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Abstract

Boolean networks are largely employed to model the qualitative dynamics of cell fate
processes by describing the change of binary activation states of genes and transcription
factors with time. Being able to bridge such qualitative states with quantitative
measurements of gene expressions in cells, as scRNA-Seq, is a cornerstone for
data-driven model construction and validation. On one hand, scRNA-Seq binarisation is
a key step for inferring and validating Boolean models. On the other hand, the
generation of synthetic scRNA-Seq data from baseline Boolean models provides an
important asset to benchmark inference methods. However, linking characteristics of
scRNA-Seq datasets, including dropout events, with Boolean states is a challenging task.

We present scBoolSeq, a method for the bidirectional linking of scRNA-Seq data
and Boolean activation state of genes. Given a reference scRNA-Seq dataset,
scBoolSeq computes statistical criteria to classify the empirical gene pseudocount
distributions as either unimodal, bimodal, or zero-inflated, and fit a probabilistic model
of dropouts, with gene-dependent parameters. From these learnt distributions,
scBoolSeq can perform both binarisation of scRNA-Seq datasets, and generate
synthetic scRNA-Seq datasets from Boolean trajectories, as issued from Boolean
networks, using biased sampling and dropout simulation. We present a case study
demonstrating the application of scBoolSeq’s binarisation scheme in data-driven
model inference. Furthermore, we compare synthetic scRNA-Seq data generated by
scBoolSeq with BoolODE from the same Boolean Network model. The comparison
shows that our method better reproduces the statistics of real scRNA-Seq datasets, such
as the mean-variance and mean-dropout relationships while exhibiting clearly defined
trajectories in a two-dimensional projection of the data.

Author summary

The qualitative and logical modeling of cell dynamics has brought precious insight on
gene regulatory mechanisms that drive cellular differentiation and fate decisions by
predicting cellular trajectories and mutations for their control. However, the design and
validation of these models is impeded by the quantitative nature of experimental
measurements of cellular states. In this paper, we provide and assess a new
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methodology, scBoolSeq for bridging single-cell level pseudocounts of RNA transcripts
with Boolean classification of gene activity levels. Our method, implemented as a
Python package, enables both to binarise scRNA-Seq data in order to match
quantitative measurements with states of logicals models, and to generate synthetic
data from Boolean trajectories in order to benchmark inference methods. We show that
scBoolSeq accurately captures main statistical features of scRNA-Seq data, including
measurement dropouts, improving significantly the state of the art. Overall, scBoolSeq
brings a statistically-grounded method for enabling the inference and validation of
qualitative models from scRNA-Seq data.

Introduction 1

Unveiling the mechanisms that regulate cellular decisions is a central task in systems 2

biology. For instance, numerous efforts have been conducted to elucidate the core 3

mechanisms that control differentiation and cell fate decision processes such as 4

osteogenesis [1–3], haematopoiesis [4–7], dopaminergic neuron differentiation [8], early 5

retinal development [9], and various cancer types [10–13]. 6

The advent of single-cell RNA sequencing (scRNA-Seq) technologies has greatly 7

enhanced the resolution with which these dynamic phenomena can be studied. As a 8

preliminary step, most studies first determine cell identities via either clustering and 9

subsequent manual annotation or via the direct classification of cells [14]. Furthermore, 10

trajectory reconstruction methods [15–17] allow visualising and hypothesising how 11

gradual changes in gene expression eventually lead to commitment to specific lineages 12

and phenotypes. A tremendous challenge is then to identify regulatory mechanisms that 13

control the identified dynamics of expression patterns and ultimately phenotypes. 14

Boolean networks are widely employed to model cellular differentiation [18–21] and 15

fate decision [22,23]. In these models, the activity of biological entities is represented as 16

either active or inactive. This coarse-grained view of gene expression levels helps 17

counter the varying levels of technical noise caused by sequencing technologies. The 18

binary representation allows reasoning on the causal relationships between entities 19

without having to estimate kinetic parameters or regulation thresholds, while ensuring 20

consistency with underlying quantitative models [24]. Boolean models can predict 21

trajectories and conclude on the impossibility of certain behaviours, optionally subject 22

to mutations, and can encompass thousands of genes. They revealed to be a powerful 23

and relevant modelling approach to predict combinations of genetic perturbations to 24

control cell fate decision [25,26]. 25

Nevertheless, linking qualitative gene activation states with their quantitative 26

measurements, such as count of RNA transcripts, is a delicate task with high stakes for 27

Boolean modelling. We present scBoolSeq, which, given a reference dataset, provides 28

a bidirectional link between scRNA-Seq and Boolean activation states. 29

The binary coarse-graining of scRNA-Seq, we refer to as binarisation, consists in 30

assigning a qualitative active or inactive state to a gene, from one single-cell or a pool of 31

single-cell measurements. The pools of cells usually correspond to phenotypes and other 32

important cellular states. As Boolean models aim at predicting stability and trajectories 33

between such cellular states, binarised data are crucial to assess their fitness with 34

trajectories and steady states. One can easily note that the binary classification may be 35

irrelevant in some cases, e.g., when in intermediate activation levels, or because of 36

lacking statistical support. Therefore, it is important that binarisation methods actually 37

result in three possible outcomes of the gene state: activate, inactive, or undetermined. 38

However, numerous methods fully binarise transcriptome data with no regard for 39

uncertainty or intermediate expression and the diversity of empirical pseudocount 40

distributions [27]. RefBool [28] provided an important effort for quantifying statistical 41
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uncertainty for the binarisation and allowing intermediate states. Their approach aims 42

at exploiting a user-defined gene expression library which serves as a proxy to take into 43

consideration the context of the global gene expression landscape when coarse-graining 44

data. Unfortunately this approach is only available for bulk RNA-Seq data. 45

The inverse operation of binarisation consists in generating RNA pseudocounts from 46

Boolean activation states. Coupled with simulations of Boolean models, this enables 47

generating synthetic datasets from Boolean models subject to ranges of combinations of 48

perturbations, simulating gene knock-out or constitutive activation, for instance. 49

Resulting synthetic scRNA-Seq data can then serve as a basis to evaluate inference 50

methods, such as gene regulatory networks inference, trajectory inference, and Boolean 51

model inference. 52

Generating single-cell and bulk RNA-Seq data has been addressed by count 53

simulators [29–31]. With different underlying assumptions, count simulators reproduce 54

the statistical characteristics of real datasets via parametric and semi-parametric 55

approaches. They are capable of simulating a wide variety of scenarios and even batch 56

effects, but generally fail at integrating information from GRN known a priori. Efforts 57

have been made to integrate knowledge about GRNs into count simulators [32]. 58

However, this method requires the GRN to be a directed acyclic graph, which might not 59

be the case in general. Alternative methods rely on translating Boolean networks into 60

non-linear Ordinary Differential Equations (ODEs). A first work in this line was odefy 61

which presented a canonical way of transforming Boolean into continuous models [33]. 62

