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Abstract
The amphibian family Leptodactylidae is divided into three sub-families: Leiuperinae, Leptodactylinae, and Paratelma-
tobiinae. Host-defense peptides (HDPs) present in the skins of frogs belonging to the Leptodactylinae have been studied 
extensively, but information is limited  regarding peptides from Leiuperinae species. Peptidomic analysis of norepinephrine-
stimulated skin secretions from the Tungara frog Engystomops pustulosus (Leiuperinae) collected in Trinidad led to the 
isolation and structural characterization of previously undescribed pustulosin-1 (FWKADVKEIG KKLAAKLAEELAK-
KLGEQ), [Q28E] pustulosin-1 (pustulosin-2), and pustulosin-3 (DWKETAKELLKKIGAKVAQVISDKLNPAPQ). The 
primary structures of these peptides do not resemble those of previously described frog skin HDPs. In addition, the secre-
tions contained tigerinin-1EP (GCKTYLIEPPVCT) with structural similarity to the tigerinins previously identified in skin 
secretions from frogs from the family Dicroglossidae. Pustulosin-1 and -3 adopted extended α-helical conformations in 25% 
trifluoroethanol–water and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine 
micelles). Pustulosin-1 and -3 displayed cytotoxic activity against a range of human tumor-derived cell lines (A549, MDA-
MB-231, and HT29), but their therapeutic potential for development into anti-cancer agents is limited by their comparable 
cytotoxic activity against non-neoplastic human umbilical vein endothelial cells. The peptides also displayed weak antimi-
crobial activity against Escherichia coli (MIC = 125 µM) but were inactive against Staphylococcus aureus. Tigerinin-1EP 
was inactive against both the tumor-derived cells and bacteria.

Keywords  Host-defense peptide · Cytotoxic · Frog skin · Pustulosin · Tigerinin

Introduction

The amphibian family Leptodactylidae, currently com-
prising 232 recognized species, is divided into three sub-
families—Leiuperinae (101 species), Leptodactylinae (117 
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species), and Paratelmatobiinae (14 species) (Frost 2023). 
Within the sub-family Leiuperinae, the genus Engystomops, 
sometimes referred to as foam frogs (Hedges et al. 2019), 
comprises nine species. The Tungara frog Engystomops pus-
tulosus (formerly Physalaemus pustulosus) is a small (snout-
to-vent length between 25 and 35 mm) nocturnal species that 
adapts well to a range of environments. It is distributed in 
eastern and southern Mexico, south and east through Central 
America to Colombia, Venezuela, and Guyana with a popu-
lation in Trinidad and Tobago (Weigt et al. 2005; Murphy 
et al. 2018; Frost 2023). However, evidence derived from 
analysis of mitochondrial DNA suggests significant genetic 
divergence between lineages across this wide range (Pröhl 
et al. 2010). The frog is listed by the International Union for 
Conservation of Nature’s Red List of Threatened Species 
as a species of least concern (IUCN Amphibian Special-
ist Group 2020), but it has been observed that pollutants at 
agricultural sites have resulted in decreased egg numbers, 
reduced hatching success, and undersized/smaller body size 
and male secondary sexual characteristics which may lead 
to population declines (Orton et al. 2022). The species is 
also susceptible to the emergent infectious disease chytridi-
omycosis caused by the fungal pathogen Batrachochytrium 
dendrobatidis that is contributing to worldwide amphibian 
population declines (Rodríguez-Brenes et al. 2016).

The Tungara frog is best known for the ability of the male 
to produce an extremely stable bio-foam nest to provide a 
protective environment for fertilized eggs and larvae. The 
nest serves as a defense against pathogenic microorganisms, 
parasites, and predators, prevents desiccation, and reduces 
UV damage (Brozio et al. 2021). The foam contains a mix-
ture of six proteins, termed ranaspumins (Rsn-1 to Rsn-6), 
in major abundance. Rsn-3 to Rsn-6 are lectins, and Rsn-2 
exhibits substantial detergent-like surfactant activity neces-
sary for production of foam and Rsn-1 is structurally similar 
to proteinase inhibitors of the cystatin class (Fleming et al. 
2009).

