆ ρ( � ) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) χ ( � 

′ , � ) = 

d ε2 

d � 

[∫ ˆ ρ( � ) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) μ( � 

′ , � ) 

+ 

∫ ˆ ρ(1) 

ˆ ρ( � ) 
d ̂  ρ( � 

′ ) ν( � 

′ ) 
]
, (25) 

hich then links directly the eccentricity of the isop ycnic surf aces to
heir mass density. 

A consequence of ( 25 ) comes from the case � = 0 (i.e. the centre
f the body). Indeed, at this point, we have 

d ε2 

d � 

∣∣∣∣
�= 0 

×
∫ ˆ ρ(1) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) ν( � 

′ ) = 0 . (26) 

s ν( � 

′ ) < 0 ∀ � 

′ [this is seen from its definition; see ( A5 ) in
ppendix A ] and d ̂  ρ < 0 from stability consideration, ( 26 ) yields 

d ε2 

d � 

∣∣∣∣
�= 0 

= 0 , (27) 

hatever the mass density profile. 

.4 A note on the condition of immersion 

s early quoted in this section, an important hypothesis of the theory
f NSFoE is the non-intersection of the interfaces between layers. In
he continuous limit, this means that the isop ycnic surf aces must not
ross each other. Two ellipses intersect if and only if the one with
he largest major axis has also the smallest minor axis. So, if the
olar radius b , i.e. the minor axis, is given by b( � ) /R e = � ̄ε( � ),
e require 

d[ � ̄ε( � )] 

d � 

> 0 . (28) 
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It is easily shown from the definitions of ε and ε̄ that 

d[ � ̄ε( � )] 

d � 

= ε̄ − � 

2 ̄ε

d ε2 

d � 

. (29) 

o, ( 28 ) can be written as 

d ε2 

d � 

< 

2 

� 

[
1 − ε2 ( � ) 

]
, (30) 

hich then imposes an upper limit for the eccentricity gradient . 
ote that requiring � (d ε2 / d � ) = 2[1 − ε2 ( � )] ∀ � ∈ [0 , 1] leads 

o ε2 ( � ) = 1, i.e. the body would be infinitely flat. 

.5 The particular case of homogeneity: Maclaurin formula 
eco v ered 

 first check of the ( 25 ) is performed by considering the Maclaurin
pheroid. In this case d ̂  ρ = 0, and the mass density profile is 

ˆ ( � ) = H(1 − � ) , (31) 

here H is Heaviside’s step function. In the sense of distributions,
he deri v ati ve of the mass density is 

d ̂  ρ

d � 

= −δ(1 − � ) , (32) 

here δ is Dirac distribution. We can now use ( 25 ) to obtain ε, which
s the only unknown of the problem. Ho we ver, for a body where the

ass density is a constant, the notion of isopycnic surfaces appears 
s a non-sense. Yet, the Poincar ́e-Wavre theorem implies that for
 body where the rotation rate is constant on cylinders, isopycnic 
nd isobaric surfaces must coincide. 2 Rigid rotation has a rate which 
s obviously constant on cylinders, so we can consider ε as the 
ccentricity of isobaric surfaces. It can be shown that ( 16 ) and ( 25 )
ecome 

ˆ 2 = κout (1 , � ) , (33) 

nd 

d ε2 

d � 

× ν(1) = 0 , (34) 

espectively, where we used the properties of the Dirac distribution. 
rom ( A5 ), we see that ν ne ver v anishes, so the only solution to ( 34 )

s 

d ε2 

d � 

= 0 ⇒ ε2 ( � ) = ε2 (1) , (35) 

hich means that isobaric surfaces are similar spheroids. So, by 
xpliciting κout , ( 33 ) becomes 

ˆ 2 = 

(
3 − 2 ε2 

s 

) ε̄s 

ε3 
s 

arcsin ( εs ) + 3 − 3 

ε2 
s 

≡ M ( εs ) , (36) 

here εs ≡ ε(1) and ̄εs ≡ ε̄(1) are values at the surface. As expected, 
e fully reco v er the results from Maclaurin’s theory. 

.6 Checking the IDE from a numerical reference 

nfortunately, without any prior knowledge on the mass-density 
rofile or the eccentricity, ( 25 ) cannot solely be used to determine
ny internal structure. Ho we ver, we can test the reliability of the
 In fact, the theorem states equi v alency between four propositions, two of 
hich are used in this discussion; see e.g. Tassoul ( 1978 ). 

3

a
s
c

bo v e approach. In this purpose, we find more practical to rewrite
 25 ) in the form 

d ε2 

d � 

= 

2 
∫ ˆ ρ( � ) 

ˆ ρ(0) d ̂  ρ( � 

′ ) χ ( � 

′ , � ) ∫ ˆ ρ( � ) 
ˆ ρ(0) d ̂  ρ( � 

′ ) μ( � 

′ , � ) + 

∫ ˆ ρ(1) 
ˆ ρ( � ) d ̂  ρ( � 

′ ) ν( � 

′ ) 
. (37) 

he test then consists in computing both sides of this expression by
olutions obtained numerically from a Self-Consistent Field (SCF)- 
ethod. We use the DROP code (Hur ́e & Hersant 2017 ; Basillais &
ur ́e 2021 ) as the numerical r efer ence . This code, which has been
 xtensiv ely used, solv es the full structure of rotating, self-gravitating
uids for a wide range of flattenings, EoSs and rotation profiles. 3 A
undamental ingredient is the closure relationship between pressure 
 and mass density ρ. In the paper throughout, we use a polytropic
oS, namely 