More recently, BoolODE was presented in the context of GRN inference method 63

benchmarking [34,35], introducing the addition of noise terms to make the ODEs 64

stochastic. By building on top of Boolean networks, these approaches enable to capture 65

the logical and dynamical relationships among the regulators. BoolODE uses Hill 66

functions to reflect the modulation of gene expression [36–38]. However, this approach 67

relies on a considerable amount of parameters such as mRNA transcription and 68

degradation rates, Hill thresholds and coefficients, signalling timescales, and interaction 69

strengths. Determining these parameters is an important bottleneck as they can hardly 70

be estimated from experimental scRNA-Seq data and need therefore to be set 71

arbitrarily or randomly sampled. Moreover, these ODE-based generators fail to produce 72

data with statistical properties comparable to those of real scRNA-Seq datasets. 73

We believe it is crucial that generated count data resemble as much as possible 74

scRNA-Seq data to obtain fair inference benchmarks, which implies mimicking dropouts 75

and other statistical features. scBoolSeq relies on the learning of gene-wise RNA 76

pseudocount statistics from a reference dataset. This learning is performed in three 77

steps: (i) the classification of empirical gene pseudocount distributions; (ii) the use of 78

Gaussian Mixtures with up to two components as a parametric model; and (iii) the 79

simulation of dropout events with probabilities that are inversely proportional to the 80

expression value. scBoolSeq requires the reference dataset to be constituted of only 81

highly variable genes (HVGs). Functions to perform this filtering are available on major 82

scRNA-Seq analysis distributions such as Stream [15] and scanpy [17]. By selecting 83

HVGs after quality control, normalisation, and batch correction, one ensures that 84

scBoolSeq’s reference reflects the underlying biological variation rather than technical 85

noise. In addition to HGVs which are automatically selected by the designated 86

functions in scRNA-Seq analysis environments, differentially expressed genes (DEGs) 87

and known markers can also be incorporated to scBoolSeq’s reference in order to have 88

a fuller image of the transcriptional landscape of the dynamic phenomenon of interest. 89

Thus, from the preprocessed reference dataset, scBoolSeq is able to perform two 90

distinct complementary operations: the binarisation of a scRNA-Seq dataset with 91

respect to the reference dataset, and the generation of synthetic scRNA-Seq from 92

Boolean activation states, as illustrated by Fig. 1. 93
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Pseudotime

Trajectory
reconstruction

scBoolSeq

Egr1 J unb Bclaf1 Myc Fil1 Gata2 Spi1

Cell_2039 3.892874 2.827419 1.273664 3.724108 1.328451 3.069076 1.344202

Cell_2304 1.248786 0.635362 0.000000 2.481673 2.954907 3.526111 3.858446

Cell_2395 3.057174 4.433269 2.263485 2.307164 2.574745 3.080573 0.000000

Cell_2698 0.836229 3.739484 3.175067 3.427367 2.953074 2.725792 0.711286

Cell_2401 1.937875 0.197981 2.125259 4.728801 2.002604 1.096830 1.468082

scRNA-seq pseudocounts

Egr1 J unb Bclaf1 Myc Fil1 Gata2 Spi1

Cell_2039 0 0 1 0 1 0 0

Cell_2304 0 ? 1 1 0 0 1

Cell_2395 0 1 1 ? ? 1 1

Cell_2698 1 0 0 1 1 1 1

Cell_2401 ? 1 1 0 0 0 0

binary states

Boolean dynamics

011000110

001010100

001000111

101010011

100100111
011110110

.sample_counts()

.binarize()

(1)

(2)

(3)

(4)

Fig 1. From left to right: (1) A branching trajectory constructed by merging two
Boolean simulations, each one leading to a different stable state. (2) A binarised
expression matrix, having genes as columns and samples as rows. (3) A pseudocount
matrix (same format as the Boolean matrix). (4) A STREAM-plot reconstructing the
branching trajectory from synthetic data generated from the Boolean traces [15].
scBoolSeq can be used to go from gene expression matrices (such as 3) to Boolean
matrices and vice-versa.

We first show that our 3-distribution model of scRNA-Seq counts and dropouts is 94

able to accurately reproduce the statistical characteristics of a range of scRNA-Seq 95

datasets. For the binarisation of scRNA-Seq data, we first apply our method to a 96

publicly available scRNA-Seq dataset of early retinogenesis. We show that scBoolSeq 97

correctly identifies the different cell types described in the original study, defined by a 98

minimal set of marker genes. These identities can subsequently be used in order to label 99

cell groups found by the louvain clustering algorithm [39]. Going beyond cell type 100

identification, we use the Boolean gene activity values determined by scBoolSeq in 101

order to prune a mouse regulon database [40]. The resulting GRN is validated via Gene 102

Set Enrichment Analysis performed using METASCAPE [41] which yielded numerous 103

relevant Gene Ontology terms related to the kept genes. 104

Finally, we show that scBoolSeq’s synthetic scRNA-Seq data generated from 105

Boolean traces produces both discernible trajectories when applying dimensionality 106

reduction techniques and statistics that comparable to those of real datasets. 107

Overall, scBoolSeq provides an efficient method to learn statistics of a scRNA-Seq 108

dataset and derive binarisation and synthetic generation procedures with few 109

parameters. scBoolSeq has been implemented as an open source Python package 110

available at github.com/bnediction/scBoolSeq. 111

Results 112

In the following, we assume that scRNA-Seq data is preprocessed as log pseudocounts 113

xc,g = log(xnormc,g + 1), where c and g refer to cells and genes, respectively. Any 114

size-factor based normalisation can be used, as long as it is of the form xnormc,g =
xraw
c,g

α 115

where α is a constant. For instance αc =
∑
g xc,g would represent the standard library 116

size normalisation, yielding counts/reads per million (CPM/RPM). Our methodology is 117

applicable to alternative normalisations such as TPM (transcripts per kilobase per 118

million reads) or RPKM (reads per kilobase per million reads). The log transformation 119

is necessary in order to ensure the validity of the underlying parametric distributions. 120
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Classification of Pseudocount Distributions and Dropout Model 121

scBoolSeq builds on the ideas presented in [42] which seek to capture the different 122

expression patterns across bulk RNA-Seq samples of cancer patients. By computing a 123

series of statistical criteria, they proposed to classify empirical pseudocount 124

distributions as bimodal, zero-inflated, or unimodal. This choice of distributions reflects 125

the underlying hypotheses of gene activity: bimodal genes exhibit two distinct 126

expression patters for the absence and presence of their corresponding encoded proteins. 127