Ever since the pioneering studies of the group of 
Erspamer from the 1960s (Anastasi et  al. 1964), it has 
been known that skin secretions from a range of frog spe-
cies contain high concentrations of peptides with a diverse 
spectrum of biological activities (Xu and Lai 2015; Con-
lon et al. 2019). Of particular note are host-defense pep-
tides (HDPs) with varying degrees of ability to inhibit the 
growth of clinically relevant pathogenic bacteria and fungi 
that are believed to be a component of the frog’s system of 
innate immunity (Varga et al. 2019). They may also possess 
the ability to permeabilize mammalian cells and act syn-
ergistically with toxins in the secretions to deter ingestion 
by predators (Raaymakers et al. 2017). The present study 
describes the purification, structural characterization, con-
formational analysis, and cytotoxic activities of three struc-
turally related HDPs, termed pustulosin-1, -2, and -3, from 

norepinephrine-stimulated skin secretions of E. pustulosus 
whose amino acid sequences do not resemble those of previ-
ously described frog skin peptides together with a peptide, 
termed tigerinin-1EP, with structural similarity to the tiger-
inins previously identified in skin secretions of frogs from 
the family Dicroglossidae.

Materials and methods

Collection of skin secretions

Adult E. pustulosus (n = 10, sex not determined) were col-
lected at Waterville Estate, Santa Cruz, Trinidad in March 
2022. The animals were sampled in the field and subse-
quently released unharmed at the site of capture. Each frog 
was injected via the dorsal lymph sac with norepinephrine 
hydrochloride (40 nmol/g body weight) and placed in dis-
tilled water (100 mL) for 15 min. The collection solution 
was acidified by addition of concentrated hydrochloric acid 
(0.5 mL) and immediately frozen.

Purification of the peptides

The solutions containing the secretions were pooled and 
passed at a flow rate of approximately 2 mL.min−1 through 
6 Sep-Pak C-18 cartridges (Waters Associates, Milford, MA, 
USA) connected in series. Bound material was eluted with 
acetonitrile/water/trifluoroacetic acid (TFA) (70.0:29.9:0.1, 
v/v/v) and freeze-dried. The material was redissolved in 
0.1% (v/v) TFA/water (2 mL) and injected onto a semi-
preparative (1.0  cm × 25  cm) Vydac 218TP510 (C-18) 
reversed-phase HPLC column (Grace, Deerfield, IL, USA) 
equilibrated with 0.1% (v/v) TFA/water at a flow rate of 
2.0 mL.min−1. The concentration of acetonitrile in the elut-
ing solvent was raised to 21% (v/v) over 10 min and to 63% 
(v/v) over 60 min using linear gradients. Absorbance was 
monitored at 214 nm and fractions (1 min) were collected 
using a BioRad 2110 fraction collector. The peptides within 
the peaks designated 1–4 that were present in major abun-
dance were subjected to further purification by successive 
chromatographies on (1.0 cm × 25 cm) Vydac 214TP510 
(C-4) and (1.0 cm × 25 cm) Vydac 208TP510 (C-8) columns. 
The concentration of acetonitrile in the eluting solvent was 
raised from 21 to 56% (v/v) over 50 min for peak 1 and from 
28 to 63% for peaks 2–4. The flow rate was 2.0 mL.min−1 
and fractions were collected by hand.

Structural characterization

MALDI-TOF mass spectrometry was carried out using an 
UltrafleXtreme instrument (Bruker Daltonik, Bremen, Ger-
many). Full details of the procedure, including calibration of 
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the instrument with peptides of known molecular mass in the 
1–4 kDa range, have been provided previously (Conlon et al. 
2018). The accuracy of mass determinations was < 0.02%. 
The primary structures of the purified peptides were deter-
mined by automated Edman degradation using an Applied 
Biosystems model 494 Procise sequenator (Applied Biosys-
tems, Courtaboeuf, France).

