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Abstract

Boolean networks are largely employed to model the qualitative dynamics of cell fate pro-

cesses by describing the change of binary activation states of genes and transcription fac-

tors with time. Being able to bridge such qualitative states with quantitative measurements

of gene expression in cells, as scRNA-seq, is a cornerstone for data-driven model construc-

tion and validation. On one hand, scRNA-seq binarisation is a key step for inferring and vali-

dating Boolean models. On the other hand, the generation of synthetic scRNA-seq data

from baseline Boolean models provides an important asset to benchmark inference meth-

ods. However, linking characteristics of scRNA-seq datasets, including dropout events, with

Boolean states is a challenging task.

We present SCBOOLSEQ, a method for the bidirectional linking of scRNA-seq data and

Boolean activation state of genes. Given a reference scRNA-seq dataset, SCBOOLSEQ com-

putes statistical criteria to classify the empirical gene pseudocount distributions as either

unimodal, bimodal, or zero-inflated, and fit a probabilistic model of dropouts, with gene-

dependent parameters. From these learnt distributions, SCBOOLSEQ can perform both binari-

sation of scRNA-seq datasets, and generate synthetic scRNA-seq datasets from Boolean

traces, as issued from Boolean networks, using biased sampling and dropout simulation.

We present a case study demonstrating the application of SCBOOLSEQ’s binarisation scheme

in data-driven model inference. Furthermore, we compare synthetic scRNA-seq data gener-

ated by SCBOOLSEQ with BOOLODE’s, data for the same Boolean Network model. The com-

parison shows that our method better reproduces the statistics of real scRNA-seq datasets,

such as the mean-variance and mean-dropout relationships while exhibiting clearly defined

trajectories in two-dimensional projections of the data.

Author summary

The qualitative and logical modelling of cell dynamics has brought precious insight into

gene regulatory mechanisms that drive cellular differentiation and fate decisions by pre-

dicting cellular trajectories and mutations for their control. However, the design and vali-

dation of these models is impeded by the quantitative nature of experimental
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measurements of cellular states. In this paper, we provide and assess a new methodology,

SCBOOLSEQ for bridging single-cell level pseudocounts of RNA transcripts with Boolean

classification of gene activity levels. Our method, implemented as a Python package,

enables both to binarise scRNA-seq data in order to match quantitative measurements

with states of logical models, and to generate synthetic data from Boolean traces to bench-

mark inference methods. We show that SCBOOLSEQ accurately captures the main statistical

features of scRNA-seq data, including measurement dropouts, improving significantly the

state of the art. Overall, SCBOOLSEQ brings a statistically-grounded method for enabling the

inference and validation of qualitative models from scRNA-seq data.

Introduction

Unveiling the mechanisms that regulate cellular decisions is a central task in systems biology.

For instance, numerous efforts have been conducted to elucidate the core mechanisms that

control differentiation and cell fate decision processes such as osteogenesis [1–3], haematopoi-

esis [4–7], dopaminergic neuron differentiation [8], early retinal development [9], and various

cancer types [10–13].

The advent of single-cell RNA sequencing (scRNA-seq) technologies has greatly enhanced

the resolution with which these dynamic phenomena can be studied. As a preliminary step,

most studies first determine cell identities via either clustering and subsequent manual annota-

tion or via the direct classification of cells [14]. Furthermore, trajectory reconstruction meth-

ods [15–17] allow visualising and hypothesising how gradual changes in gene expression

eventually lead to a commitment to specific lineages and phenotypes. A tremendous challenge

is then to identify regulatory mechanisms that control the identified dynamics of expression

patterns and ultimately phenotypes.

Boolean networks are widely employed to model cellular differentiation [18–21] and fate

decision [22, 23]. In these models, the activity of biological entities is represented as either

active or inactive. This coarse-grained view of gene expression levels helps counter the varying

levels of technical noise caused by sequencing technologies. The binary representation allows

reasoning on the causal relationships between entities without having to estimate kinetic

parameters or regulation thresholds while ensuring consistency with underlying quantitative

models [24]. Boolean models can predict trajectories and conclude on the impossibility of cer-

tain behaviours, optionally subject to mutations, and can encompass thousands of genes. They

revealed to be a powerful and relevant modelling approach to predict combinations of genetic

perturbations to control cell fate decision [25, 26].

Nevertheless, linking qualitative gene activation states with their quantitative measure-

ments, such as count of RNA transcripts, is a delicate task with high stakes for Boolean model-

ling. We present SCBOOLSEQ which, given a reference dataset, provides a bidirectional link

between scRNA-seq and Boolean activation states.

The binary coarse-graining of scRNA-seq, we refer to as binarisation, consists in assigning

a qualitative active or inactive state to a gene, from one single-cell or a pool of single-cell mea-

surements. The pools of cells usually correspond to phenotypes and other important cellular

states. As Boolean models aim at predicting stability and traces between such cellular states,

binarised data are crucial to assess their fitness with traces and steady states. One can easily

note that the binary classification may be irrelevant in some cases, e.g., when in intermediate

activation levels, or because of lacking statistical support. Therefore, it is important that binari-

sation methods result in three possible outcomes for the gene’s state: active, inactive, or
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undetermined. However, numerous methods fully binarise transcriptome data with no regard

for uncertainty or intermediate expression and the diversity of empirical pseudocount distri-

butions [27]. REFBOOL [28] provided an important effort for quantifying statistical uncertainty

for the binarisation and allowing intermediate states. Their approach aims at exploiting a user-

defined gene expression library which serves as a proxy to take into consideration the context

of the global gene expression landscape when coarse-graining data. Unfortunately, this

approach is only available for bulk RNA-seq data.

The inverse operation of binarisation consists in generating RNA pseudocounts from Bool-

ean activation states. Coupled with simulations of Boolean models, this enables the generation

of synthetic datasets from Boolean models subject to ranges of combinations of perturbations,

simulating gene knock-out or constitutive activation, for instance. The resulting synthetic

scRNA-seq data can then serve as a basis to evaluate inference methods, such as gene regula-

tory networks inference, trajectory inference, and Boolean model inference.

Generating single-cell and bulk RNA-Seq data has been addressed by count simulators [29–

31]. With different underlying assumptions, count simulators reproduce the statistical charac-

teristics of real datasets via parametric and semi-parametric approaches. They are capable of

simulating a wide variety of scenarios and even batch effects, but generally fail at integrating

information from Gene Regulatory Network (GRN) known a priori. Efforts have been made

to integrate knowledge about GRNs into count simulators [32]. However, this method requires

the GRN to be a directed acyclic graph, which might not be the case in general. Alternative

methods rely on translating Boolean networks into non-linear Ordinary Differential Equations

(ODEs). A first work in this line was ODEFY which presented a canonical way of transforming

Boolean into continuous models [33]. More recently, BOOLODE was presented in the context

of GRN inference method benchmarking [34, 35], introducing the addition of noise terms to

make the ODEs stochastic. By building on top of Boolean networks, these approaches enable

to capture the logical and dynamical relationships among the regulators. BOOLODE uses Hill

functions to reflect the modulation of gene expression [36–38]. However, this approach relies

on a considerable amount of parameters such as mRNA transcription and degradation rates,

Hill thresholds and coefficients, signalling timescales, and interaction strengths. Determining

these parameters is an important bottleneck as they can hardly be estimated from experimental

scRNA-seq data and need therefore to be set arbitrarily or randomly sampled. Moreover, these

ODE-based generators fail to produce data with statistical properties comparable to those of

real scRNA-seq datasets.