 = Kρ1 + 1 /n , (38) 

here K and n (the polytropic index) are positive constants. Once the
CF-c ycle has conv erged, the mass-density ρ( R , Z ) is known. Then,
e have to determine isopycnic surfaces, denoted S j , from centre to

urf ace. Clearly, isop ycnics are not exact spheroids (in general, these
re slightly depressed in the middle), but any equilibrium surface S j 

rosses the polar axis and equatorial axis respectively at points A j (0,
 j ) and B j ( a j , 0) (see Fig. 1 ). From these two points, we can calculate
 ‘pseudo-eccentricity’, basically from ( 1 ). This pseudo-eccentricity 
s then of the form ε( � ). We can then use this output, together with
he mass-density ρ( � ) along the equatorial plane to compute χ , μ, ν
nd the deri v ati ve of the pseudo-eccentricity d ε2 /d � , and then check
 37 ). We will also compare our results to Clairaut’s integral equation,
.e. ( 43 ), which will be discussed in Section 3 , and to Roberts’ result,
hich is given in our notations in Appendix B ; see ( B1 ). 
There are four main sources of errors in this kind of numerical test.

irst, DROP releases numerical solutions whose accuracy depends on 
he resolution. Second, the determination of equilibrium surface S j 

and then, points A j and B j ) is also not perfect. Next, the integrals in
he RHS of ( 37 ) are also sensitive to the quadrature scheme, as well
s the scheme for the deri v ati ve of the pseudo-eccentricities (here,
e use 2nd-order schemes). Obviously, we do not expect ( 37 ) to be

xactly satisfied. In turn, if both sides of this equation are very close
or a broad variety of configuration, then it pro v es the reliability of
he IDE. 

.7 An example 

s a first illustration, we consider a rotating polytrope with surface
xis-ratio ε̄s = 0 . 75 and polytropic index n = 1.5, hereafter Config-
ration A. It corresponds to a fast rotator (for comparison, Achernar
as an axis ratio in surface around 0.74; see Domiciano de Souza
t al. 2014 ), which is also one of the structures given in the tables
f Hachisu ( 1986 ). The mass-density , pseudo-eccentricity , and the
eviation of the outermost surface to an exact spheroid are displayed
n Figs 4 (a)–(c) (left panels). The RHS and LHS of ( 37 ) are plotted
ersus � in Fig. 4 (d). We see that the absolute deviation between
hese two estimates (panel e) is much less than 1 per cent for most
adii, and even mess than 0 . 1 per cent in the outer part of the body.
his agreement is already remarkable as the confocal parameters 

centre and surface values) are marginally acceptable (i.e. c ( � , 1)
MNRAS 527, 863–875 (2024) 

 While the classical version of the DROP code is typically second-order 
ccurate in the mesh spacing, we have built an alternative version based 
pectral method. This enables us to reach much high precision (in a shorter 
omputing time). 
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M

Figure 4. Results for configuration A ( ̄εs = 0 . 75, n = 1.5); see Table 1 for 
global quantities. Left-hand side panels: outputs from the DROP code, i.e. (a) 
eccentricity of the isopycnic layers (the dashed thin black line is the quadratic 
profile used for Figs 2 and 3 ); (b) radial mass density; (c) the deviation of 
the external surface from a spheroid. Right-hand side panels: Comparison 
between this work and the output from DROP , i.e. (d) d ε2 /d � as a function of 
� ; (e) decimal logarithm of the gap between the analytical methods and the 
numerical reference for d ε2 /d � ; (f) decimal logarithm of the gap between 
DROP and this work for the rotation rate. 
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Table 1. Configuration A and corresponding global quantities. Results from 

the tables of Hachisu ( 1986 ) are reported in the first column. 

Configuration A 

Hachisu ( 1986 ) DROP † This work 

ε̄s ← 0.750 ← 0.750 ← 0.750 
n ← 1.5 ← 1.5 ← 1.5 
M/ [ ρc R 

3 
e ] 0 .430 0 .43027 0 .43280 

V /R 

3 
e 3 .03 3 .02976 3 .14159 

ˆ �2 × 2 π 0 .227 0 .22663 ∗0 .22760 
J / [ Gρ3 

c R 

10 
e ] 1 / 2 0 .0356 0 .03556 0 .03609 

−W/ [ Gρ2 
c R 

5 
e ] 0 .183 0 .18345 0 .18496 

T / [ Gρ2 
c R 

5 
e ] 0 .00847 0 .00846 0 .00861 

U/ [ Gρ2 
c R 

5 
e ] 0 .167 0 .16652 0 .16697 

| VP/ W | < 10 −3 3 × 10 −8 8 × 10 −4 

Notes. ← represents input data. 
† SCF-method (Basillais & Hur ́e 2021 ); 
∗Averaged, see equation ( C7 ). 

Table 2. Same legend as Table 1 , but for configuration B. 

Configuration B 

Hachisu ( 1986 ) DROP † This work 

ε̄s ← 0.662 ← 0.662 ← 0.662 
n ← 3.0 ← 3.0 ← 3.0 
M/ [ ρc R 

3 
e ] 0 .0255 0 .02545 0 .02546 

V /R 

3 
e 2 .30 2 .24640 2 .77298 

ˆ �2 × 2 π 0 .0256 0 .02563 ∗0 .02567 
J / [ Gρ3 

c R 

10 
e ] 1 / 2 0 .00015 0 .00016 0 .00016 

−W/ [ Gρ2 
c R 

5 
e ] 0 .00140 0 .00139 0 .00139 

T / [ Gρ2 
c R 

5 
e ] 0 .00001 0 .00001 0 .00001 

U/ [ Gρ2 
c R 

5 
e ] 0 .00137 0 .00137 0 .00137 

| VP/ W | < 10 −3 1 × 10 −8 8 × 10 −7 
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 [ − 0.4375, 0]). The figure also shows that the approximation is
lso valid for d ε2 /d � , as the discrepancy with DROP is also of order
10 −3 in this case. From panel f, we see that the rotation rate ˆ �

educed from ( 19 ) is not strictly a constant, as would be expected.
ut, we see that it varies weakly and compares greatly with the

otation rate yielded by DROP , with an error below a per cent. We see
hat Roberts’ equation compare greatly with the numerical reference,
xcept at short (where a divergence is seen) and large radii (with an
rror of ∼ 3 per cent ). 