For unimodal genes, we suppose that only cells lying at tails of the distribution can be 128

confidently inferred to be active or inactive. It also appeared that several genes show a 129

high proportion of zeros, which are then classified as zero-inflated. Their classification 130

method employs statistics such as mean, median, variance, dropout rate, amplitude, dip 131

test’s p-value [43], kurtosis, density peak, and Bimodality Index [44]. In a first step, 132

genes which do not exhibit a high enough variability or have excessive dropout rates are 133

filtered out. Then, bimodal patterns are searched within kept genes, using a 134

combination of statistics. Afterwards, genes with no bimodal patterns are tested for 135

zero-inflation by looking at the empirical distributions’ density peaks. Remaining genes 136

are classified as unimodal. 137

With scBoolSeq, we generalized and improved this approach to account for the 138

specificities of scRNA-Seq data, notably their potential high dropout in gene counts, 139

and to enable the sampling of count for reconstructed distributions in order to generate 140

synthetic scRNA-Seq datasets from Boolean activation states. As we illustrate in S2 Fig, 141

when applied to scRNA-Seq, the PROFILE classification algorithms show two 142

shortcomings: (1) for genes classified as bimodal and unimodal, the dropout tends to 143

artificially decrease their mean and inflate their variance, impeding a good 144

characterisation of their empirical pseudocount distributions via Gaussian or 145

two-component Gaussian Mixtures; (2) for zero-inflated genes, the classification does 146

not result in a parametric distribution, which complicates sampling. We improved the 147

algorithm by computing the statistics on non-zero data and propose a novel 148

probabilistic model for dropouts in order to capture the proportion of zeros. By 149

modelling the probability of a dropout occurring as a function of the expression level 150

with gene-dependent parameters, we were able to reproduce the per-gene dropout rates 151

of different reference datasets. Furthermore, we observed that, when sampling from the 152

aforementioned parametric distributions and applying our dropout model, the 153

zero-inflation character of certain genes as well as the excess kurtosis and skewness of 154

unimodal and bimodal genes were globally recovered (S3 Fig). 155

Probabilistic Simulation of Dropout Events 156

Dropouts arise from both biological (lack of transcription at measurement time) [45] 157

and technical causes (sampling and amplification bias) [46]. For this reason, we built a 158

probabilistic model aiming to: (i) reproduce the distribution of dropout rates across 159

genes in the studied reference datasets; (ii) have a minimal set of gene-dependent 160

parameters; and (iii) have a physical interpretation that accounts for the biological and 161

technical causes of dropouts. Dropout parameters are estimated on a gene-dependent 162

basis because empirical sampling rates exhibit gene-specific bias rather than being 163

uniform random samples of mRNA molecules present in the cell [47]. By modelling this 164

gene-dependent biases and simulating dropout events after sampling from parametric 165

distributions, our dropout method mimics the physical phenomena that give rise to 166

dropout events and generates data that reproduces the statistics of scRNA-Seq data, as 167

illustrated by Fig. 2. 168
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Dropout model Under the hypothesis that the probability of not observing counts 169

for a certain gene within any given cell is inversely proportional to its relative 170

abundance, the relationship is defined as an exponential decay which has been shown to 171

describe the mean-dropout relationship in several scRNA-Seq datasets [48]. We denote 172

by xc,g the prior pseudocount of gene g in cell c and by xobsc,g the measured pseudocount. 173

The mathematical formulation of the proposed dropout model is of the following form: 174

P (xobsc,g = 0 | xc,g) = βge
−λgxc,g (1)

When simulating dropout events based on these probabilities, the number of dropout 175

events for a given gene across all cells follows a Poisson-binomial distribution [49], that 176

is the discrete probability distribution of a series of independent Bernoulli trials whose 177

success (dropout) probabilities are not necessarily identical. This reflects our hypotheses 178

on dropouts: for any given gene, having a dropout event for cell i is independent of the 179

dropout in cell j, and two cells having comparable relative transcript abundances of any 180

given gene will have similar probabilities of this gene being observed or dropped-out. 181

Rate parameter The rate parameter λg determines the shape of the exponential and 182

thus how rapidly the dropout probabilities decay with the expression value. This 183

parameter is learnt from the reference dataset, independently for each gene, in order to 184

reflect the aforementioned gene-dependent sampling bias. It is calculated by setting the 185

half-life of equation 1 to the gene’s empirical non-zero mean as follows, for each gene g 186

of the reference dataset: 187

λg =
ln(2)

µ̂NZ(g)
(2)

where µ̂NZ(g) is the mean of non-zero pseudocounts of gene g in the reference dataset. 188

Normalisation constant The normalisation constant βg is computed from sampled 189

prior pseudocounts as the optimum value minimising the quadratic deviation between 190

the expected dropout rate of the synthetic sample E [τg] and the reference dropout rate 191

for that gene τ refg (proportion of zero entries in the reference dataset): 192

βg =
nτ refg∑n

c=1 e
−λgxc,g

(3)

where n is the number of sampled cells. 193

This optimum is derived analytically from the expected value of a Poisson-binomial 194

distribution. This ensures that for the same underlying non-zero distribution the 195

dropout rate will, on average, be close to that of the reference. 196

S1 Fig shows an example of the distribution of rate parameters and the obtained 197

dropout probabilities over the range of expression of a typical log-normalised 198

scRNA-Seq dataset. Overall, we observe a trend depending on the gene pseudocount 199

distribution category: for the same sampled value, zero-inflated genes have the highest 200

probability of dropout, followed by bimodal genes. Genes presenting a unimodal 201

distribution have the lowest dropout rates (and highest non-zero means) and therefore 202

will be seldom dropped-out. 203

Validation 204

We validated our model by sampling from the learnt parametric distributions and 205

simulating dropouts with our exponential model of Eq. (1). We found that our method 206

reproduces extensive statistics of these datasets, specially the gene mean-variance and 207

mean-dropout relationships which characterise scRNA-Seq data (Fig. 2). Furthermore, 208
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Fig 2. Mean - Variance, and Mean - Dropout Rate relationships of HVGs in different
datasets. Each blue dot represents the average of 100 samples for a given gene.

the correlation profile between all combinations of mean, variance, skewness, and excess 209

kurtosis is globally recovered (S3 Fig). We find that these correlations are only 210

recovered when applying our dropout simulation method. 211

Binarisation of scRNA-seq data 212

The coarse-graining scheme of scBoolSeq is based on the classification of pseudocount 213

distribution from a reference dataset, as illustrated by Fig. 3. For each gene, cells whose 214

expression level is high (respectively low) enough to classify it as True/active (resp. 215

False/inactive) will be binarised whilst cells whose expression level is ambiguous will be 216

left as undefined. As shown in Fig. 3, the category-dependent binarisation strategy 217

causes each distribution type to have different proportions of False, True, and 218

undetermined values. 219

Bimodal genes are binarised using their corresponding univariate two-component 220

Gaussian Mixture Model (GMM), whose parameters are estimated on the reference 221

dataset. The GMM’s density is given by Eq. 4. The model has two components denoted 222

Ci which are characterised by their parameters (φi, µi, σ
2
i ). In the following, it always 223

holds that µ2 > µ1, for every bimodal gene. Therefore, we have two components which 224

represent cells whose transcript level can be classified as active C2 or inactive C1. 225

p(x) = φ1N (x|µ1, σ
2
1) + φ2N (x|µ2, σ

2
2) s.t. φ1 + φ2 = 1 (4)

The probabilities of observation x belonging to each one of the two components are first 226

calculated as detailed in Eq. (5): 227

October 22, 2023 7/24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.23.563518doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563518
http://creativecommons.org/licenses/by/4.0/


0
250
500
750

1000

Aldoc
(ZeroInf)

0

100

200 H2-K1
(Unim

odal)

0 5 10
0

50

100 Tspan3
(Bim

odal)

log2(cpm + 1)

co
un

t

Binary Value
?
False
True

Fig 3. Illustration of the category-dependent binarisation allows accounting for
different shapes in empirical pseudocount distributions. For each category, plots show
the empirical distribution for a selected gene in the GSE81682 dataset, and the part of
the values which are binarised with parameters z = “?” for zero-inflated case, q = 0.05
and α = 0 for unimodal and θ = 0.95 for bimodal.