It is crucial that generated count data resemble as much as possible scRNA-seq data to

obtain fair inference benchmarks, which implies mimicking dropouts and other statistical fea-

tures. SCBOOLSEQ relies on the learning of gene-wise RNA pseudocount statistics from a refer-

ence dataset. This learning is performed in three steps: (i) the classification of empirical gene

pseudocount distributions; (ii) the use of Gaussian Mixtures with up to two components as a

parametric model; and (iii) the simulation of dropout events with probabilities that are

inversely proportional to the expression value.

SCBOOLSEQ requires the reference dataset to be constituted exclusively of Highly Variable

Genes (HVGs). In the literature, HVGs are also referred to as overdispersed genes. This pre-

processing step is paramount as it ensures that a coarse-grained view is pertinent. Functions to

perform this filtering are available on major scRNA-seq analysis distributions such as

STREAM [15] and SCANPY [17]. By selecting HVGs after quality control and normalisation,

one ensures that SCBOOLSEQ’s reference reflects the underlying biological variation rather than

technical noise. In addition to HVGs which are automatically selected by the designated func-

tions in scRNA-seq analysis environments, differentially expressed genes (DEGs) and known

PLOS COMPUTATIONAL BIOLOGY SCBOOLSEQ: Linking scRNA-Seq Statistics and Boolean Dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011620 July 8, 2024 3 / 25

https://doi.org/10.1371/journal.pcbi.1011620


markers can also be incorporated into SCBOOLSEQ’s reference to have a fuller image of the tran-

scriptional landscape of the dynamic phenomenon of interest.

Thus, from the preprocessed reference dataset, SCBOOLSEQ can perform two distinct comple-

mentary operations: the binarisation of a scRNA-seq dataset with respect to the reference data-

set, and the generation of synthetic scRNA-seq from Boolean activation states, as illustrated by

Fig 1.

We first show that our 3-distribution type model of scRNA-seq data and dropouts is able to

accurately reproduce the statistical characteristics of a range of scRNA-seq datasets. For the

binarisation of scRNA-seq data, we first apply our method to a publicly available scRNA-seq

dataset of early retinogenesis. We show that SCBOOLSEQ correctly identifies the different cell

types described in the original study, defined by a minimal set of marker genes. These identi-

ties can subsequently be used to label cell groups found by the Louvain clustering algorithm

[39]. Going beyond cell type identification, we use the Boolean gene activity values determined

by SCBOOLSEQ to prune a mouse regulon database [40]. The resulting GRN is validated via

Gene Set Enrichment Analysis performed using METASCAPE [41] which yielded numerous

relevant Gene Ontology terms related to the kept genes.

Finally, we show that SCBOOLSEQ’s synthetic scRNA-seq data generated from Boolean traces

produces both discernible trajectories when applying dimensionality reduction techniques

and statistics that are comparable to those of real datasets.

Overall, SCBOOLSEQ provides an efficient method to learn statistics of a scRNA-seq dataset

and derive binarisation and synthetic generation procedures with few parameters. SCBOOLSEQ

has been implemented as an open source Python package available at github.com/bnediction/

scBoolSeq.

Fig 1. From left to right: (1) A branching trajectory constructed by merging two Boolean simulations, each leading to a different stable state. (2) A binarised expression

matrix, having genes as columns and samples as rows. (3) A pseudocount matrix (same format as the Boolean matrix). (4) A STREAM-plot reconstructing the branching

trajectory from synthetic data generated from the Boolean simulations [15]. SCBOOLSEQ can be used to go from gene expression matrices (such as (3)) to Boolean matrices

(such as (2)) and vice-versa.

https://doi.org/10.1371/journal.pcbi.1011620.g001
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Results

Prerequisites on data preprocessing

In the following, we assume that scRNA-seq data is preprocessed as log pseudocounts

xc;g ¼ logðxnorm
c;g þ 1Þ, where c and g refer to cells and genes, respectively. Any size factor-based

normalisation can be used, as long as it is of the form xnorm
c;g ¼ xraw

c;g =Sc where Sc is a constant.

For instance Sc = ∑g xc,g/1e6 would represent the common library size normalisation, yielding

counts per million (CPM). Our methodology is applicable to alternative normalisations such

as TPM (transcripts per kilobase per million reads) or RPKM (reads per kilobase per million

reads).

Taking the logarithm is necessary to derive reasonable parametric approximations of gene-

wise scRNA-seq distributions: this variance-stabilising transformation mitigates the mean-var-

iance relationship which characterises scRNA-seq data [42]. Furthermore, it reduces the data’s

skewness [43–46]. Other transformations applicable to scRNA-seq data such as model residu-

als, inferred latent expression state, and factor analysis present their advantages [46]; but we

deem the log to be a good fit for SCBOOLSEQ’s purpose: linking scRNA-seq with Boolean

dynamics.

In addition to these standard preprocessing techniques, SCBOOLSEQ requires the reference

scRNA-seq to be comprised exclusively of Highly Variable Genes (HVGs). The importance of

this feature selection step has been highlighted in previous works [47]: Gene Ontology enrich-

ment analysis on HVGs yields terms predominantly related to the phenomenon of interest

[47, 48], whereas least-variable variable genes are enriched for translation, mRNA processing,

and splicing (housekeeping genes). Diverse software packages for scRNA-seq data analysis

such as STREAM [15] Monocle [16], and Seurat [48, 49], to name a few, provide their own ver-

sion of this procedure. The common idea behind these implementations is decoupling gene

expression variation from its mean expression. This is done to select heterogeneous features

that will be useful for downstream analyses [47, 49]. In other words, this procedure aims to

identify genes whose variability is greater than expected when controlling for the characteristic

mean-variance relationship of sequencing data [42, 46]. In our case (linking Boolean dynamics

and scRNA-seq data), selecting HVGs favours coarse-graining gene activity when pertinent

(i.e., when variability is greater than expected for the given mean expression level, and for

genes related to the dynamical phenomenon of interest) and precludes the binarisation of

housekeeping genes. Selecting HVGs is out of the scope of this work, nevertheless we provide

in S1 Notebooks an end-to-end example of how to perform adequate scRNA-seq data prepro-

cessing using SCANPY (including HVG selection) prior to applying SCBOOLSEQ.