We have calculated the main global properties of the polytrope,
amely the mass M , the volume V and the angular momentum J , the
ravitational, kinetic and internal energies, W , T and U respectively
see Appendix C ) and compared with the tables of Hachisu ( 1986 ).
he results are reported in Table 1 . We see that the values obtained
re slightly o v erestimated with the present approximation. This is
ue to the boundary of the fluid, which is below the corresponding
pheroidal surface, as seen from Fig. 4 (c). Thus, the volume of the
uid, and all volume integrals following, are clearly greater than

he outputs of the numerical reference. Furthermore, the value of
NRAS 527, 863–875 (2024) 
he Virial parameter, i.e. | VP/ W | ≈ 8 · 10 −4 � 1, also validates the
pproximation in this case. 

.8 On critical rotations 

e can go further in the comparison by looking at an extreme con-
guration, i.e. a configuration near the so-called ‘critical-rotations’
Hachisu 1986 ), where matter at the surface is barely bounded to the
ystem. Such objects deviate largely from spheroids and we expect
he approximation to fail at this point. 

We first consider configuration B, with a ‘soft’ EoS ( n = 3). The
onfiguration and its global properties are reported in Table 2 and the
esults are plotted in Fig. 5 . Surprisingly, the agreement between the
pheroidal approximation and the numerical reference is very good;
ee Fig. 5 (d) and Table 2 . For � > 0.2, we see that the discrepancy
s � 10 −3 in relativ e. F or shorter radii, the gap is wider, due to the
umerical precision of the deri v ati ves, as the values themselves are
small’; so an y discrepanc y is amplified. The approximation seems to
tay valid at the surface, even though the deviation from a spheroid is
arge (see panel c). This can be explained by the mass density curve,
amely panel a. Indeed, we see that, for � > 0.4, we have ρ( � )

ρc , so the contribution of this part to the gravitational potential
and thus, to the rotation rate and ( 25 )) is negligible. So, as long
s the isopycnics for � < 0.4 are close enough to spheroids, the
pproximation is still valid. 

We also have plotted in panel (d) of Fig. 5 the upper limit of the
mmersion criterion, i.e. ( 30 ). Interestingly, the squared eccentricity
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Figure 5. Same legend as for Fig. 4 , but for configuration B ( ̄εs = 0 . 662, 
n = 3). The dashed black line represents the condition for immersion, i.e. 
( 30 ). 

Table 3. Same legend as Table 1 , but for Configuration C. 

Configuration C 

Hachisu ( 1986 ) DROP † this work 

ε̄s ← 0.442 ← 0.442 ← 0.442 
n ← 0.5 ← 0.5 ← 0.5 
M/ [ ρc R 

3 
e ] 0 .767 0 .77072 0 .82697 

V /R 

3 
e 1 .59 1 .56633 1 .85144 

2 π ˆ �2 0 .939 0 .94158 ∗0 .93380 
J / [ Gρ3 

c R 

10 
e ] 1 / 2 0 .199 0 .19936 0 .22563 

−W/ [ Gρ2 
c R 

5 
e ] 0 .531 0 .53568 0 .59836 

T / [ Gρ2 
c R 

5 
e ] 0 .0962 0 .09672 0 .10902 

U/ [ Gρ2 
c R 

5 
e ] 0 .339 0 .34230 0 .35218 

| VP/ W | < 10 −3 1 × 10 −4 5 × 10 −2 

g  

w  

w  

c

C  

p  

H
h  

e  

Figure 6. Same legend as for Fig. 5 , but for configuration C ( ̄εs = 0 . 442, 
n = 0.5). 
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radient seems to tend to this limit for � = 1, i.e. at the surface. This
ould imply that at the critical rotation, we have (d b/ d a) | a= R e → 0,
here we used the physical radii, namely the matter at the pole is

rushed. 
Another example of critical rotation is displayed in configuration 

, where the EoS is ‘hard’ ( n = 0.5). The configuration and its global
roperties are reported in Table 3 and the results are plotted in Fig. 6 .
ere, the agreement between the spheroidal approximation reported 
ere and the numerical reference is not good at all, with a relative
rror of at least 10 per cent on d ε2 /d � and the global properties. Only
he averaged rotation rate is correct, but we see from Fig. 6 (f) that
he rate itself is not a constant anymore (with an amplitude of, again,

10 per cent of the mean value). This disagreement is explained by 
he large deviation of the external surface to a spheroid, which is not
ancelled by the mass density profile, i.e. ˆ ρ( � ) � 1 only very close
o the surface ( � = 1). So, the deviation from a spheroid has here
 real impact, as the gravitational potential arising from this mass
istribution is significatively different from the one produced by a 
pheroidally stratified object. 

Ho we v er, we observ e once again that the immersion criterion joins
ith the d ε2 /d � -curve computed from DROP at � = 1, reinforcing
ur conclusion of the previous example. 