p(Ci|x) =
p(Ci)p(x|Ci)∑2
j=1 p(Cj)p(x|Cj)

=
φiN (x|µi, σ2

i )∑2
j=1 φjN (x|µj , σ2

j )
(5)

Then, the binary classification is performed according to a given confidence 228

threshold θ, with 0.5 < θ ≤ 1: 229

bbimodal(x) =


0 if p(C1|x) ≥ θ
1 if p(C2|x) ≥ θ
? otherwise

(6)

For genes classified as unimodal, we use symmetric thresholds based on two 230

parameters: a margin quantile q (0.05 by default) and a multiplier α for the 231

interquartile range IQR. These thresholds are based on Tukey’s fences for outlier 232

detection [50], with modified defaults to binarise a small fraction of observations. Note 233

that in Eq. (7), Q(q) represents the q-th quantile of the gene’s empirical distribution. 234

bunimodal(x) =


0 if x < Q(q)− αIQR

1 if x > Q(1− q) + αIQR

? otherwise

(7)

Finally, genes whose empirical pseudocount distribution is classified as zero-inflated 235

use a zero-or-not binarisation scheme [45]. Genes having non-zero counts are classified 236

as True whilst zero entries are classified as undetermined (parameter z = “?′′) to reflect 237

the uncertainty regarding the technical/biological causes of this zero, or as False 238

(parameter z = 0) if considered as a signal, as suggested by [45]. 239

bzero-inflated(x) =

{
1 if x > 0

z otherwise
(8)
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Fig 4. Left: Distribution of categories among the studied datasets. Right: Proportion
of binarised values across datasets using the default parameters for each distribution
type. These proportions are both determined by the categories and the specified
thresholds. These were obtained using parameters z = ? for zero-inflated case, q = 0.05
and α = 0 for unimodal, and θ = 0.95 for bimodal. The dropout rate threshold for
marking a gene as discarded was set to 0.99.

The proportion of observations classified as 0 or 1 can be approximated by Eq. (9) 240

ξ(1− τ) + β(p?) + η(2q) (9)

with the average proportions of binarised observations for each category normalized by 241

the proportion of genes classified as zero-inflated, bimodal, and unimodal, denoted by ξ, 242

β, and η, respectively, and where τ represents the average empirical dropout rate. 243

Fig. 4 gives statistics on the fraction of observations that are binarised across the 244

selected evaluation datasets. In general, zero-inflated genes with a high dropout rate 245

will only have a few observations binarised to 1 and most cells will be classified as 246

undefined. Bimodal genes are binarised across most cells because the underlying 247

Gaussian Mixture correctly describes the bimodal genes’ empirical distributions. Finally, 248

unimodal genes will have twice the margin quantile q fraction of observations binarised 249

in the case of α = 0 in Eq. (7). 250

Case study of binarisation: Early-born Retinal Neurons 251

We applied scBoolSeq to a publicly available scRNA-Seq dataset in order to binarise 252

expression data and obtain a qualitative description of phenotypes. We show that the 253

obtained qualitative profiles can serve as a basis to perform inference of Boolean 254

networks, which can mimic the differentiation process and identify key genes and 255

interaction involved in the dynamics. 256

The dataset originates from [9] (GEO accession GSE122466) which analysed how 257

the diversity of cell types found in the early retina (from embryonic days 10 to 17) 258

arises from a pool of progenitor cells. These neurons are retinal ganglion cells (RGCs), 259

cone photoreceptors (cones), horizontal cells (HC) and amacrine cells (AC). The 260

analyses extended previously known marker genes and showed how these appear to be 261

organised in transcriptional waves of co-expression. Extending the original results with 262

a mechanistic model could help formulate hypotheses regarding the underlying 263

regulatory mechanisms of early retinogenesis. Here, we illustrate how to combine the 264

statistical analysis of scBoolSeq to coarse-grain the expression data with prior 265

knowledge data on transcription factor regulations publicly available in the mouse 266
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Table 1. A list of all the cellular types of interest, as well as the Boolean markers (cells
with those genes binarised to 1/True/active) used to detect cells matching belonging to
them. N. Unambiguous Cells represents cells that exclusively expressed the given set of
markers.

Cell Type N. Unambiguous Cells Perc. Total Markers
RPC (Retinal Progenitor Cells) 249 98.03% Sox2, Fos, Hes1
NB1 (Neuroblasts, first group) 23 85.19% Top2a, Prc1, Sstr2, Penk, Btg2

NB2 (Neuroblasts, second group) 27 81.82% Neurod4, Pax6, Pcdh17
RGC (Retinal Ganglion Cells) 191 94.55% Isl1, Pou4f2, Pou6f2, Elavl4

AC (Amacrine Cells) 81 67.50% Onecut2, Prox1
HC (Horizontal Cells) 3 10.71% Onecut1, Prox1

Cones (Photoreceptors) 8 100% Otx2, Crx, Thrb, Rbp4

regulon database DoRothEA [40] in order to build logical models which reproduce the 267

differentiation process. Our objective is to first evaluate how the binarisation preserves 268

the cell type classification, and how the resulting qualitative description of phenotypes 269

enables to identify core regulations that explain the Boolean differentiation process. 270

Discriminating cellular types using prior-knowledge markers The reference 271

study [9] considered prior knowledge markers for the cellular types at different stages of 272

differentiation. We classified each cell according to its binarised expression profile and 273

the markers it contains. Then, for each cellular type, we computed how many cells have 274

the matching marker, and among them, how many match only with that cellular type. 275

As shown in Table 1, the majority of cells per group were unambiguously identified, 276

except for Horizontal Cells. Notice that Horizontal Cells share one marker Prox1 with 277

Amacrine Cells. It should be noted, that in this case, a quarter of cells have been 278

classified using their binarisation (S4 Fig). Moreover, our classification of cells based on 279

their binarised pseudocounts and prior-knowledge markers enables to label Louvain 280

clusters of scRNA-Seq data, which turned out to be consistent with labels obtained 281

using differential expression analysis by [9] (S5 Fig). 282

Data-driven inference of Boolean models The binarisation of scBoolSeq 283

enables to specify Boolean dynamical properties that reflect the observed differentiation 284

process: existence of trajectories linking (partially) binarised cellular states, including 285

branches from pluripotent states to distinct differentiated states, as well as stability 286

properties. Then, inference methods such as BoNesis [51, 52] can derive Boolean 287

networks that reproduce the specified dynamics. The logical rules are derived from prior 288

knowledge Gene Regulatory Networks (GRNs), typically extracted from TF-TF 289

(transcription factor - transcription factor) interaction databases, possibly completed 290

with statistical network inference from scRNA-Seq data. By employing combinatorial 291

optimization method, BoNesis enables accessing to the sparsest models, i.e., requiring 292

as few as possible genes to reproduce the desired trajectories and stable states. 293