Classification of Pseudocount distributions and dropout model

SCBOOLSEQ builds on the ideas presented in [50] which seek to capture the different expression

patterns across bulk RNA-seq samples of cancer patients. By computing a series of statistical

criteria, they proposed to classify empirical pseudocount distributions as bimodal, zero-

inflated, or unimodal. This choice of distributions reflects the underlying hypotheses of gene

activity: bimodal genes exhibit two distinct expression patterns for the absence and presence of

their corresponding encoded proteins. For unimodal genes, we suppose that only cells lying at

the tails of the distribution can be confidently inferred to be active or inactive. It also appeared

that several genes show a high proportion of zeros, which are then classified as zero-inflated.

Their classification method employs statistics such as mean, median, variance, dropout rate,

amplitude, Hartigan’s dip test for multimodality p-value [51], kurtosis, density peak, and

Bimodality Index [52]. As a first step, SCBOOLSEQ discards genes having excessive dropout rates
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or failing to exhibit a sufficient dynamic range, by comparing each gene’s amplitude to the

median amplitude across all genes. In our implementation, the default is to discard genes

whose dropout rate is above 0.95, and genes having an amplitude inferior to a tenth of the

median amplitude across all genes. This means that they will neither be coarse-grained/

binarised nor used to sample synthetic pseudocounts from Boolean gene dynamics. Both the

division factor for the median and the dropout threshold are parameters that can be overrid-

den in our Python implementation. Then, bimodal patterns are searched within the kept

genes, using a combination of statistics. Next, genes with no bimodal patterns are tested for

zero-inflation by looking at the empirical distributions’ density peaks. The remaining genes

are classified as unimodal.

With SCBOOLSEQ, we generalised and improved this approach (i) to account for the specifici-

ties of scRNA-seq data, notably their potential high dropout in gene counts, and (ii) to enable

pseudocount sampling from learnt distributions in order to generate synthetic scRNA-seq

datasets from Boolean activation states. As we illustrate in S2 Fig, when applied to scRNA-seq,

the PROFILE classification scheme and parametric model show two shortcomings: (1) for

genes classified as bimodal and unimodal, the dropout tends to artificially decrease their mean

and inflate their variance, impeding a good characterisation of their empirical pseudocount

distributions via Gaussian or two-component Gaussian Mixtures; (2) for zero-inflated genes,

the classification does not result in a parametric distribution, which complicates sampling. We

improved the algorithm by computing the statistics on non-zero data and proposed a novel

probabilistic dropout model to capture the proportion of zeros. By modelling the probability

of a dropout occurring as a function of the expression level with gene-dependent parameters,

we were able to reproduce the per-gene dropout rates of different reference datasets. Further-

more, we observed that when sampling from the aforementioned parametric distributions and

applying our dropout model, the zero-inflation character of certain genes as well as the excess

kurtosis and skewness of unimodal and bimodal genes were globally recovered (S3 Fig).

Probabilistic simulation of dropout events. Dropouts arise from both biological (lack of

transcription at measurement time) [53] and technical causes (sampling and amplification

bias) [54]. For this reason, we built a probabilistic model aiming to: (i) reproduce the distribu-

tion of dropout rates across genes in the studied reference datasets; (ii) have a minimal set of

gene-dependent parameters; and (iii) have a physical interpretation that accounts for the bio-

logical and technical causes of dropouts. Dropout parameters are estimated on a gene-depen-

dent basis because empirical sampling rates exhibit gene-specific bias rather than being

uniform random samples of mRNA molecules present in the cell [55]. By modelling these

gene-dependent biases and simulating dropout events after sampling from parametric distri-

butions, our dropout method mimics the physical phenomena that give rise to dropout events

and generates data that reproduces the statistics of scRNA-seq data, as illustrated by Fig 2.

Dropout model. Under the hypothesis that the probability of not observing counts for a

certain gene within any given cell is inversely proportional to its relative abundance, the rela-

tionship is defined as an exponential decay which has been shown to describe the mean-drop-

out relationship in several scRNA-seq datasets [56]. We denote by xc,g the prior pseudocount

of gene g in cell c and by xobs
c;g the measured pseudocount. The mathematical formulation of the

proposed dropout model is of the following form:

Pðxobs
c;g ¼ 0 j xc;gÞ ¼ bge� lg xc;g ð1Þ

When simulating dropout events based on these probabilities, the number of dropout

events for a given gene across all cells follows a Poisson-binomial distribution [57], that is the

discrete probability distribution of a series of independent Bernoulli trials whose success
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(dropout) probabilities are not necessarily identical. This reflects our hypotheses on dropouts:

for any given gene, having a dropout event for cell i is independent of the dropout in cell j, and

two cells having comparable relative transcript abundances of any given gene will have similar

probabilities of this gene being observed or dropped out.

Rate parameter. The rate parameter λg determines the shape of the exponential and thus

how rapidly the dropout probabilities decay with the expression value. This parameter is learnt

from the reference dataset, independently for each gene, to reflect the aforementioned gene-

dependent sampling bias. It is calculated by setting the half-life of Eq 1 to the gene’s empirical

non-zero mean as follows, for each gene g of the reference dataset:

lg ¼
lnð2Þ
m̂NZðgÞ

ð2Þ

where m̂NZðgÞ is the mean of non-zero pseudocounts of gene g in the reference dataset.

Normalisation constant. The normalisation constant βg is computed from sampled prior

pseudocounts as the optimum value minimising the quadratic deviation between the expected

dropout rate of the synthetic sample E[τg] and the reference dropout rate for that gene trefg

(proportion of zero entries in the reference dataset):

bg ¼
ntrefg

Pn
c¼1

e� lg xc;g
ð3Þ

where n is the number of sampled cells.

Fig 2. Mean—Variance, and Mean—Dropout Rate relationships of HVGs in different datasets. Each blue dot represents the average of 100 samples for a given gene.

https://doi.org/10.1371/journal.pcbi.1011620.g002
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This optimum is derived analytically from the expected value of a Poisson-binomial distri-

bution. This ensures that for the same underlying non-zero distribution the dropout rate will,

on average, be close to that of the reference.

S1 Fig shows an example of the distribution of rate parameters and the obtained dropout

probabilities over the range of expression of a typical log-normalised scRNA-seq dataset. Over-

all, we observe a trend depending on the gene pseudocount distribution category: for the same

sampled value, zero-inflated genes have the highest probability of dropout, followed by

bimodal genes. Genes presenting a unimodal distribution have the lowest dropout rates (and

highest non-zero means) and therefore will be seldom dropped out.

Validation. In order to validate our method, we compared the moments of the experi-

mental scRNA-seq datasets with the moments of data sampled from distributions learnt by

SCBOOLSEQ coupled with our dropout model (Eq (1)).

We studied 5 experimental scRNA-seq datasets of the literature on mouse developing retina

(GSE122466, [55]); mouse hematopoiesis (GSE81682, [4]); mouse cortex and hippocampus

(GSE60361, [58, 59]); human macrophages during efferocytosis (GSE156234; [60]) and ageing

human skin (GSE130973, [61]). For each of them, we found that our classification and sam-

pling scheme reproduces extensive statistics of these datasets, especially the gene mean-vari-

ance and mean-dropout relationships which characterise scRNA-seq data (Fig 2).