 T H E  LIMIT  O F  SMALL  F L AT T E N I N G S  

.1 The IDE at first order 

he case of slowly rotating structures is of great importance in
he context of planetary and stellar interiors (e.g. Chandrasekhar & 

oberts 1963 ; Zharkov & Trubitsyn 1970 ). Such situations suppose
hat the deviation to sphericity is small, i.e. ε2 ( � ) � 1. While the
arth or the Sun can probably be considered as slow rotators, this
oes not seem to be the case of Jupiter and Saturn. The functions
efined by ( A3 )–( A5 ) can then be expanded at first order in ε2 . So,
e obtain 
MNRAS 527, 863–875 (2024) 
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Table 4. Same legend as for Table 1 but for configuration D, which is 
compared with Chandrasekhar ( 1933 ) (first column). 

Configuration D 

Chandra. (1933) DROP † this work 

ε̄s 0 .99008 ← 0.990 ← 0.990 
n ← 1.0 ← 1.0 ← 1.0 
M/ [ ρc R 

3 
e ] 1 .25799 1 .25807 1 .25806 

V /R 

3 
e 4 .14641 4 .14683 4 .14690 

ˆ �2 × 2 π ← 0.01671 0 .01671 ∗0 .01671 
J / [ Gρ3 

c R 

10 
e ] 1 / 2 0 .04244 0 .04244 

−W/ [ Gρ2 
c R 

5 
e ] 1 .19148 1 .19148 

T / [ Gρ2 
c R 

5 
e ] 0 .00274 0 .00274 

U/ [ Gρ2 
c R 

5 
e ] 1 .18600 1 .18599 

| VP/ W | 7 × 10 −12 1 × 10 −5 
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( � 

′ , � ) = 

� 

′ 3 

2 � 

6 

[
� 

′ 2 ε2 ( � 

′ ) − � 

2 ε2 ( � ) 
]+ O( ε4 ) , (39) 

( � 

′ , � ) = −1 

3 

� 

′ 3 

� 

3 

×
[

1 − ε2 ( � 

′ ) 
(

1 

2 
+ 

3 

5 

� 

′ 2 

� 

2 

)
+ 

3 

2 
ε2 ( � ) 

]
+ O( ε4 ) , 

(40) 

nd 

( � 

′ ) = −1 

3 
− 2 

15 
ε2 ( � 

′ ) + O( ε4 ) , (41) 

espectively. Thus, at first order in ε2 , ( 25 ) becomes 

1 

3 

d ε2 

d � 

(∫ ˆ ρ( � ) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) 
� 

′ 3 

� 

3 
+ 

∫ ˆ ρ(1) 

ˆ ρ( � ) 
d ̂  ρ( � 

′ ) 
)

≈ 1 

� 

6 

∫ ˆ ρ( � ) 

ˆ ρ(0) 
d ̂  ρ( � 

′ ) � 

′ 3 [� 

′ 2 ε2 ( � 

′ ) − � 

2 ε2 ( � ) 
]
. (42) 

ote that d ε2 /d � is already first order in ε2 , so the first order terms
rising from μ and ν can be neglected. 

.2 Clairaut’s equation reco v ered 

xcept in some particular cases, the mass density vanishes continu-
usly at the surface. By integrating ( 42 ) by parts, we obtain 

� 

6 

3 

d ε2 

d � 

ˆ ρm 

≈ � 

5 ε2 ( � ) ̂  ρm 

−
∫ � 

0 
d � 

′ ˆ ρ( � 

′ ) 
[

5 � 

′ 4 ε2 ( � 

′ ) + � 

′ 5 d ε
2 

d � 

′ 

]
, (43) 

here 

ˆ m 

( � ) = 

3 

� 

3 

∫ � 

0 
d � 

′ ˆ ρ( � 

′ ) � 

′ 2 , (44) 

s classically called the mean density (e.g. Tisserand 1891 ; Ragazzo
020 ), e v aluated from the centre to the running radius. In this form,
 43 ) is suitable to eliminate the integral by differentiation. So, we
erive a second time with respect to the physical radius a = R e � to
btain 

d 2 ε2 

d a 2 
+ 

6 

a 

ˆ ρ

ˆ ρm 

d ε2 

d a 
+ 

6 

a 2 

(
ˆ ρ

ˆ ρm 

− 1 

)
ε2 ≈ 0 . (45) 

his result clearly recalls the fundamental equation derived by
lairaut ( 1743 ), namely 

d 2 f 

d b 2 
+ 

6 

b 

ˆ ρ

〈 ̂  ρ〉 
d f 

d b 
+ 

6 

b 2 

(
ˆ ρ

〈 ̂  ρ〉 − 1 

)
f = 0 . (46) 

here f = 1 − √ 

1 − ε2 is the flattening of the isop ycnic surf ace, b
s its polar radius and 

 ̂  ρ〉 = 

3 

b 3 

∫ b 

0 
d b ′ ˆ ρ( b ′ ) b ′ 2 . (47) 

et us show that ( 45 ) and ( 46 ) are fully compatible. At first order in
2 , we have 2 f ≈ ε2 and b ≈ a (1 − ε2 /2), so 

 

d f 

d b 
≈ d ε2 

d a 

[
1 + 

1 

2 

(
ε2 + a 

d ε2 

d a 

)]
≈ d ε2 

d a 
. (48) 

ow, as the derivatives and the function f itself are already of first
rder in ε2 , only the ‘zeroth’ order in 〈 ̂  ρ〉 is needed. At this order,
e have a ≈ b and thus 〈 ̂  ρ〉 ≈ ˆ ρm 

. Hence, we conclude that ( 25 )
NRAS 527, 863–875 (2024) 
s equi v alent to Clairaut’s dif ferential equation in the limit of small
attenings, at first order in ε2 . Note that some authors (e.g. Ragazzo
020 ) use the mean radius ( a 2 b ) 1/3 instead of a or b . We can show by
he same reasoning that the equations would still agree at first order.