Peptide synthesis

Tigerinin-1EP, pustulosin-1, and pustulosin-3 were sup-
plied in crude form by PEPMIC (Suzhou, China) and were 
purified to near homogeneity (> 98% purity) by reversed-
phase HPLC on a (2.2  cm × 25  cm) Vydac 218TP1022 
(C-18) column equilibrated with acetonitrile/water/TFA 
(35.0/64.9.9.9/0.1, v/v/v) at a flow rate of 6 mL.min−1. The 
concentration of acetonitrile was raised to 63% (v/v) over 
60 min using a linear gradient. Absorbance was measured 
at 214 nm and the major peak in the chromatogram was 
collected manually. The identities of the peptides were con-
firmed by electrospray mass spectrometry.

Conformational analysis

Secondary structure predictions were obtained using the 
AGADIR program which predicts the helical behavior of 
monomeric peptides based on the helix/coil transition theory 
(Muñoz and Serrano 1994). Physicochemical characteris-
tics of pustulosin-1 and pustulosin-3 were calculated using 
the peptide analysis tools available on the HELIQUEST 
server (Gautier et al. 2008). Circular dichroism spectra were 
obtained using a MOS-500 CD spectrometer (BioLogic, 
Seyssinet-Pariset, France) as previously described (Pantic 
et al. 2019). Pustulosin-1 and pustulosin-3 were dissolved in 
(A) water, (B) 2,2,2-trifluoroethanol (TFE)–water (25% and 
50%, v/v), (C) 10 mM sodium dodecyl sulfate (SDS) aque-
ous solution, and (D) 10 mM dodecylphosphocholine (DPC) 
aqueous solution at a final concentration of 0.25 mg mL−1. 
Three scans were accumulated and averaged for each sample. 
All spectra were corrected by subtraction of the background 
obtained for each peptide-free solution. Circular dichroism 
measurements are reported as mean residue molar elliptic-
ity ([θ]MRE (deg cm2 dmol−1). Peptide secondary structure 
was estimated using the online CD spectra deconvolution 
server Dichroweb (Whitmore and Wallace 2004; 2008; 
Miles et al. 2022). For Dichroweb analysis, the secondary 
structure content was obtained by averaging the results given 
by CONTINLL (Provencher and Glockner 1981; Van Stok-
kum et al. 1990), CDSSTR (Compton and Johnson 1986; 
Sreerama and Woody 2000), and SELCON3 (Sreerama and 
Woody 1993, Sreerema et al. 1999) deconvolution programs. 
The α-helical content was also calculated using the Forood 
formula: 100 × ([θ]222/max[θ]222) with max[θ]222 =  − 40,000 

[1 − (2.5/n)], where n = number of amino acid residues 
(Forood et al. 1993).

Antimicrobial and cytotoxicity assays

Reference strains of microorganisms were purchased from 
the American Type Culture Collection (Rockville, MD, 
USA). Minimum inhibitory concentration (MIC) of syn-
thetic pustulosin-1, pustulosin-3, and tigerinin-1EP against 
a clinically relevant Gram-positive bacterium, ampicillin-
resistant Staphylococcus aureus (ATCC 12600), and a clini-
cally relevant Gram-negative bacterium, Escherichia coli 
(ATCC 35218) were measured by the standard microdilution 
method mandated by the Clinical Laboratory and Standards 
Institute (CLSI 2018) as previously described (Barran et al. 
2020). Control incubations were carried out in parallel with 
increasing concentrations of vancomycin for S. aureus and 
ampicillin for E. coli to monitor the validity and reproduc-
ibility of the assays.