Using clustering and trajectory reconstruction methods, we applied scBoolSeq to 294

determine a partial binary profile of 6 cellular types, namely RPC (progenitor), 295

intermediate neuroblast types NB1 and NB2, and final Cones, RGC and AC types. Note 296

that due to the low number of cells classified as HC and their apparent distance between 297

each others, we omitted this cellular state. The dynamical specification consisted in the 298

existence of a trajectory from the RPC state to NB1 and then to NB2. From the NB2 299

state, three different trajectories must exist towards each of the final stable states. 300

Moreover, we extracted from the DoRothEA database a core TF-TF regulatory 301

network together with target genes which have been binarised. Focusing on the largest 302
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Fig 5. Left: Simplified view of the set of minimal TF-TF interactions employed in the
Boolean models reproducing the differentiation process. For display, all leaf nodes with
an in-degree of 1 where recursively removed from the GRN. The full filtered GRN
obtained with BoNesis is provided in S6 Fig. Right: Top Gene Ontology Terms
related to the 184 genes of the filtered GRN.

weakly connected component, it gave a GRN with 644 genes. Then, using BoNesis, we 303

reconstructed Boolean networks that, using the input GRN interactions, are able to 304

reproduce the desired trajectories and stable states. See Methods section, S7 Fig, and 305

S1 Code for details. Because the binary profiles are partials, numerous genes have no 306

imposed binary state in several cellular states. Using BoNesis, we identified models 307

which relies the little as possible on the dynamics of those genes with undetermined 308

states. It resulted in pruning the input GRN to 184 genes which suffice to explain the 309

observed differentiation process. As shown in Fig. 5(Right), gene ontology enrichment 310

analysis, performed using Metascape [41], shows many relevant ontology terms were 311

found among the top hits, such as mechanisms associated with pluripotency, negative 312

regulation of cell differentiation, regulation of mitotic cell cycle, gland development, 313

regulation of developmental growth, and embryonic organ development. Obtained 314

models can then serve as inputs for a more thorough systems biology analysis of the 315

biological problem. 316

Synthetic scRNA-seq generation biased by Boolean states 317

As the inverse operation of binarisation, the parametric distributions and dropout 318

model learned per genes from a reference dataset also enable generating synthetic 319

pseudocounts corresponding to Boolean activation states. The main principle is to 320

perform first biased sampling from distributions whose parameters are learnt on 321

non-zero entries of the reference dataset. In a second step, dropout events are simulated 322

according to the gene-dependant model of Eq. (1). 323

Biased sampling ensures that cells in which a gene is active will exhibit higher 324

expression (pseudocounts) than those in which it is inactive. In the case the gene 325

follows a unimodal distribution of median µ and variance σ, the pseudocount are 326

sampled from the half-normal distribution corresponding to the activation state 327

(HN (µ, σ2) for active, and µ−HN (0, σ2) for inactive). In the case of bimodal 328

distribution, composed of two normal distributions of median µ1 < µ2 and variance σ1 329

and σ2, respectively, the sampling is performed from the mode corresponding to the 330

activation state (N (µ1, σ
2
1) for inactive and N (µ2, σ

2
2) for active). Finally, in the case of 331

zero-inflated genes, the learning from non-zero entries ensures falling back to one of the 332

two aforementioned cases, and the dropout model learnt should reflect the inflation of 333

zeros. The last step simulates dropouts in such a way that synthetic log-pseudocounts 334

produced from the Boolean states will have gene-wise statistical properties closely 335

resembling those of real scRNA-Seq data. The dropout event simulation can follow the 336
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dropout model of Eq. (1) learnt per gene, or follow an arbitrary given distribution. 337

Application to artificial Boolean models The above steps enable generating 338

synthetic scRNA-Seq datasets from collections of binary states of genes, as it would be 339

typically generated from the simulation of Boolean networks [53,54]. This generation 340

can then serve as a basis for benchmarking inference methods, by creating synthetic 341

datasets from fixed dynamical models and evaluate the ability of inference methods to 342

recover main features of the ground-truth model. This could notably be applied from 343

artificial Boolean models of different scale and topology. In that cases, however, node 344

are not directly referring to the genes of an experimental scRNA-Seq reference dataset, 345

and one need criteria to associate a reference gene to them. 346

A possible approach, proposed in scBoolSeq, is to analyse the shape of the 347

node-wise distribution of Boolean values and assign genes having similar shape. 348

Intuitively, a gene is for instance active in most cells, it can be classified as Unimodal. 349

Subsequently, genes which vary considerably can be considered to be Bimodal. Genes 350

which are ubiquitously inactive with a couple exceptions (e.g., it is active in only one 351

state of the Boolean trace) would then be zero-inflated. scBoolSeq uses scaled 352

versions of the first four moments to classify Boolean gene distributions as unimodal, 353

bimodal, or zero-inflated. The scaled moments of Boolean distributions are fed to a 354

k-nearest-neighbours classifier that was trained on the scaled moments of reference 355

dataset, using their corresponding distribution types. Afterwards a by-category bijective 356

matching is performed in order to ensure that the synthetic scRNA-Seq distributions 357

correctly represent the underlying Boolean dynamics. 358

We applied this principle on three artificial Boolean models, exhibiting different type 359

of emerging dynamics. For each one of the models, Boolean trajectories representing the 360

dynamics of the network were obtained as described in the next paragraphs. Afterwards 361

multiple observations (corresponding to single cells) were sampled using scBoolSeq 362

with a selected reference dataset (GSE81682). Then, we applied classical scRNA-Seq 363

dimensionality reduction methods to visualise the corresponding pseudocount 364

trajectories. Further details regarding the sampling procedure and projections can be 365

found in the supplementary materials. 366

The first artificial model is a star-like network (Fig. 6a) in which a single 367

Transcription Factor (TF) up-regulates the expression of a set of genes. This model was 368

simulated by performing one random walk with the fully asynchronous update mode 369

starting from the state where the node tf is active and all genes are inactive. The 370

resulting trajectory is a sequence of Boolean vectors where genes progressively activate, 371

in a random order. This gradual activation can be clearly distinguished in Figure 6b, 372

where cells with few active genes are coloured in dark blue and cells with all genes 373

active are coloured in light green. 374

The second manually-designed model is a bistable switch which represent a 375

simplified cellular reprogramming scenario (Fig. 6c) in which the cell finds itself in a 376

steady state (light blue, labelled common) characterised by the activation of TF6 which 377

activates a small set of genes and inhibits a mutually exclusive switch. The activation of 378

TF7 node represents a perturbation which inhibits TF6, pushing the cell out of its 379

initial state and triggering a differentiation process. At the end, one of two different 380

stable states is reached. The third model (Fig. 6e) is a three-stable switch which has 381

been designed automatically from random scale-free topology and such that it exhibits a 382

two-level differentiation process: from an initial state three stable states are reachable, 383

with an intermediate branching state giving access to two of them. In both cases, we 384

generated Boolean trajectories covering the differentiation branches from the initial 385

states. These trajectories remain apparent in the projections of generated scRNA-Seq 386

data (Fig. 6d and Fig. 6f). 387
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Fig 6. Artificial Boolean models and generated synthetic scRNA-Seq data. Left:
Influence graphs of the Boolean models. See supplementary material for Boolean
functions. Right: Two-dimensional projection of the synthetic scRNA-Seq data
generated by applying scBoolSeq to Boolean trajectories simulated from the models
on the left. Dots are labelled with a description of the Boolean state they have been
generated from: for (b) it is the number of active genes; for (d) and (f) they refer to the
dynamical nature of the states in the 3-branches differentiation process.
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BoolODE

scBoolSeq

QC(30%) DP(70%)

QC(90%) DP(50%)

No dropout

Dropout model learnt from reference

Constant dropout at 50%

No dropout

Fig 7. Comparison of the per-gene Mean-Variance and Mean-DropOutRate profiles of
reference dataset GSE122466 (red), BoolODE (blue), and scBoolSeq (green). QC
represents the quantile below which BoolODE simulates dropouts with a constant
probability DP.