.3 An example. Comparison with Chandrasekhar’s 
erturbati v e approach 

o illustrate the compatibility between Clairaut’s equation and ( 25 ),
et us consider the numerical solution computed from DROP for
 self-gravitating polytrope with ε̄s = 0 . 99 and n = 1, hereafter
onfiguration D; see Table 4 for the details of the configuration
nd the associated global quantities. We have ε2 

s = 0 . 0199, which is
xpected to be ‘small enough’ for the expansions made in the previous
aragraph to be valid. We can therefore check our expansions as well
s Clairaut’s equation. The results are presented in Fig. 7 (same
anels as for configuration A). We notice that the ε-profile is close
o a quadratic. We see, again, the excellent agreement between the
resent approach and Clairaut’s equation. Also, we see that the global
uantities obtained with the IDE are close to the one obtained with
ROP , with between four to six digits shared on the values. As quoted

n the introduction, this is not a surprise, as Clairaut ( 1743 ) showed
hat for small deviations from the sphere , i.e. small flattenings, the
sopycnic surfaces are ellipses in any meridian plane . 

Moreo v er, slowly rotating polytropes have been studied by many
uthors, in particular by Chandrasekhar ( 1933 ). His approach is
ased on the Lane-Emden equation, supplemented by a small
mplitude, rotational field. The equilibrium is solved in the form
f series. Configurations with n = 1 (like configuration B) are
nteresting because the results arising from this theory are purely
nalytical and offer an interesting opportunity for comparisons. As
he dimensionless rotation rate ˆ �2 is an input in Chandrasekhar’s
ork (while the axis ratio ̄ε is an output), the comparison is performed
y injecting the rotation rate provided by DROP into Chandrasekhar’s
quations. The results are reported in Table 2 (column 2). We
ee that the comparison is satisfactory, the agreement being much
etter than 1 per cent . Furthermore, the Virial quantities yielded by
he spheroidal approximation are in excellent agreement with the
umerical reference. 

 I N T RO D U C T I O N  O F  MASS-DENSITY  JUMPS:  
H E  MODI FI ED  I DE  

ass-density jumps are usually associated with a sudden change
n the EoS or in the mechanism transporting matter or energy. It
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s therefore interesting to render the present method as flexible 
s possible, and to account for such discontinuities. As often, 
e consider jumps as zero-thickness transitions, while, in real 

ystems, these have al w ays hav e certain spatial e xtension. Inspired
y Section 2.5 , we can easily introduce mass-density jumps in the
resent formalism by decomposing the mass-density profile as 

ˆ ( � ) = 

K ∑ 

k= 1 

[ ̂  ρk ( � ) − ˆ ρk+ 1 ( � ) ] H( � k − � ) , (49) 

here K is the number of hetero g eneous domains and ˆ ρk ( � ) =
k ( � ) /ρc is the mass density inside domain number k (we still
ormalize mass-densities to the central value ρc ). As for the discrete 
ase, we have set ˆ ρK + 1 ( � ) = 0 to keep a single sum, which means 
hat the outer space is the very last domain, with index K + 1
nd null mass density. There are therefore K jumps, located at 
 = � k , k ∈ [ [1 , K] ]. Note that ( 49 ) allows for configurations with

 surface discontinuity, i.e. at � K 

= 1 . The deri v ati ve of this profile
rites 

d ̂  ρ

d � 

= 

K ∑ 

k= 1 

[
d ̂  ρk 

d � 

− d ̂  ρk+ 1 

d � 

]
H( � k − � ) 

−
K ∑ 

k= 1 

[ ̂  ρk ( � ) − ˆ ρk+ 1 ( � ) ] δ( � k − � ) . (50) 

e can thus make use of the properties of the Heaviside and Dirac
istributions to generalize ( 25 ). 

.1 Piece-wise rotation and discontinuity in the ellipticity 

et us consider that each domain k ∈ [ [1 , K] ] rotates rigidly at its
wn rate ˆ �k . So, for a given domain k 0 , we have � ∈ ] � k 0 −1 , � k 0 [ ,
nd ( 16 ) becomes 4 

− ˆ �2 
k 0 

= 

k 0 −1 ∑ 

k= 1 

∫ � k 

� k−1 

d � 

′ d ̂  ρk 

d � 

′ κ
in ( � 

′ , � ) 

+ 

∫ � 

� k 0 −1 

d � 

′ d ̂  ρk 

d � 

′ κ
in ( � 

′ , � ) 

+ 

∫ � k 0 

� 

d � 

′ d ̂  ρk 

d � 

′ κ
out ( � 

′ , � ) 

+ 

K ∑ 

k= k 0 

∫ � k 

� k−1 

d � 

′ d ̂  ρk 

d � 

′ κ
out ( � 

′ , � ) 

−
k 0 −1 ∑ 

k= 1 

αk − 1 

αk 

ˆ ρk ( � k ) κ
in ( � k , � ) 

−
K ∑ 

k= k 0 

αk − 1 

αk 

ˆ ρk ( � k ) κ
out ( � k , � ) , (51) 

here αk = ˆ ρk ( � k ) / ̂  ρk+ 1 ( � k ) is the mass density jump at each inter-
ace k . A major question concerns the behaviour of this equation when
pplied to two adjacent domains. To answer this point, we write 
 51 ) at � − = � k 0 − �� (inside layer k 0 ) and at � + 