Furthermore, the correlation profile between all combinations of mean, variance, skewness,

and excess kurtosis is globally recovered (S3 Fig). We find that these correlations are only

recovered when applying our dropout simulation method (S9 Fig).

Binarisation of scRNA-seq data

The coarse-graining scheme of SCBOOLSEQ is based on the classification of pseudocount distri-

butions from a reference dataset, as illustrated by Fig 3. For each gene, cells whose expression

Fig 3. Illustration of the category-dependent binarisation allows accounting for different shapes in empirical

pseudocount distributions. For each category, plots show the empirical distribution for a selected gene in the

GSE81682 dataset, and the part of the values that are binarised with parameters z = “?” for zero-inflated case, q = 0.05

and α = 0 for unimodal and θ = 0.95 for bimodal.

https://doi.org/10.1371/journal.pcbi.1011620.g003
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level is high (respectively low) enough to classify it as True/active (resp. False/inactive) will be

binarised whilst cells whose expression level is ambiguous will be left as undefined. As shown

in Fig 3, the category-dependent binarisation strategy causes each distribution type to have dif-

ferent proportions of False, True, and undetermined values.

Bimodal genes are binarised using their corresponding univariate two-component Gauss-

ian Mixture Model (GMM), whose parameters are estimated on the reference dataset. The

GMM’s density is given by Eq 4. The model has two components denoted Ci which are charac-

terised by their parameters ð�i; mi; s
2
i Þ. In the following, it always holds that μ2 > μ1, for every

bimodal gene. Therefore, we have two components that represent cells whose transcript level

can be classified as active C2 or inactive C1.

pðxÞ ¼ �1N ðxjm1; s
2
1
Þ þ �2N ðxjm2; s

2
2
Þ s:t: �1 þ �2 ¼ 1 ð4Þ

The probabilities of observation x belonging to each one of the two components are first calcu-

lated as detailed in Eq (5):

pðCijxÞ ¼
pðCiÞpðxjCiÞ

P2

j¼1
pðCjÞpðxjCjÞ

¼
�iN ðxjmi; s

2
i Þ

P2

j¼1
�jN ðxjmj; s

2
j Þ

ð5Þ

Then, the binary classification is performed according to a given confidence threshold θ,

with 0.5< θ� 1:

bbimodalðxÞ ¼

0 if pðC1jxÞ � y

1 if pðC2jxÞ � y

? otherwise

8
>>><

>>>:

ð6Þ

For genes classified as unimodal, we use thresholds based on two parameters: A margin
quantile q (0.05 by default) and a multiplier α for the interquartile range IQR. These thresholds

are based on Tukey’s fences for outlier detection [62, 63], with modified defaults to consis-

tently binarise a small fraction of observations. Note that in Eq (7), Q(q) represents the q- th

quantile of the gene’s empirical distribution. This coarse-graining strategy makes no assump-

tions about underlying parametric distributions and hence is suitable for binarising genes

whose empirical distribution remains skewed after the log transformation. S8 Fig.

bunimodalðxÞ ¼

0 if x < QðqÞ � aIQR

1 if x > Qð1 � qÞ þ aIQR

? otherwise

8
>>><

>>>:

ð7Þ

Finally, genes whose empirical pseudocount distribution is classified as zero-inflated use a

zero-or-not binarisation scheme [53]. Cells having non-zero counts for a zero-inflated gene

are classified as True whilst zero entries can be classified either: (i) as undetermined (parame-

ter z = “?”) to reflect the uncertainty regarding their technical/biological causes, or (ii) as False

(parameter z = 0), if considered as a signal, as suggested by [53]. Setting the z parameter is a

modelling choice, which is easily modifiable in SCBOOLSEQ’s Python implementation.

bzero� inflatedðxÞ ¼
1 if x > 0

z otherwise

(

ð8Þ
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The proportion of observations classified as 0 or 1 can be approximated by Eq (9)

xð1 � tÞ þ bð p?Þ þ Zð2qÞ ð9Þ

with the average proportions of binarised observations for each category normalized by the

proportion of genes classified as zero-inflated, bimodal, and unimodal, denoted by ξ, β, and η,

respectively, and where τ represents the average empirical dropout rate.

Fig 4 gives statistics on the fraction of observations that are binarised across the selected

evaluation datasets.

In general, zero-inflated genes with a high dropout rate will only have a few observations

binarised to 1 and most cells will be classified as undefined. Bimodal genes are binarised across

most cells because the underlying Gaussian Mixture correctly describes the bimodal genes’

empirical distributions. Finally, unimodal genes will have twice the margin quantile q fraction

of observations binarised in the case of α = 0 in Eq (7).

Case study of binarisation: Early-born retinal neurons. We applied SCBOOLSEQ to a pub-

licly available scRNA-seq dataset to binarise expression data and obtain a qualitative descrip-

tion of phenotypes. We show that the obtained qualitative profiles can serve as a basis to

perform inference of Boolean networks, which can mimic the differentiation process and iden-

tify key genes and interactions involved in the dynamics.

The dataset originates from [9] (GEO accession GSE122466) which analysed how the diver-

sity of cell types found in the early retina (from embryonic days 10 to 17) arises from a pool of

progenitor cells. These neurons are retinal ganglion cells (RGCs), cone photoreceptors

(cones), horizontal cells (HC) and amacrine cells (AC). The analyses extended previously

known marker genes and showed how these appear to be organised in transcriptional waves of

co-expression. Extending the original results with a mechanistic model could help formulate

hypotheses regarding the underlying regulatory mechanisms of early retinogenesis. Here, we

illustrate how to combine the statistical analysis of SCBOOLSEQ to coarse-grain the expression

data with prior knowledge data on transcription factor regulations publicly available in the

mouse regulon database DOROTHEA [40] in order to build logical models that reproduce the

differentiation process. Our objective is to first evaluate how the binarisation preserves the cell

type classification, and how the resulting qualitative description of phenotypes enables to iden-

tify core regulations that explain the Boolean differentiation process.

Fig 4. Left: Distribution of categories among the studied datasets. Right: Proportion of binarised values across datasets using the default parameters for each distribution

type. These proportions are both determined by the categories and the specified thresholds. These were obtained using parameters z = ? for zero-inflated case, q = 0.05

and α = 0 for unimodal, and θ = 0.95 for bimodal. The dropout rate threshold for marking a gene as discarded was set to 0.99.

https://doi.org/10.1371/journal.pcbi.1011620.g004
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Discriminating cellular types using prior-knowledge markers. The reference study [9]

considered prior knowledge markers for the cellular types at different stages of differentiation.

We classified each cell according to its binarised expression profile and the markers it contains.