Comparison with BoolODE Given an artificial Boolean network, the tool 388

boolODE [34] is capable of producing synthetic pseudocount datasets which exhibit 389

clearly defined trajectories when applying dimensionality reduction techniques such as 390

t-SNE. However, the generated dataset do not exhibit observed statistics of 391

experimental scRNA-Seq dataset. 392

Fig. 7 provides comparisons between datasets generated by boolODE and 393

scBoolSeq from one of the largest curated model of the benchmark of [34], a Boolean 394

network of human gonadal sex determination (GSD) [55]. It has two main fixed point 395

attractors of biological interest, namely Sertoli cells and granulosa cells which 396

correspond to male and female phenotypes. We notably compared the mean-variance 397

and mean-dropout profiles of generated data with different dropout models, as proposed 398

by both tools. Besides the dropout rate being constant, the mean-variance relationship 399

of boolODE appears to be at very different scale than typical scRNA-Seq data 400

(Fig. 2). It should be noted that when enforcing a constant dropout rate with 401

scBoolSeq, the resulting dropout-mean profile is not constant as 0 values can still be 402

sampled from learnt pseudocount distributions: gaussian distribution can give non-zero 403

probabilities to negative values, which are corrected as 0. This is not the case with 404

boolODE because of the noise added to ODE-simulated values, which prevents 405

generating values being exactly 0. 406
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import pandas as pd

from scboolseq import scBoolSeq

# cells are rows and genes are columns

reference = pd.read_csv("reference_scRNA_highly_variable_genes_pseudocounts.csv")

scbool = scBoolSeq ()

# compute criteria (statistics and per -gene category)

scbool.fit(reference)

# binarise the reference dataset (or other)

coarse_grained = scbool.binarize(reference)

# Simulate scRNA_Seq experiments from Boolean data

boolean_states = pd.read_csv("simulated_boolean_dynamics.csv")

synthetic_rna = scbool.sample_counts(boolean_trace)

Fig 8. Python code snippet showing basic usage of scBoolSeq for binarisation and
synthetic data generation from reference scRNA-Seq data and Boolean states

Implementation and usage 407

scBoolSeq has been implemented in Python on top of pandas [56], statsmodels [57], 408

and scikit-learn [58] libraries. Fig. 8 shows basic usage of scBoolSeq to perform 409

binarisation and synthetic data generation. Future engineering work will focus on 410

leveraging the AnnData [59] Python package for handling large datasets that cannot be 411

fit in RAM. Furthermore, using AnnData within scBoolSeq will allow its integration 412

in the scverse [60] computational ecosystem for single-cell omics data analysis. 413

scBoolSeq is distributed as a standard Python package, and is integrated in the 414

CoLoMoTo Docker distribution [61], which facilitates the accessibility of tools related to 415

Boolean and logical models, and the reproducibility of related computational analyses. 416

Discussion 417

We introduced scBoolSeq, a novel method which provides a bidirectional link between 418

scRNA-Seq data and Boolean Models. Our method builds on the classification of gene 419

empirical pseudocount distributions into unimodal and bimodal distributions proposed 420

by [42], that we extended with a probabilistic gene-dependent dropout model. We 421

showed that the resulting characterization suffices to capture the main statistical 422

features of real scRNA-Seq data. Then, scBoolSeq offers both the ability to binarise 423

scRNA-Seq datasets and the ability to generate synthetic pseudocounts from binary 424

states of genes. 425

From pseudocounts to binary states We illustrated on a concrete application how 426

the binarisation offered by scBoolSeq can be employed to process scRNA-Seq data in 427

view of performing inference of Boolean networks, which are logical models of gene 428

activity dynamics. First, scBoolSeq coarse-graining method allows identifying cellular 429

types of interest by detecting the presence (i.e. activation) of known marker genes. In 430

addition to this, combining the binarised gene activity with community detection 431

techniques could help to find previously unknown marker genes (genes which are 432

binarised as active only in certain clusters and are not found in the literature). Then, 433

coupled with a prior GRN, the deduced set of Boolean functions constitute a set of 434

hypotheses that can guide future wetlab experiments in order to unveil the core 435

regulatory mechanism of early retinogenesis. 436
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It should be stressed that the binarisation of scBoolSeq can result in 437

undetermined state when there is not enough statistical evidence for a binary 438

classification. We believe that the fact that not all genes (and cells) cannot be classified 439

with binarisation is good sign that the method enables discriminating cells in extreme 440

state from cell in transient state, for which a fully binary view may not be adequate. 441

One should note however that determining the activity of a gene based on its 442

transcript level is a strong hypothesis. Methods such as VIPER [62] aim at adding 443

information about each protein’s regulon to better infer protein activity. Moreover, 444

chromatin accessibility and other epigenetics information can also help to refine the 445

binary classification. 446

From binary states to pseudocounts Another major contribution of scBoolSeq 447

is its method for generating synthetic scRNA-Seq data from Boolean gene activation 448

states by biased sampling from learned pseudocount distributions on a reference dataset. 449

We showed that scBoolSeq provides a significant improvement over BoolODE as it 450

produces synthetic scRNA-Seq data whose statistical characteristics (mean-variance and 451

mean-dropout profiles) closely resemble those of real data. In addition to this, 452

scBoolSeq allows simulating any arbitrary distribution of gene-wise dropout rates. 453

This represents an unprecedented contribution as it allows measuring the sensitivity of 454

inference methods to the dropout rate distributions of scRNA-Seq datasets. 455

By offering the capability to generate synthetic scRNA-Seq datasets from 456

ground-truth Boolean models with realistic statistical features, we believe that 457

scBoolSeq is a clear asset for that generating benchmarks for the evaluation of various 458

inference methods, such as GRN inference, trajectory reconstruction, and data-driven 459

Boolean network inference. 460

Methods 461

Boolean networks and dynamics 462

A Boolean network on nodes {1, . . . , n} is a function f : Bn → Bn mapping binary 463

vectors of dimension n to themselves, where B = {0, 1} is the Boolean domain. For each 464

node i ∈ {1, . . . , n}, we write fi : Bn → B the i-th component of f , which is the Boolean 465

function of node i. A Boolean vector x ∈ Bn specifies a Boolean state for each 466

component of the network, and is called a configuration. 467

The influence graph of a Boolean network f is a directed signed graph, noted G(f),
whose vertices are the nodes of the Boolean network. The influence graph captures the
dependencies of Boolean functions, and corresponds to union of Jacobian matrices of f

on configuration. Formally, there is a positive edge for node j to i (j
+−→ i ∈ G(f)) in

the influence graph if and only if there exists a configuration x ∈ Bn such that

fi(x1, . . . ,xj−1, 0,xj+1, . . . ,xn) < fi(x1, . . . ,xj−1, 1,xj+1, . . . ,xn)