= � k 0 + �� 

inside layer k 0 + 1), with �� > 0. In the limit where �� � 1, the
 We have introduced � 0 = 0 for convenience. 
ifference in the rotation rates between � − and � + 

satisfies 

ˆ 2 
k 0 

− ˆ �2 
k 0 + 1 = 4 �� 

×
{ k 0 ∑ 

k= 1 

∫ � k 

� k−1 

d � 

′ d ̂  ρk 

d � 

′ 

[ 
2 χ ( � 

′ , � k 0 ) −
d ε2 

d � 

∣∣∣∣
� k 0 

μ( � 

′ , � k 0 ) 

] 

−
K ∑ 

k= k 0 + 1 

∫ � k 

� k−1 

d � 

′ d ̂  ρk 

d � 

′ 
d ε2 

d � 

∣∣∣∣
� k 0 

ν( � 

′ ) 

−
k 0 ∑ 

k= 1 

αk − 1 

αk 

ˆ ρk ( � k ) 

[ 
2 χ ( � k , � k 0 ) −

d ε2 

d � 

∣∣∣∣
� k 0 

μ( � k , � k 0 ) 

] 

+ 

K ∑ 

k= k 0 + 1 

αk − 1 

αk 

ˆ ρk ( � k ) 
d ε2 

d � 

∣∣∣∣
� k 0 

ν( � k ) 

}
, (52) 

t first order in �� . If asynchronous motion is possible, then the
HS of this expression must remain finite when �� → 0. We see

rom ( 52 ) that this is possible only if the eccentricity undergoes a
iscontinuity at � k 0 , namely 

d ε2 

d � 

∣∣∣∣
� k 0 

= 

ε2 
k 0 + 1 ( � k 0 ) − ε2 

k 0 
( � k 0 ) 

�� 

, (53) 

here εk 0 is the eccentricity profile in the domain k 0 . Note that ( 52 )
annot be used to quantify this jump, as we assumed a continuous
ccentricity to arrive at this point. Indeed, if these jumps are
onsidered from the be ginning, the y would cause discontinuities in
he κ-functions, χ , μ, and ν, which mak es the calculations f ar more
omplex. 

This ‘eccentricity jump’ only states that the interfaces between 
ayers are not isopycnic surfaces . The isopycnic in the inner layer
the ‘core’) intersect the interface and is prolonged by another 
sopycnic in the outer layer (the ‘envelope’) whose eccentricity 
as no reason to be the same. This statement has two interesting
onsequences: i) the ‘eccentricity jump’ occurs not at a single value
f � but on a whole range close to any interface; ii) the potential
f an incomplete Maclaurin spheroid being unknown analytically, 
he continuous version of the NSFoE cannot describe systems with 
otational discontinuities . 

.2 Global, rigid rotation 

y requiring ˆ �k = 

ˆ �, ∀ k ∈ [ [1 , K] ], both sides in ( 52 ) are null in the
imit �� → 0, meaning no eccentricity jump occurs for systems in
lobal rotation , so that the interfaces between layers are isopycnic
urfaces . As the RHS of ( 51 ) is constant, we can, as in the single-layer
ase, take its deri v ati ve with respect to � inside layer k 0 . We find 

 0 −1 
 

k= 1 

∫ � k 

� k−1 

d � 

′ d ̂  ρk 

d � 

′ χ ( � 

′ , � ) + 

∫ � 

� k 0 −1 

d � 

′ d ̂  ρk 

d � 

′ χ ( � 

′ , � ) 

−
k 0 −1 ∑ 

k= 1 

αk − 1 

αk 

ˆ ρk ( � k ) χ ( � k , � ) = 

1 

2 

d ε2 

d � 

×
{ k 0 −1 ∑ 

k= 1 

∫ � k 

� k−1 

d � 

′ d ̂  ρk 

d � 

′ μ( � 

′ , � ) + 

∫ � 

� k 0 −1 

d � 

′ d ̂  ρk 

d � 

′ μ( � 

′ , � ) 

−
k 0 −1 ∑ 

k= 1 

αk − 1 

αk 

ˆ ρk ( � k ) μ( � k , � ) −
K ∑ 

k= k 0 

αk − 1 

αk 

ˆ ρk ( � k ) ν( � k ) 

+ 

K ∑ 

k= k 0 + 1 

∫ � k 

� k−1 

d � 

′ d ̂  ρk 

d � 

′ ν( � 

′ ) + 

∫ � k 0 

� 

d � 

′ d ̂  ρk 

d � 

′ ν( � 

′ ) 
}

. (54) 
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Table 5. Same legend as for Table 2 , but for configuration A 
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Configuration A 
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DROP † This work 
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n 1 ← 1.5 
n 2 ← 3.0 
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his expression is the IDE modified by the presence of jumps. Note
hat it can be recast in the form of ( 37 ). As for the single-layer case,
 54 ) cannot be solved alone as we have a single IDE for K + 1
nknown functions, namely the mass-density profiles ˆ ρk ( � ) and the
ccentricity ε( � ). A solution requires K equations of state and K
ernoulli’s equations. 