Then, for each cellular type, we computed how many cells have the matching marker, and

among them, how many match only with that cellular type. As shown in Table 1, the majority

of cells per group were unambiguously identified, except for Horizontal Cells. Notice that Hor-

izontal Cells share one marker Prox1 with Amacrine Cells. It should be noted, that in this case,

a quarter of all considered cells have been classified using their binarisation (S4 Fig). More-

over, our classification of cells based on their binarised pseudocounts and prior-knowledge

markers enables to label Louvain clusters of scRNA-seq data, which turned out to be consistent

with labels obtained using differential expression analysis by [9] (S5 Fig).

Data-driven inference of Boolean models. The binarisation of SCBOOLSEQ enables to

specify Boolean dynamical properties that reflect the observed differentiation process: the exis-

tence of traces linking (partially) binarised cellular states, including branches from pluripotent

states to distinct differentiated states, as well as stability properties. Then, inference methods

such as BONESIS [64, 65] can derive Boolean networks that reproduce the specified dynamics.

The logical rules are derived from prior knowledge Gene Regulatory Networks (GRNs), typi-

cally extracted from TF-TF (transcription factor—transcription factor) interaction databases,

possibly completed with statistical network inference from scRNA-seq data. By employing

combinatorial optimisation method, BONESIS enables accessing to the sparsest models, i.e.,

requiring as few as possible genes to reproduce the desired traces and stable states.

Using clustering and trajectory reconstruction methods, we applied SCBOOLSEQ to deter-

mine a partial binary profile of 6 cellular types, namely RPC (progenitor), intermediate neuro-

blast types NB1 and NB2, and final Cones, RGC and AC types. Note that due to the low

number of cells classified as HC and their apparent distance between each other, we omitted

this cellular state. The dynamical specification consisted of the existence of a traces from the

RPC state to NB1 and then to NB2. From the NB2 state, three different traces must exist

towards each of the final stable states. Moreover, we extracted from the DOROTHEA database a

core TF-TF regulatory network together with target genes that have been binarised. Focusing

on the largest weakly connected component, it gave a GRN with 644 genes. Then, using BONE-

SIS, we reconstructed Boolean networks that, using the input GRN interactions, can reproduce

the desired traces and stable states. See Methods section and S7 Fig for details. Because the

binary profiles are partial, numerous genes have no imposed binary value in several cellular

states. Using BONESIS, we identified models that rely as little as possible on the dynamics of

those genes with undetermined states. It resulted in pruning the input GRN to 184 genes

which suffice to explain the observed differentiation process. As shown in Fig 5(Right), gene

Table 1. A list of all the cellular types of interest, as well as the Boolean markers (cells with those genes binarised to 1/True/active) used to detect cells matching

belonging to them. N. Unambiguous Cells represents cells that exclusively expressed the given set of markers.

Cell Type N. Unambiguous Cells Perc. Total Markers

RPC (Retinal Progenitor Cells) 249 98.03% Sox2, Fos, Hes1

NB1 (Neuroblasts, first group) 23 85.19% Top2a, Prc1, Sstr2, Penk, Btg2

NB2 (Neuroblasts, second group) 27 81.82% Neurod4, Pax6, Pcdh17

RGC (Retinal Ganglion Cells) 191 94.55% Isl1, Pou4f2, Pou6f2, Elavl4

AC (Amacrine Cells) 81 67.50% Onecut2, Prox1

HC (Horizontal Cells) 3 10.71% Onecut1, Prox1

Cones (Photoreceptors) 8 100% Otx2, Crx, Thrb, Rbp4

https://doi.org/10.1371/journal.pcbi.1011620.t001
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ontology enrichment analysis, performed using Metascape [41], shows many relevant ontology

terms were found among the top hits, such as mechanisms associated with pluripotency, nega-

tive regulation of cell differentiation, regulation of mitotic cell cycle, gland development, regu-

lation of developmental growth, and embryonic organ development. Obtained models can

then serve as inputs for a more thorough systems biology analysis of the biological question.

Synthetic scRNA-seq generation biased by Boolean states

As the inverse operation of binarisation, the parametric distributions and dropout model

learnt per gene from a reference dataset also enable the generation of synthetic pseudocounts

from Boolean activation states. This can be achieved by biased sampling from distributions

learnt on non-zero entries of the reference dataset. Consequently, dropout events are simu-

lated according to the gene-dependent model of Eq (1).

Biased sampling ensures that cells in which a gene is active will exhibit higher expression

(pseudocounts) than those in which it is inactive. In the case the gene follows a unimodal dis-

tribution of mean μ and variance σ2, the pseudocount are sampled from the half-normal distri-

bution corresponding to the activation state (HN ðm; s2Þ for active, and m � HN ð0; s2Þ for

inactive). In the case of bimodal distribution, composed of two normal distributions of mean

μ1 < μ2 and variance σ1 and σ2, respectively, the sampling is performed from the mode corre-

sponding to the activation state (N ðm1; s
2
1
Þ for inactive and N ðm2; s

2
2
Þ for active). Finally, in

the case of zero-inflated genes, learning from non-zero entries ensures falling back to one of

the two aforementioned cases, and the dropout model learnt should reflect the inflation of

zeros. The last step simulates dropouts in such a way that synthetic log-pseudocounts pro-

duced from the Boolean states will have gene-wise statistical properties closely resembling

those of real scRNA-seq data. The dropout event simulation can follow the dropout model of

Eq (1) learnt per gene, or follow an arbitrary given distribution.

Application to artificial Boolean models. The above steps enable the generation of syn-

thetic scRNA-seq datasets from collections of binary states of genes, as it would be typically

generated from the simulation of Boolean networks [66, 67]. These synthetic data can then

serve as a basis for benchmarking inference methods, with known ground-truth dynamical

model. This could notably be applied to artificial Boolean models of different scales and topol-

ogy. In this case, however, nodes are not directly referring to the genes of an experimental

scRNA-seq reference dataset.

A possible approach, proposed in SCBOOLSEQ, is to analyse the shape of the node-wise distri-

bution of Boolean values and assign genes having similar shape. Intuitively, a gene is for

Fig 5. Left: Simplified view of the set of minimal TF-TF interactions employed in the Boolean models reproducing the differentiation process. For display, all leaf nodes

with an in-degree of 1 were recursively removed from the GRN. The full filtered GRN obtained with BONESIS is provided in S6 Fig. Right: Top Gene Ontology Terms

related to the 184 genes of the filtered GRN.

https://doi.org/10.1371/journal.pcbi.1011620.g005
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instance active in most cells, it can be classified as unimodal. Subsequently, genes that vary

considerably can be considered to be bimodal. Genes that are ubiquitously inactive with few

exceptions (e.g., it is active in only one state of the Boolean trace) would then be zero-inflated.

SCBOOLSEQ uses scaled versions of the first four moments to classify Boolean gene distributions

as unimodal, bimodal, or zero-inflated. The scaled moments of Boolean distributions are fed

to a k-nearest-neighbours classifier [68, 69] that was trained on the scaled moments of the ref-

erence dataset, using their corresponding distribution types as labels. Next, for each category, a

unique one-to-one mapping is performed between Boolean nodes and genes in the reference

scRNA-seq dataset. Therefore, each Boolean node will be represented by one gene in the refer-

ence which cannot be assigned to any other Boolean node. This allows the generation of syn-

thetic scRNA-seq data whose gene-wise distributions correctly represent the underlying

Boolean dynamics.