Cytotoxicities against A549 human non-small cell lung 
adenocarcinoma cells (RRID:CVCL_0023), MDA-MB-231 
human breast adenocarcinoma cells (RRID:CVCL_0062), 
HT-29 human colorectal adenocarcinoma cells 
(RRID:CVCL_0320), and human umbilical vein endothe-
lial cells (HUVEC) (RRID:CVCL_2959) were measured 
as previously described (Manzo et al. 2015). The effects of 
the peptides (1–100 μM) on cell viability following a 24 h 
incubation were determined by measurement of ATP con-
centrations using a CellTiter-Glo Luminescent Cell Viability 
assay (Promega Corporation, Madison, WI, USA). The LC50 
value was taken as the mean concentration of peptide pro-
ducing 50% cell death in a minimum of three independent 
experiments.

Hemolytic activity of the peptides in the concentration 
range 37.5–300 µM against freshly prepared erythrocytes 
from male NIH male Swiss mice (Harlan Ltd, Bicester, 
UK) was determined as previously described (Barran et al. 
2020). The LC50 value was taken as the mean concentration 
of peptide producing 50% hemolysis in three independent 
incubations.

Results

Purification of the peptides

The pooled skin secretions, after partial purification on Sep-
Pak C-18 cartridges, were chromatographed on a Vydac 
C-18 semipreparative reversed-phase HPLC column (Fig. 1). 
The prominent peaks designated 1–4 were collected and sub-
jected to further purification. Subsequent structural analysis 
showed that peak 1 contained tigerinin-1EP, peak 2 pustulo-
sin-1, peak 3 pustulosin-2, and peak 4 pustulosin-3 together 
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with a small amount (< 10%) of pustulosin-4. Pustulosin-1 
and -2 and tigerinin-1EP were purified to near homogene-
ity (purity > 98% as assessed by a symmetrical peak shape, 
Edman degradation, and mass spectrometry) by further chro-
matography on semipreparative Vydac C-4 and Vydac C-8 
columns. The methodology is illustrated by the purification 
of tigerinin-1EP on a Vydac C-4 column (Fig. 2A) and a 
Vydac C-8 column (Fig. 2B). Attempts to separate the very 
hydrophobic pustulosin-3 from the pustulosin-4 impurity by 
HPLC were not successful, and so, the peptide mixture was 
subjected to automated Edman degradation.

Structural characterization

The primary structures of tigerinin-1EP, pustulosin-1, and 
pustulosin-2 were established without. Ambiguity by auto-
mated Edman degradation and their complete primary struc-
tures are shown in Table 1. The molecular masses of the pep-
tides, determined by MALDI-TOF mass spectrometry, were 
consistent with the proposed structures and are also shown 

Fig. 1   Reversed-phase HPLC on a semipreparative Vydac C-18 col-
umn of pooled skin secretions from ten E. pustulosus frogs collected 
in Trinidad after partial purification on Sep-Pak C-18 cartridges. The 
dashed line shows the concentration of acetonitrile in the eluting sol-
vent. The peaks denoted 1–4 contain host-defense peptides that were 
purified further

Fig. 2   Purification to near homogeneity of tigerinin-1EP on A a semipreparative Vydac C-4 column and B a semipreparative Vydac C-8 column. 
The arrowheads show where peak collection began and ended. The dashed line shows the concentration of acetonitrile in the eluting solvent

Table 1   Primary structures 
and molecular masses of 
the peptides isolated from 
norepinephrine-stimulated skin 
secretions from E. pustulosus 

Peak number refers to Fig.  1. [MH+]exp denotes the experimentally determined molecular mass and 
[MH+]calc denotes the mass calculated from the proposed structures. *Pustulosin-4 was not obtained in pure 
form but was detected as an impurity in pustulosin-3