.3 An example 

nce again, we check the self-consistency of ( 54 ) by comparison
ith a numerical solution from DROP ; see Section 2.6 . We see that

 54 ) can be written in the form of ( 37 ), i.e. we can obtain an equa-
ion of the form d ε2 /d � = g ( ρ, ε, � ). So, as before, we use DROP
utputs to compute both sides of ( 54 ) and we then compare the results.
Configuration A’ is a rotating body with surface axis ratio of

.75, a core with polytropic index n 1 = 1.5 and semi-polar axis
 1 ̄ε( � 1 ) = 0 . 35 and an envelope with polytropic index n 2 = 3.
his system could correspond to a highly flatten object with a large
onv ectiv e core (whose mean radius is ∼ 40 per cent of the star’s
adius) and a big radiative envelope; it may thus be considered as a
ery simple model for a fast-rotating high-mass star ( M � 1.2 M �);
ee e.g. Maeder ( 2009 ). The global quantities are given in Table 5 and
he results are plotted in Fig. 8 . Again, the agreement between the
pheroidal approximation reported here and the numerical reference
s remarkable, within a few tenths of a per cent (except for the
olume). The relative Virial parameter is also really good (10 −3 

1), which validates more the approach. We see that both squared
ccentricity gradients compare really well to each other (see panel
), the discrepancy being around ∼10 −3 in most of the object and
round ∼10 −2 in the neighbouring of the mass density jump, which
s due to the numerical resolution in this region. Indeed, for each
ylindrical radius, the interface is described by two or three points,
hich may not be enough to reach a good accuracy on the dynamics
f the eccentricity in this region. This peak is also seen in the ˆ �2 

urve (panel f), where the gap to the value yielded by DROP is also
bout a few tenth of a per cent. 

 DISCUSSION  

.1 Summary 

his article investigates the condition of equilibrium of a hetero-
eneous system with spheroidal isop ycnic surf aces (axisymmetrical
NRAS 527, 863–875 (2024) 
ase). We have derived the main IDE of the problem in the case
here the rotation rate is constant onto the isopycnic surfaces, and
e have deduced the corresponding IDE in the special case of rigid

otation. This IDE works for a wide range of rotation rates, not
nly in the slow rotating limit as often considered. Using the DROP -
ode as a numerical reference, we hav e pro v en the reliability of
he approach for various configurations, including fast rotators; see
onfigurations A and B. The IDE is fully compatible with Clauraut’s
quation in the case of slow rotation. Furthermore, we have seen a
orrelation between the state of critical rotation and the criterion of
on-intersection of the isopycnics. As shown, mass-density jumps
an be taken into account in the model as long as there are no
otational discontinuities. 

.2 Open questions and perspecti v es 

(i) Rotational discontinuities. When rotational discontinuities
re present, an eccentricity jump is mandatory, meaning the interfaces
etween layers were not isopycnic surfaces. The approximation of
pheroidal isopycnic then fails in this case. Ho we ver, if the rotational
iscontinuities (or equi v alently, the eccentricity jumps) are small
nough, it should be possible to derive an IDE for this case, as the
ange where the jump occurs becomes negligible. This point would
erit an additional work. 
(ii) From slow to fast rotator: a criterion. In the limit of small

attenings, our approach compares really well with the one developed
y Chandrasekhar ( 1933 ) and we were able to reco v er Clairaut’s
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Figure 8. Same legend as for Fig. 4 , but for configuration A 

′ , which is a 
two-domain body (i.e. K = 2) with a mass-density jump at � = � 1 ≈ 0.36 
(marked with a vertical red dashed line; see Table 5 ). 
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quation at first order in ε 2 . This addresses the question of the limit
etween slow rotators (well described by Clairaut’s theory) and fast 
otators, which can be roughly answered as follows. Let us develop 
at second order in ε2 (for convenience, we use ν instead of χ or μ

s it is a function of a single variable). From ( A5 ), we directly obtain 

( � ) = −1 

3 
− 2 

15 
ε2 ( � ) − 8 

105 
ε4 ( � ) + O( ε6 ) . (55) 

ow, let η be the ratio of the fourth-order term to the second-order
erm. We have 

= 

4 

7 
ε2 ( � ) . (56) 

o, roughly, the error in the quantity d ε2 /d � made by using Clairaut’s
quation, i.e. ( 45 ), is of the order of η. The corresponding axis ratio
t the surface is then 

¯s ≥
√ 

1 − 7 

4 
η. (57) 

e see that for configuration D (see Fig. 7 d), which has an axis ratio
f 0.99 at the surface, the maximum error is of order 10 −2 (we do
ot take into account the part � < 0.2, which is dominated by the
rrors of the finite-difference scheme). This then corresponds to the 
riterion ( 57 ). 
(iii) Can we expand the IDE at higher orders? As shown, 
xpanding the IDE at first order in ε2 leads to Clairaut’s equation. It
ould then be interesting to derive a second-order Clairaut equation, 
asically by expanding the IDE to a second-order expansion in 
2 . This would be another approach to the expansion of Clairaut’s
quation than Lanzano ( 1962 , 1974 ) who has performed a multipolar
xpansion of the shape of the object. Ho we ver, preliminary calcu-
ations indicate that the problem might not be any easier than the
quation set reported here. This point is still under investigation. 

(iv) Do exact solutions to the IDE exist? As it is well known,
nalytical solutions are al w ays powerful tools for making models and
iagnosis tools, regarding observations. The existence of analytical 
olutions to the IDE in the form ρ( ε) would be very interesting, and
t already represents an e xciting perspectiv e. Clairaut’s equation is
nown to have a few analytical solution (e.g. Tisserand 1891 ;
archenko 2000 ). Given the complexity of the IDE, we expect any

nalytical solution to be only approximate. Solutions via a series 
xpansion or linearization for example would be interesting to seek 
or. 