We applied this principle to three artificial Boolean models, exhibiting different types of

emerging dynamics. For each of the models, Boolean traces representing the dynamics of the

network were obtained as described below. For each of the Boolean states of the traces, multi-

ple synthetic pseudocounts were sampled using SCBOOLSEQ with the selected reference dataset

GSE81682. Then, we applied classical scRNA-seq dimensionality reduction methods to visual-

ise the corresponding pseudocount trajectories. Further details regarding the sampling proce-

dure and projections can be found in S1 Notebooks.

The first artificial model is a star-like network (Fig 6a) in which a single transcription factor

(TF) up-regulates the expression of a set of genes. This model was simulated by performing

one random walk with the fully asynchronous update mode starting from the state where the

node tf is active and all genes are inactive. The resulting trace is a sequence of Boolean vectors

where genes progressively activate, in a random order. This gradual activation can be clearly

distinguished in Fig 6b, where cells with few active genes are coloured in dark blue and cells

with all genes active are coloured in light green.

The second manually-designed model is a bistable switch which represents a simplified cel-
lular reprogramming scenario (Fig 6c) in which the cell finds itself in a steady state (light blue,

labelled common) characterised by the activation of TF6 which activates a small set of genes

and inhibits a mutually exclusive switch. The activation of TF7 node represents a perturbation

that inhibits TF6, pushing the cell out of its initial state and triggering a differentiation process.

One of two different stable states is eventually reached.

The third model (Fig 6) is a three-stable switch that has been designed automatically from

random scale-free topology such that it exhibits a two-level differentiation process: from an

initial state, three stable states are reachable, with an intermediate branching state giving access

to two of them. In both cases, we generated Boolean traces covering the differentiation

branches from the initial states. These traces remain apparent in the projections of generated

scRNA-seq data (Fig 6d and 6f).

Comparison with BOOLODE. Given an artificial Boolean network, the tool BOOLODE [34]

is capable of producing synthetic pseudocount datasets which exhibit clearly defined trajecto-

ries when applying dimensionality reduction techniques such as t-SNE. However, datasets gen-

erated with BOOLODE exhibit statistics that do not resemble those of scRNA-seq data.

Fig 7 provides comparisons between datasets generated by BOOLODE and SCBOOLSEQ from

one of the largest curated models of the benchmark presented in [34], a Boolean network of

human gonadal sex determination (GSD) [70]. It has two main fixed point attractors of biolog-

ical interest, namely Sertoli cells and granulosa cells which correspond to male and female phe-

notypes. We notably compared the mean-variance and mean-dropout profiles of generated

data with different dropout models, as proposed by both tools. Besides the dropout rate being

constant, the mean-variance relationship of BOOLODE appears to be at a very different scale
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Fig 6. Artificial Boolean models and generated synthetic scRNA-seq data. Left: Influence graphs of the Boolean models. See S1

Notebooks for Boolean functions. Right: Two-dimensional projection of the synthetic scRNA-seq data generated by applying

SCBOOLSEQ to Boolean traces simulated from the models on the left; we used PCA and locally linear embedding (LLE) for (b) and (d),

and t-SNE for (f). Dots are labelled with a description of the Boolean state they have been generated from: for (b) it is the number of

active genes; for (d) and (f) they refer to the dynamical nature of the states in the 3-branches of the differentiation process.

https://doi.org/10.1371/journal.pcbi.1011620.g006
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than typical scRNA-seq data (Fig 2). It should be noted that when enforcing a constant drop-

out rate with SCBOOLSEQ, the resulting dropout-mean profile is not constant as 0 values can still

be sampled from learnt pseudocount distributions: Gaussian distribution can give non-zero

probabilities to negative values, which are corrected as 0. This is not the case with BOOLODE

because of the noise added to ODE-simulated values, which prevents generating values being

exactly 0.

Fig 7. Comparison of the per-gene Mean-Variance and Mean-DropOutRate profiles of reference dataset GSE122466 (red), BOOLODE (blue), and SCBOOLSEQ

(green). QC represents the quantile below which BOOLODE simulates dropouts with a constant probability DP.

https://doi.org/10.1371/journal.pcbi.1011620.g007
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Implementation and usage

SCBOOLSEQ has been implemented in Python on top of pandas [71], statsmodels [72],

and scikit-learn [68] libraries. Fig 8 shows basic usage of scBoolSeq to perform

binarisation and synthetic data generation. In terms of scalability, SCBOOLSEQ’s current imple-

mentation requires loading the full pseudocount matrices in memory. In the case of these 5

datasets, their size ranges from 3,000 to 15,000 single-cell measurements over 300 to 1,200

genes. In each case, the learning could be handled with less than 1GB of RAM and took less

than a minute on a 3Ghz CPU with 16 threads. The total binarisation and sampling operations

ran in seconds. Future engineering work will focus on leveraging the AnnData [73] Python

package for handling large datasets that cannot be fit in RAM. Furthermore, using AnnData
within SCBOOLSEQ will allow its integration in the scverse [74] computational ecosystem for

single-cell omics data analysis.

SCBOOLSEQ is distributed as a standard Python package and is integrated into the CoLo-

MoTo Docker distribution [75], which facilitates the accessibility of tools related to Boolean

and logical models, and the reproducibility of related computational analyses.

Discussion

We introduced SCBOOLSEQ, a novel method that provides a bidirectional link between scRNA-

seq data and Boolean Models. Our method builds on the classification of gene empirical pseu-

docount distributions into unimodal and bimodal distributions proposed by [50], that we

extended with a probabilistic gene-dependent dropout model. We showed that the resulting

characterisation suffices to capture the main statistical features of real scRNA-seq data. Then,

SCBOOLSEQ offers both the ability to binarise scRNA-seq datasets and the ability to generate

synthetic pseudocounts from binary states of genes.

From pseudocounts to binary states

We illustrated on a concrete application how the binarisation offered by SCBOOLSEQ can be

employed to process scRNA-seq data in view of performing inference of Boolean networks,

which are logical models of gene activity dynamics. First, SCBOOLSEQ coarse-graining method

allows identifying cellular types of interest by detecting the presence (i.e., activation) of known

Fig 8. Python code snippet showing basic usage of SCBOOLSEQ for binarisation and synthetic data generation from reference scRNA-

seq data and Boolean states.

https://doi.org/10.1371/journal.pcbi.1011620.g008
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marker genes. In addition to this, combining the binarised gene activity with community detec-

tion techniques could help to find previously unknown marker genes (genes that are binarised

as active only in certain clusters and are not found in the literature). Then, coupled with a prior

GRN, the deduced set of Boolean functions constitute a set of hypotheses that can guide future

wet-lab experiments to unveil the core regulatory mechanism of early retinogenesis.