Peak no. Peptide Primary structure [MH+]exp [MH+]calc

1 Tigerinin-1EP GCKTYLIEPPVCT 1421.7 1421.7
2 Pustulosin-1 FWKADVKEIGKKLAAKLAEELAKKLGEQ 3141.6 3141.8
3 Pustulosin-2 FWKADVKEIGKKLAAKLAEELAKKLGEE 3142.6 3142.8
4 Pustulosin-3 DWKETAKELLKKIGAKVAQVISDKLNPAPQ 3318.7 3318.9
4 Pustulosin-4* DWKADAKDILKKIGAKIAQVISDKLNPAPQ 3274.6 3274.8
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in Table 1. The data indicate that tigerinin-1EP was isolated 
in the oxidized (disulfide-bridged) form. Analysis of the pus-
tulosin-3 isolate by mass spectrometry revealed the presence 
of a minor component of molecular mass [MH+] = 3274.6 
in addition to the major component with [MH+] = 3318.7. 
During Edman degradation of the peptide mixture, addi-
tional phenylthiohydantoin derivatives in low abundance 
were detected during cycles corresponding to positions 4, 
5, 8, 9, and 17 in the peptide. Single phenylthiohydantoin 
derivatives were detected during all other cycles. Although 
it was not possible to identify the different amino acids in 
the minor component with certainty, the most probable pro-
posed sequence DWKADAKDILKKIGAKIAQVISDKLN-
PAPQ corresponds exactly with the C-terminal domain of 
a 71-amino-acid hypothetical protein GD081_021018 (Gen 
Bank Accession KAG8549497.1) predicted from the nucleo-
tide sequence of an E. pustulosus gene. Consequently, the 
minor component present in the pustulosin-3 preparation is 
provisionally termed pustulosin-4. The observed molecular 
mass of the peptide is consistent with its proposed structure 
(Table 1). A protein–protein NCBI BLAST search (National 
Center for Biotechnology Information) indicated a lack of 
sequence identity of the pustulosins with HDPs from any 
other frog species in the database.

Conformational analysis

The AGADIR program predicts that pustulosin-1 has a very 
strong propensity for adopting a α-helical conformation 
between residues 3 and 24, and pustulosin-3 has a similar 
very high probability of forming a stable α-helix between 

residues 2 and 26. This prediction is supported by measure-
ment of circular dichroism spectra in a range of solvents. 
Figures 3 and 4 show the spectra of pustulosin-1 and pustu-
losin-3 in water, 25% TFE–water, 50% TFE–water, 10 mM 
SDS aqueous solution, and 10 mM DPC aqueous solution, 
respectively.

Both peptides adopt similar behavior. In water, far-UV 
CD spectra exhibited a small positive maximum around 
187 nm (Figs. 3 and 4) characteristic of a low content of 
ordered conformation. For pustulosin-1, the presence of a 
minimum around 203 nm and a negative shoulder between 
215 and 230 nm indicated the presence of a helical con-
formation. In agreement with the strong helical forming 
propensities of pustulosin-1 and -3, the addition of a rela-
tively small amount of TFE, a solvent known for its ability to 
stabilize secondary structure, was sufficient to stabilize the 
helical conformation as shown by the similarity of the spec-
tra recorded in the presence of 25% and 50% TFE (Figs. 3 
and 4). In these media, CD spectra showed typical α-helical 
features with a positive peak at ~ 190 nm and double negative 
minima around 208 and 222 nm. The percentage of α-helix 
estimated from the mean residue ellipticity at 222 nm and 
of helical content using the Dichroweb server (Table 2) was 
around 65% for both peptides. This corresponds to about 
18 residues out of 27 for pustulosin-1 and 20 out of 30 for 
pustulosin-3.

In the presence of membrane mimics, the increase of 
the mean residue molar ellipticities’ values at 192 nm 
showed that the peptides were even more structured than 
in the presence of 25% of trifluoroethanol. When incubated 
with micelles composed of negatively charged surfactants 

Fig. 3   Circular dichroism 
spectra of pustulosin-1 at room 
temperature and at a concentra-
tion of 0.25 mg.mL.−1 in A 
water (black solid line), B 25% 
(v/v) TFE–water (black dashed 
line), C 50% (v/v) TFE–water 
(grey dashed line), D 10 mM 
dodecylphosphocholine (DPC) 
aqueous solution (grey dotted 
line), and E 10 mM sodium 
dodecyl sulfate (SDS) aqueous 
solution (black dotted line)
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(SDS), the two pustulosins exhibited 85% α-helical con-
formation. In the presence of zwitterionic micelles (DPC), 
the ellipticities’ values of the negative peaks of the α-helix 