There is a negative edge for node j to i (j
−−→ i ∈ G(f)) in the influence graph if and

only if there exists a configuration x ∈ Bn such that

fi(x1, . . . ,xj−1, 0,xj+1, . . . ,xn) > fi(x1, . . . ,xj−1, 1,xj+1, . . . ,xn)

Note that it is possible to have both edges j
+−→ i and j

−−→ i in a same influence graph. 468

If it is the case for G(f), then the Boolean network f is said to be non-monotone. 469

Otherwise, f is locally monotone. 470

A trajectory of a Boolean network f is a sequence of configurations x1, · · · ,xk that 471

can be computed according to a given update mode. For instance, the synchronous mode 472
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computes trajectories such that any two successive configurations xm,xm+1 are such 473

that xm+1 = f(xm); the fully asynchronous update mode computes trajectories such 474

that any two successive configurations xm,xm+1 differ on only one node i, and verify 475

that xm+1
i = fi(x

m). The most permissive update mode [24] computes all the 476

trajectories that are binarised from any asynchronous trajectory of multivalued and 477

quantitative model compatible with the Boolean network. In general, it allows much 478

more trajectories than synchronous and (general) asynchronous modes, which fail to 479

capture trajectories of different class of quantitative systems, including incoherent feed 480

forward loops [24]. 481

A configuration x ∈ Bn is a stable state if f(x) = x, i.e., it is a fixed point of f . A 482

configuration x ∈ Bn belong to an attractor of f under a given update mode whenever 483

for any possible trajectory from x to another configuration y, there exists a trajectory 484

going back to x. Stable states are particular cases of attractors. 485

Inference of Boolean networks from influence graph and 486

dynamical properties 487

From an influence graph G and a set of dynamical properties, the tool BoNesis [51, 52], 488

available at github.com/bnediction/bonesis, allows inferring all the locally-monotone 489

Boolean networks f having their influence graph enclosed by G, i.e., G(f) ⊆ G, and that 490

posses the input dynamical properties. The dynamical properties supported by 491

BoNesis include the existence of most permissive trajectories between partially 492

specified configurations, and stable state properties of (partially specified) 493

configurations. A partially specified configuration specify a Boolean state for a subset of 494

nodes. In that case, BoNesis is free to complete the unspecified nodes with any 495

Boolean state. BoNesis also allows specifying optimization objectives to filter solutions, 496

notably to enumerate only sparser models, i.e., with the smallest influence graphs. 497

We employed BoNesis to infer Boolean networks from scRNA-Seq scBoolSeq 498

binarisation (see next section), and to generate artificial Boolean networks which 499

possess multi-stability and branching behaviors from randomly generated scale-free 500

influence graph (S1 Code). 501

Case Study: Early Born Retinal Neurons 502

We performed the analyses on the scRNA-Seq dataset of lane 1 of GSE122466. The 503

main steps hereafter denoted in paragraphs refer to the analyses performed in their 504

homonymous Jupyter Notebooks provided in S1 Code. 505

Highly Variable Gene Selection For this part we used the software STREAM [15]. 506

We took the count matrix of the first replicate (Identified with the prefix Lane_1 in 507

their index). We performed standard quality control, with the same parameters as the 508

analyses of the original article. Cells expressing less than 200 genes where discarded, as 509

well as genes expressed in less than 3 cells. We selected the 1648 most highly variable 510

genes and appended to them the two marker genes which were reported in the article 511

but were not selected as being highly variable (Rbp4, Pou4f2 ). 512

Retinal Differentiation Clustering and Metadata In this part we took the 513

aforementioned Highly Variable Genes (HVGs) and performed the scBoolSeq 514

distribution learning with θ = 0.75 to have a higher the amount of binarised 515

observations on bimodal genes. We then used the instance to binarise the HVGs across 516

all cells. We then identified cells matching the markers described in the original article. 517

About 25% of all cells where labelled in this process. Subsequently, cells matching more 518
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than one set of markers were discarded. The only pair of phenotypes which presented 519

more than a couple ambiguous cells where Amacrine Cells (AC) and Horizontal Cells 520

(HC) which had 23 cells matching both marker signatures. This was expected given that 521

cellular types where defined with only two markers and one of them Prox1 is shared. 522

Having a larger (and preferably disjoint) set of markers could resolve this ambiguity. 523

We used scanpy [17] to perform louvain clustering on the log pseudocount HVGs, with 524

the number of neighbours set to 15. With this analysis, 11 distinct clusters were found. 525

A small cluster of cells (cluster 10 in the notebooks) was discarded as it was determined 526

to be an unknown cluster of unknown Retinal Ganglion Cell-like U/RGC. Our Boolean 527

analysis also found this isolated cluster to express signature genes of RGCs. Finally, 528

clusters where labelled using the majority label of cells whose Boolean identity matched 529

the markers. Most clusters had absolute majorities (85%, 98%) except for one (Cluster 530

3 had 53.84% of cells voting NB2, and 34.61% voting AC: It was labelled NB2). These 531

labels where used as metadata in order to perform trajectory inference. 532

Trajectory Inference Using STREAM we performed trajectory inference, using the 533

aforementioned cluster labels as metadata. We obtained a well-defined trifurcating 534

trajectory which is distinguishable on two dimensions. We set the root (starting point) 535

to be Retinal Progenitor Cells (RPCs) and the three final points to be the Cones, 536

Retinal Ganglion Cells (RGC), and Amacrine Cells respectively. Cells associated with 537

these terminal nodes of the inferred graph where taken to be representative of their 538

corresponding phenotypes. For the two groups of neuroblasts (NB1 and NB2), cells 539

within the two quartiles Q(.25), Q(.75) of the root node’s pseudotime where chosen as 540

representative of these transient phenotypes. This yields a total of 133 RGC, 79 NB1, 541

17 NB2, 109 AC, 78 RPC, and 69 Cones that were used to infer the Boolean model. 542

Binarisation of scRNA-Seq data We binarised all HVGs across all cells and 543

employed the metadata obtained from the previous trajectory inference step to retrieve 544

cell groups. We defined meta-observations by aggregating each group, using the mode 545

as summary statistic. We further selected genes having non-null variance, which 546

reduced the original 1650 genes to only 1426. We only retained binarised genes present 547

in the mouse regulon database DoRothEA [40], that is 1263. 548

Boolean Model Inference : Having our binarised observations and selected genes, 549

we defined our GRN using DoRothEA [40]. DoRothEA gives a confidence score to 550

each one of the interactions, based on the number of supporting evidence in different 551

sources. In decreasing order, these levels are: A,B,C,D,E. We decided to exclude 552

interactions with low supporting evidence, so we filtered out levels D,E and considered 553

only levels A,B,C. With these filtered interactions, we extracted the core TF-TF 554

network which we define to be the biggest strongly connected component of the 555

departing graph. This core TF-TF network has 157 nodes. We then obtained the 556

subgraph induced by these 157 core transcription factors and the binary genes 557

comprising our observations. This yielded a GRN with 728 nodes. We tested and found 558

that this GRN was not weakly connected. We extracted the biggest weakly connected 559

component which contained 633 nodes. This weakly connected component was given to 560