It should be stressed that the binarisation of SCBOOLSEQ can result in an undetermined state

when there is not enough statistical evidence for a binary classification. We believe that the

fact that not all genes (and cells) can be classified with binarisation is a biologically meaningful

feature as the method enables discriminating cells in extreme (asymptotically stable) states

from cells in transient states, for which a fully binary view may not be adequate.

One should note however that determining the activity of a gene based on its transcript

level is a strong hypothesis. Methods such as VIPER [76] aim at adding information about

each protein’s regulon to better infer protein activity. Moreover, chromatin accessibility data

and other epigenetic information can also help to refine the binary classification.

From binary states to pseudocounts

Another major contribution of SCBOOLSEQ is its method for generating synthetic scRNA-seq

data from Boolean gene activation states by biased sampling from learnt pseudocount distribu-

tions on a reference dataset. We showed that SCBOOLSEQ provides a significant improvement

over BOOLODE as it produces synthetic scRNA-seq data whose statistical characteristics

(mean-variance and mean-dropout profiles) closely resemble those of real data. In addition to

this, SCBOOLSEQ allows the simulation of any arbitrary distribution of gene-wise dropout rates.

This represents an unprecedented contribution as it allows measuring the sensitivity of infer-

ence methods to the dropout rate distributions of scRNA-seq datasets.

By offering the capability to generate synthetic scRNA-seq datasets from ground-truth

Boolean models with realistic statistical features, we believe that SCBOOLSEQ is a clear asset for

that generating benchmarks for the evaluation of various inference methods, such as GRN

inference, trajectory reconstruction, and data-driven Boolean network inference.

Methods

Boolean networks and dynamics

A Boolean network on nodes {1, . . ., n} is a function f : Bn
! Bn

mapping binary vectors of

dimension n to themselves, where B ¼ f0; 1g is the Boolean domain. For each node i 2 {1, . . .,

n}, we write fi : Bn
! B the i-th component of f, which is the Boolean function of node i. A

Boolean vector x 2 Bn
specifies a Boolean state for each component of the network, and is

called a configuration.

The influence graph of a Boolean network f is a directed signed graph, noted G(f), whose

vertices are the nodes of the Boolean network. The influence graph captures the dependencies

of Boolean functions, and corresponds to union of Jacobian matrices of f on configuration.

Formally, there is a positive edge for node j to i (j!þ i 2 Gðf Þ) in the influence graph if and

only if there exists a configuration x 2 Bn
such that

fiðx1; . . . ; xj� 1; 0; xjþ1; . . . ; xnÞ < fiðx1; . . . ; xj� 1; 1; xjþ1; . . . ; xnÞ

There is a negative edge for node j to i (j �! i 2 Gðf Þ) in the influence graph if and only if there

exists a configuration x 2 Bn such that

fiðx1; . . . ; xj� 1; 0; xjþ1; . . . ; xnÞ > fiðx1; . . . ; xj� 1; 1; xjþ1; . . . ; xnÞ
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Note that it is possible to have both edges j!þ i and j �! i in a same influence graph. If it is the

case for G(f), then the Boolean network f is said to be non-monotone. Otherwise, f is locally
monotone.

A trace of a Boolean network f is a sequence of configurations x1; � � � ; xk that can be com-

puted according to a given update mode. For instance, the synchronous mode computes traces

such that any two successive configurations xm; xmþ1 are such that xmþ1 ¼ f ðxmÞ; the fully asyn-

chronous update mode computes traces such that any two successive configurations xm; xmþ1

differ on only one node i, and verify that xmþ1
i ¼ fiðxmÞ. The most permissive update mode [24]

computes all the traces that are binarised from any asynchronous traces of multivalued and

quantitative model compatible with the Boolean network. In general, it allows much more

traces than synchronous and (general) asynchronous modes, which fail to capture traces of dif-

ferent classes of quantitative systems, including incoherent feed forward loops [24].

A configuration x 2 Bn
is a stable state if f ðxÞ ¼ x, i.e., it is a fixed point of f. A configura-

tion x 2 Bn belong to an attractor of f under a given update mode whenever for any possible

traces from x to another configuration y, there exists a traces going back to x. Stable states are

particular cases of attractors.

Inference of Boolean networks from influence graph and dynamical

properties

From an influence graph G and a set of dynamical properties, the tool BONESIS [64, 65]

(bnediction.github.io/bonesis) allows inferring Boolean networks f having their influence

graph enclosed by G, i.e., Gðf Þ � G, and that posses the input dynamical properties. The

dynamical properties supported by BONESIS include the existence of most permissive traces

between partially specified configurations, and stable state properties of (partially specified)

configurations. A partially specified configuration specifies a Boolean state for a subset of

nodes. The states of the other nodes can then be freely determined in order to satisfy the

dynamical properties. BONESIS also allows specifying optimisation objectives to filter solutions,

notably to enumerate only sparser models, i.e., with the smallest influence graphs. The Boolean

networks returned by BONESIS can then be exported to standard textual representation for fur-

ther analysis with other software tools.

We employed BONESIS to infer Boolean networks from scRNA-seq SCBOOLSEQ binarisation

(see next section), and to generate artificial Boolean networks which possess multi-stability

and branching behaviours from randomly generated scale-free influence graph (S1

Notebooks).

Case study: Early born retinal neurons

We performed the analyses on the scRNA-seq dataset of lane 1 of GSE122466. The main steps

hereafter denoted in paragraphs refer to the analyses performed in their homonymous Jupyter

Notebooks provided in S1 Notebooks.

Highly variable gene selection. For this part we used the software STREAM [15]. We

took the count matrix of the first replicate (Identified with the prefix Lane_1 in their index).

We performed standard quality control, with the same parameters as the analyses of the origi-

nal article. Cells expressing less than 200 genes were discarded, as well as genes expressed in

less than 3 cells. We selected the 1648 most highly variable genes and appended to them the

two marker genes that were reported in the article but were not selected as being highly vari-

able (Rbp4, Pou4f2).

Retinal differentiation clustering and metadata. In this part we took the aforementioned

Highly Variable Genes (HVGs) and performed the SCBOOLSEQ distribution learning with

PLOS COMPUTATIONAL BIOLOGY SCBOOLSEQ: Linking scRNA-Seq Statistics and Boolean Dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011620 July 8, 2024 18 / 25

http://bnediction.github.io/bonesis
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122466
https://doi.org/10.1371/journal.pcbi.1011620


θ = 0.75 to have a higher amount of binarised observations on bimodal genes. We then used the

instance to binarise the HVGs across all cells. We then identified cells matching the markers

described in the original article. About 25% of all cells were labelled in this process. Subse-

quently, cells matching more than one set of markers were discarded. The only pair of pheno-

types which presented more than a couple of ambiguous cells were Amacrine Cells (AC) and

Horizontal Cells (HC) which had 23 cells matching both marker signatures. This was expected

given that cellular types were defined with only two markers and one of them Prox1 is shared.