(208 and 222 nm) were higher than in the presence of SDS 
suggesting a decrease in the helical content. Although the 
α-helical contents calculated by the Forood formula were 

Fig. 4   Circular dichroism 
spectra of pustulosin-3 at room 
temperature and at a concentra-
tion of 0.25 mg.mL.−1 in A 
water (black solid line), B 25% 
(v/v) TFE–water (black dashed 
line), C 50% (v/v) TFE–water) 
(grey dashed line), D 10 mM 
dodecylphosphocholine (DPC) 
aqueous solution (grey dotted 
line), and E 10 mM sodium 
dodecyl sulfate (SDS) aqueous 
solution (black dotted line)

Table 2   Prediction of secondary 
structure content from CD 
spectra of pustulosin-1 and 
pustulosin-3

Values are given in percents
[Θ]222 corresponds to the % helicity calculated using the Forood formula (Forood et  al. 1993). TFE 
2,2,2-trifluoroethanol
DPC dodecylphosphocholine, SDS sodium dodecyl sulfate

Peptide Medium Method helix β sheet turns random

Pustulosin-1 water Dichroweb 21 14 14 52
[Θ]222 20 – – –

25% TFE Dichroweb 71 7 3 18
[Θ]222 63 – – –

50% TFE Dichroweb 66 5 7 22
[Θ]222 60 – – –

10 mM DPC Dichroweb 83 2 2 14
[Θ]222 68 – – –

10 mM SDS Dichroweb 86 1 3 12
[Θ]222 83

Pustulosin-3 water Dichroweb 7 14 10 70
[Θ]222 11 – – –

25% TFE Dichroweb 66 4 8 22
[Θ]222 60 – – –

50% TFE Dichroweb 67 4 8 21
[Θ]222 63 – – –

10 mM DPC Dichroweb 77 2 3 16
[Θ]222 65 – – –

10 mM SDS Dichroweb 84 2 5 14
[Θ]222 85 – – –
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lower (68% for pustulosin-1 and 65% for pustulosin-3), the 
analysis using Dichroweb indicated that both peptides con-
tained a very high level of helical structure (83 and 77%, 
respectively). Such differences have been reported when 
peptide adopts helical conformations comprising non-
canonical helical structures (Banerjee and Sheet 2017). 
Thus, in the presence of membrane mimics, pustulosin-1 
contained a helix of about 23 residues and pustulosin-3 a 
helix ranging from 23 to 25 residues consistent with con-
formations predicted using the AGADIR program.

Antimicrobial and cytotoxicity activities

Incubation of synthetic replicates of pustulosin-1 and pus-
tulosin-3 for 24 h with a range of human tumor-derived 
cells and with HUVEC resulted in a decrease of cell 
viability determined by measurement of ATP concentra-
tions. Table 3 displays the potencies of the peptides (LC50 
values) revealing that pustulosin-3 exhibited greater cyto-
toxic activity than pustulosin-1 in all cases. The hemo-
lytic activity of both peptides against mouse erythrocytes 
was low (LC50 > 300 µM) (Table 3). Tigerinin-1EP lacked 
cytotoxicity against the human cell lines at concentrations 
up to 100 µM and against erythrocytes at concentrations 
up to 300 µM.

Pustulosin-1 and pustulosin-3 showed relatively weak 
growth inhibitory activity against a reference strain of 
the Gram-negative bacterium E. coli (MIC = 125 µM) but 
were inactive against an ampicillin-resistant strain of the 
Gram-positive bacterium S. aureus at concentrations up to 
125 µM. The corresponding MIC value for ampicillin was 
2.5 µg.mL−1 (E. coli) and 2.5 µg.mL−1 for vancomycin (S. 
aureus). A synthetic replicate of tigrerinin-1EP did not 
inhibit the growth of either E. coli or S. aureus at concen-
trations up to 125 µM.