(v) Towards 2D structures? As quoted, ( 25 ) is not sufficient in
tself to derive models for interiors of rotating bodies; it is the case of
lairaut’s equation as well. The IDE has to be combined with an EoS
nd to Bernoulli’s equation. Ho we ver, the IDE enables to reduce the
umber of dimensions of the problem, from two to one, through the
elationship ρ( ε). The computation of the gravitational potential is 
kipped in this process (in fact, it is already incorporated in the IDE).
his is very attractive, in particular in terms of computing time if a

arge number of structures have to be computed (see below). We are
urrently preparing an article dealing with the structure of spheroidal 
tars and planets from an SCF-method (Hachisu 1986 ) through this
imension reduction. 
(vi) Inverse problems. Planets like Jupiter and Saturn do probably 

ot belong to the category of slow rotators. The IDE could therefore
e of great help in generating fast internal 2D structures (with
ppropriate EoS), under the conditions of the hypothesis of the 
SF oE. Ne xt, it would be easy to compute the gravitational moments

nd to isolate solutions that match the values ‘measured’ by space
robes. Yet, as pictured by for example Miguel & Vazan ( 2023 ), high-
rder gravitational moments mostly describe the outer layers of the 
bject, which is the most poorly described zone by the theory reported
ere; see also Basillais & Hur ́e ( 2023 ) (Paper III) and references
herein. As such, we expect only the first two moments to be accurate
nough. Furthermore, as quoted by Nettelmann et al. ( 2021 ), the
oncentric Maclaurin spheroid (CMS) method by (Hubbard 2013 ) 
as high computational needs, meaning that a scan of a given
arameter space is tedious. With a very fast algorithm, it could be
ossible to identify places in the parameter space compatible with the
easured J 2 n , which could be further studied with more sophisticated

lgorithms (e.g. the CMS method). Obviously, in the case of gaseous
lanets, the presence of complex winds at the very surface is not
trictly compatible with the NSFoE (the 3D structure of a gaseous
lanet with zonal winds has been studied by Kong, Zhang & Schubert
016 ). This is worst in stars where meridional circulations are present
see e.g. Zahn 1992 ). 
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ATA  AVA ILA BILITY  

ll data are incorporated into the article. 
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PPENDIX  A :  K E R N E L  F U N C T I O N S  

et us write explicitly the kernel functions of the integrals of the
ain equations of this work. 
∀ � ∈ ]0, 1], ∀ � 

′ ∈ [0, � [, we have 

in ( � 

′ , � ) = 

ε̄( � 

′ ) 
ε3 ( � 

′ ) 

{[
1 − 2 

� 

′ 2 ε2 ( � 

′ ) 
� 
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]
arcsin 

(
� 

′ ε( � 

′ ) 
� 

)

−� 

′ ε( � 

′ ) 
� 

( 

2 ̄ε( � ) + 

√ 

1 − � 

′ 2 ε2 ( � 

′ ) 
� 

2 

) 

+ 2 arcsin 

(
� 

′ ε( � 

′ ) 
� 

√ 

1 + c( � 

′ , � ) 

)
[1 + c( � 

′ , � )] 

}
, 

(A1) 
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∀ � ∈ [0, 1], ∀ � 

′ ∈ [ � , 1], we have 

out ( � 

′ , � ) = 

[
3 − 2 ε2 ( � ) 

]
×
[

ε̄( � 

′ ) 
ε3 ( � 

′ ) 
arcsin 

(
ε( � 

′ ) 
)− 1 

ε2 ( � 

′ ) 

]
+ 1 . (A2) 

One could be worried by the multiple divergences in κ in at � =
. Yet, in this case, we see that the first integral in ( 16 ) vanishes and
he divergences are then never taken into account in the calculations.

The property κ in ( � , � ) = κout ( � , � ) is easily pro v en by
emembering c ( � , � ) = 0. 

The deri v ati ve functions of κ in and κout written in equations ( 22 )
nd ( 23 ) are given by 

( � 

′ , � ) = 

� 

′ 2 ε̄( � 

′ ) 
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(
� 
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− arcsin 
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, (A3) 

( � 
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′ ) 
ε3 ( � 

′ ) 

[
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(
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′ ε( � 
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1 + c( � 
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)
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′ ) 
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]
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(A4) 

( � 

′ ) = 

ε̄( � 

′ ) 
ε3 ( � 

′ ) 
arcsin ( ε( � 

′ )) − 1 

ε2 ( � 

′ ) 
, (A5) 

here χ and μ are defined for � ∈ ]0, 1], � 

′ ∈ [0, � [ and ν is
efined for � 

′ ∈ [0, 1]. 
Once again, we can easily pro v e that χ ( � , � ) = 0 and μ( � , � ) =

( � , � ), leading to the continuity in � 

′ = � of the deri v ati ve of
he κ-functions. 

PPENDI X  B:  RO BERTS’  EQUATI ON  

quation (3.23) of Roberts ( 1963 ) reads 

d ε2 

d � 
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16 π
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here 
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PPEN D IX  C :  O N  T H E  VO LU ME  I N T E G R A L S  

he quantities calculated in Tables 1 –4 write 
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(C1) 

So we need to express the volume element d V and the cylindrical
adius R as functions of the spherical polar angle θ and � . Along an
sop ycnic surf ace, the spherical radius r reads 

r 

R e 
= 

� 

√ 

1 − ε2 ( � ) √ 

1 − ε2 ( � ) sin 2 ( θ ) 
. (C2) 

The Jacobian matrix J of the transformation from the Cartesian 
oordinates to an isopycnic coordinate system ( � , θ , ϕ), where ϕ is
he spherical azimuthal angle, reads 
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(C3) 

here ( ∂ r / ∂ � ) reads 
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. (C4) 
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So, the volume element is then given by 
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The cylindrical radius is given by R = r sin ( θ ), namely 
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R e 
= 

� 

√ 

1 − ε2 ( � ) sin ( θ ) √ 

1 − ε2 ( � ) sin 2 ( θ ) 
. (C6) 

All the integrals of ( C1 ) can now be computed numerically ( via a
rapezoidal rule for instance). 

For the rotation rate, as it is not exactly a constant due to
he spheroidal approximation, we can obtain an mean value by 
nte grating o v er the moment of inertia, namely 
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