Having a larger (and preferably disjoint) set of markers could resolve this ambiguity. We used

SCANPY [17] to perform Louvain clustering on the log pseudocount HVGs, with the number of

neighbours set to 15. With this analysis, 11 distinct clusters were found. A small cluster of cells

(cluster 10 in the notebooks) was discarded as it was determined to be an unknown cluster of

unknown Retinal Ganglion Cell-like U/RGC. Our Boolean analysis also found this isolated clus-

ter to express signature genes of RGCs. Finally, clusters were labelled using the majority label of

cells whose Boolean identity matched the markers. Most clusters had absolute majorities (85%,

98%) except for one (Cluster 3 had 53.84% of cells voting NB2, and 34.61% voting AC: It was

labelled NB2). These labels were used as metadata to perform trajectory inference.

Trajectory inference. Using STREAM we performed trajectory inference, using the afore-

mentioned cluster labels as metadata. We obtained a well-defined trifurcating trajectory that is

distinguishable on two dimensions. We set the root (starting point) to be Retinal Progenitor

Cells (RPCs) and the three final points to be the Cones, Retinal Ganglion Cells (RGC), and

Amacrine Cells respectively. Cells associated with these terminal nodes were taken as represen-

tative of their corresponding phenotypes. For the two groups of neuroblasts (NB1 and NB2),

cells within the two quartiles Q(.25), Q(.75) of the root node’s pseudotime were chosen as rep-

resentative of these transient phenotypes. This yields a total of 133 RGC, 79 NB1, 17 NB2, 109

AC, 78 RPC, and 69 Cones that were used to infer the Boolean model.

Binarisation of scRNA-seq data. We binarised all HVGs across all cells and employed

the metadata obtained from the previous trajectory inference step to retrieve cell groups. We

defined meta-observations by aggregating each group, using the mode as summary statistic.

We further selected genes having a non-null variance, which reduced the original 1650 genes

to only 1426. We only retained binarised genes present in the mouse regulon database DOR-

OTHEA [40], that is 1263.

Boolean model inference. Having our binarised observations and selected genes, we

defined our GRN using DOROTHEA [40]. DOROTHEA gives a confidence score to each one of

the interactions, based on the number of supporting evidence in different sources. In decreas-

ing order, these levels are: A,B,C,D,E. We decided to exclude interactions with low supporting

evidence, so we filtered out levels D,E and considered only levels A,B,C. With these filtered

interactions, we extracted the core TF-TF network which we define to be the biggest strongly

connected component of the departing graph. This core TF-TF network has 157 nodes. We

then obtained the subgraph induced by these 157 core transcription factors and the binary

genes comprising our observations. This yielded a GRN with 728 nodes. We tested and found

that this GRN was not weakly connected. We extracted the biggest weakly connected compo-

nent which contained 633 nodes. This weakly connected component was given to BONESIS as

the domain of Boolean Networks to consider, and specified the desired traces and stable states

using the specification given in S7 Fig.

Supporting information

S1 Notebooks. Notebooks and Boolean networks for reproducing binarisation case study

and synthetic data generation. The notebooks are provided as static HTML files, and Boolean
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networks as textual files in BoolNet format. See the Data availability statement for links to exe-

cutable notebooks and code.

(ZIP)

S1 Fig. Example of distribution of rate parameters and dropout probabilities learnt by

SCBOOLSEQ. Left: Distribution of rate parameters λ estimated on dataset GSE122466. Right:

Dropout probabilities computed between the minimum and maximum values of a sample

from the parametric distributions corresponding to the same dataset. Each line corresponds to

an individual gene.

(PDF)

S2 Fig. Mean—Variance and Mean—DropOutRate relationships of HVGs using PROFILE

parametric distibutions for bimodal and unimodel genes on selected scRNA-seq datasets.

Each green point represents the average of 100 independent replicates with the same sample

size as the reference dataset.

(PDF)

S3 Fig. Correlation between higher moments of real pseudocount data and from data gen-

erated from distributions and dropout model learnt by SCBOOLSEQ on selected scRNA-seq

datasets.

(PDF)

S4 Fig. Position of cells classified using SCBOOLSEQ binarisation and prior-knowledge mark-

ers. t-SNE and UMAP projections trained on the top 25 principal components (log pseudo-

count matrix). Colours indicate cell identities determined by binary value of known markers

(see Table 1).

(PDF)

S5 Fig. Result of trajectory reconstruction using STREAM on early-born retinal neurons

scRNA-seq data. UMAP projection of the first 25 principal components to 3 dimensions

(only 2 are shown). The cluster labels are determined by the majority label of unambiguous

cell types identified via SCBOOLSEQ binarisation.

(PDF)

S6 Fig. Influence graph of sparser Boolean networks learnt using BONESIS from qualitative

dynamics of case study obtained with SCBOOLSEQ binarisation. This graph comprises 184

nodes forming Boolean networks that can reproduce the Boolean dynamics of early-born reti-

nal neurons differentiation process. This graph is a subgraph of the input DOROTHEA TF-TF

interaction database. Green arrows indicate positive regulations, red arrows indicate negative

regulations. Nodes without predecessors indicate nodes with constant function in the Boolean

networks. Thus, the Boolean state of these nodes is identical in all stable states, and is in oppo-

site state in the precursor state RPC.

(PDF)

S7 Fig. Python code snippet showing usage of BONESIS for the inference of Boolean net-

works for the retinal differentiation case study. See S1 Notebooks for full pipeline.

(PDF)

S8 Fig. Disambiguation of Unimodal genes’ coarse-graining and sampling parametrisa-

tions. Genes classified as Unimodal may exhibit heavy tails or remain skewed after the prepro-

cessing log-transformation step. However, these characteristics do not hinder their coarse-

graining: SCBOOLSEQ uses a nonparametric quantile-based binarisation scheme that makes no

assumptions about the underlying distribution. This is independent from the biased sampling
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procedure: By using half-normal distributions, SCBOOLSEQ produces synthetic data reflecting

unimodal activation patterns found in Boolean gene dynamics.

(PDF)

S9 Fig. Importance of SCBOOLSEQ’s Dropout model. A Gaussian distribution (for Unimodal

Genes) or two-component Gaussian Mixture (for Bimodal Genes) by themselves do not suffice

to capture the statistical characteristics of log-transformed and normalised Highly Variable

Genes of scRNA-seq datasets. However, when combined with our probabilistic dropout model

these parametric distributions are able to recover the statistics of these data.

(PDF)

Author Contributions

Conceptualization: Gustavo Magaña-López, Laurence Calzone, Andrei Zinovyev, Loïc
Paulevé.
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35. SeçilmişD, Hillerton T, Sonnhammer ELL. GRNbenchmark—a web server for benchmarking directed

gene regulatory network inference methods. Nucleic Acids Research. 2022; 50(W1):W398–W404.

https://doi.org/10.1093/nar/gkac377 PMID: 35609981

36. Kim H, Gelenbe E. Stochastic gene expression modeling with hill function for switch-like gene

responses. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2012; 9(4):973–

979. https://doi.org/10.1109/TCBB.2011.153 PMID: 22144531
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