BoNesis as the domain of Boolean Networks to consider, and specified the desired 561

trajectories and stable states using the specification given in S7 Fig. 562

Supporting information 563

S1 Fig. Example of distribution of rate parameters and dropout 564

probabilities learnt by scBoolSeq. Left: Distribution of rate parameters λ 565
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estimated on dataset GSE122466. Right: Dropout probabilities computed between the 566

minimum and maximum values of a sample from the parametric distributions 567

corresponding to the same dataset. Each line corresponds to an individual gene. 568

S2 Fig. Mean - Variance and Mean - DropOutRate relationships of HVGs 569

using PROFILE parametric distibutions for bimodal and unimodel genes on 570

selected scRNA-Seq datasets. Each green point represents the average of 100 571

independent replicates with the same sample size as the reference dataset. 572

S3 Fig. Correlation between higher moments of real pseudocount data and 573

from data generated from distributions and dropout model learnt by 574

scBoolSeq on selected scRNA-Seq datasets 575

S4 Fig. Position of cells classified using scBoolSeq binarisation and 576

prior-knowledge markers. t-SNE and UMAP projections trained on the top 25 577

principal components (log pseudocount matrix). Colours indicate cell identities 578

determined by binary value of known markers (see Table 1). 579

S5 Fig. Result of trajectory reconstruction using STREAM on early-born 580

retinal neurons scRNA-Seq data. UMAP projection of the first 25 principal 581

components to 3 dimensions (only 2 are shown). The cluster labels are determined by 582

the majority label of unambiguous cell types identified via scBoolSeq binarisation. 583

S6 Fig. Influence graph of sparser Boolean networks learnt using BoNesis 584

from qualitative dynamics of case study obtained with scBoolSeq 585

binarisation. This graph comprises 184 nodes forming Boolean networks that can 586

reproduce the Boolean dynamics of early-born retinal neurons differentiation process. 587

This graph is a subgraph of the input DoRothEA TF-TF interaction database. Green 588

arrows indicate positive regulations, red arrows indicate negative regulations. Nodes 589

without predecessors indicate nodes with constant function in the Boolean networks. 590

Thus, the Boolean state of these nodes is identical in all stable states, and is in opposite 591

state in the precursor state RPC. 592

S7 Fig. Python code snippet showing usage of BoNesis for the inference of 593

Boolean networks for the retinal differentiation case study. See S1 Code for 594

full pipeline. 595

S1 Code. Code and notebooks for reproducing binarisation case study and 596

synthetic data generation scBoolSeq source code is available at 597

github.com/bnediction/scBoolSeq. The Python package can be installed using conda or 598

pip; see link for instructions. Notebooks for demonstrating scBoolSeq usage and 599

reproducing the case studies presented in this paper can be visualised and downloaded 600

at nbviewer.org/github/bnediction/scBoolSeq-supplementary. 601
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of Ensembles of Boolean Networks for Cell Fate Decision. Lecture Notes in 770

Computer Science (including subseries Lecture Notes in Artificial Intelligence and 771

Lecture Notes in Bioinformatics). 2020;12314 LNBI:193–209. 772

doi:10.1007/978-3-030-60327-4 11. 773

53. Stoll G, Viara E, Barillot E, Calzone L. Continuous time boolean modeling for 774

biological signaling: application of Gillespie algorithm. BMC Systems Biology. 775

2012;6:1–18. doi:10.1186/1752-0509-6-116. 776

54. Müssel C, Hopfensitz M, Kestler HA. BoolNet-an R package for generation, 777

reconstruction and analysis of Boolean networks. Bioinformatics. 778

2010;26(10):1378–1380. doi:10.1093/bioinformatics/btq124. 779
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S1 Fig. Example of distribution of rate parameters and dropout probabilities learnt by
scBoolSeq. Left: Distribution of rate parameters λ estimated on dataset GSE122466. Right: Dropout
probabilities computed between the minimum and maximum values of a sample from the parametric
distributions corresponding to the same dataset. Each line corresponds to an individual gene.
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S2 Fig. Mean - Variance and Mean - DropOutRate relationships of HVGs using PROFILE
parametric distibutions for bimodal and unimodel genes on selected scRNA-Seq datasets.
Each green point represents the average of 100 independent replicates with the same sample size as the
reference dataset.
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S3 Fig. Correlation between higher moments of real pseudocount data and from data
generated from distributions and dropout model learnt by scBoolSeq on selected scRNA-
Seq datasets
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S4 Fig. Position of cells classified using scBoolSeq binarisation and prior-knowledge markers.
t-SNE and UMAP projections trained on the top 25 principal components (log pseudocount matrix).
Colours indicate cell identities determined by binary value of known markers (see Table 1 of main text).
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S5 Fig. Result of trajectory reconstruction using STREAM on early-born retinal neurons
scRNA-Seq data. UMAP projection of the first 25 principal components to 3 dimensions (only 2 are
shown). The cluster labels are determined by the majority label of unambiguous cell types identified via
scBoolSeq binarisation.
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S6 Fig. Influence graph of sparser Boolean networks learnt using BoNesis from qualitative dynamics of case study
obtained with scBoolSeq binarisation. This graph comprises 184 nodes forming Boolean networks that can reproduce the Boolean
dynamics of early-born retinal neurons differentiation process. This graph is a subgraph of the input DoRothEA TF-TF interaction
database. Green arrows indicate positive regulations, red arrows indicate negative regulations. Nodes without predecessors indicate nodes
with constant function in the Boolean networks. Thus, the Boolean state of these nodes is identical in all stable states, and is in opposite
state in the precursor state RPC.
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# Domain of possible Boolean networks from input GRN

pkn = bonesis.domains.InfluenceGraph(

pkn_biggest_weakly_connected_component , maxclause =8, allow_skipping_nodes=True , canonic=False

)

# BoNesis setup

bo = bonesis.BoNesis(pkn , binarised_data)

# trajectory from RPC to NB1 and then to NB2

~bo.obs("RPC") >= ~bo.obs("NB1") >= ~bo.obs("NB2")

# trajectory from NB2 to stable state Cones

~bo.obs("NB2") >= bo.fixed(~bo.obs("Cones"))

# trajectory from NB2 to stable state RGC

~bo.obs("NB2") >= bo.fixed(~bo.obs("RGC"))

# trajectory from NB2 to stable state AC

~bo.obs("NB2") >= bo.fixed(~bo.obs("AC"))

# explain dynamics of as much as genes as possible

bo.maximize_nodes ()

# rely on the state changes of as less as genes as possible

bo.maximize_strong_constants ()

# give access to the genes whose dynamics is necessary to obtain the dynamical properties

view = bonesis.NonStrongConstantNodesView(bo, mode="optN")

S7 Fig. Python code snippet showing usage of BoNesis for the inference of Boolean networks for the
retinal differentiation case study. See S1 Code/3. - Retinal Differentiation BN Inference for full pipeline.
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