Discussion

The study has described the purification and structural 
characterization of HDPs in norepinephrine-stimulated 
skin secretion of E. pustulosus, a species belonging to 
the sub-family Leiuperinae within the family Leptodac-
tylidae. Unlike frogs from the Leiuperinae, frogs from 
the sub-family Leptodactylinae have been investigated 
extensively for the presence of HDPs in skin secretions. 
Ocellatins, named after the first species, Leptodactylus 
ocellatus in which they were detected (Nascimento et al. 
2004; Conlon 2008), have been isolated from a range of 
species belonging to the genus Leptodactylus [reviewed 
in (Barran et al. 2020)]. Additionally, members of confor-
mationally flexible, glycine/leucine-rich plasticin family 
have been purified from skin secretions of Leptodactylus 
pentadactylus (Sousa et al. 2009) and Leptodacylus lati-
ceps (Conlon et al. 2009). Plasticin-L1 from L. laticeps 
lacks antimicrobial activity but displays cytokine-medi-
ated immunomodulatory properties stimulating production 
of the proinflammatory cytokines from murine peritoneal 
macrophages (Scorciapino et  al. 2013). A comparison 
of the amino acid sequence of the pustulosins from E. 
pustulosus with the ocellatins of known structure (Sup-
plementary Fig. 1) reveals very little sequence similarity. 
Among the ocellatins, only residues G1, D4, K7, K11, 
and K20 have been strongly conserved (Marani et  al. 
2020). Of these, only residues K7 and K11 are present in 
the pustulosins. The genus Pleurodema is also included 
in sub-family Leiuperinae (Frost 2023) and the structure 
of a glycine–leucine-rich antimicrobial peptide termed 
thaulin-1 (GNLLGGLLRPVLGVVKGLTGGL) has been 
predicted from the nucleotide sequence of a cDNA from 
a Pleurodema thaul skin library (Marani et al. 2017). In a 
related study, antimicrobial peptides termed somuncurin-1 
(FIIWPLRYRK), somuncurin-2 (FILKRSYPQYY), and 
thaulin-3 (NLVGSLLGGILKK) were identified in the skin 
of the frog Pleurodema somuncurense (Cancelarich et al. 
2020). As with the ocellatins, these peptides show little or 
no sequence similarity with the pustulosins.

Cationic α-helical peptides, including those isolated 
from frog skin secretions (Conlon et al. 2019), have been 
recognized as agents with therapeutic potential for devel-
opment into anti-cancer agents (Chen et al. 2023). The 
ability of pustulosin-3 to produce death in vitro of non-
small cell lung adenocarcinoma A549 cells, breast adeno-
carcinoma MDA-MB-231 cells, and colorectal adenocarci-
noma HT-29 cells during a 24 h incubation (LC50 values in 
the range 9–50 µM) together with its low hemolytic activ-
ity against mouse erythrocytes (LC50 > 300 µM) is encour-
aging in this regard. However, in common with other cyto-
toxic peptides isolated from amphibians (Mechkarska et al. 

Table 3   Cytotoxicities of peptides from E. pustulosus against lung 
adenocarcinoma A549 cells, breast adenocarcinoma MDA-MB-231 
cells, colorectal adenocarcinoma HT-29 cells, human umbilical vein 
endothelial cells (HUVEC), and mouse red blood cells (RBC)

Data show mean LC50 values (μM) ± S.E.M. The values in parenthe-
ses show the % hemolysis of mouse erythrocytes at 300 μM concen-
tration for the three peptides and the % cell death of HT-29 cells for 
pustulosin-1 at 100 μM concentration

Cell Pustulosin-1 Pustulosin-3 Tigerinin-1EP

A549 34 ± 1 9 ± 1  > 100
MDA-MB-231 73 ± 1 26 ± 1  > 100
HT-29  > 100 (41%) 50 ± 2  > 100
HUVEC 60 ± 2 17 ± 1  > 100
RBC  > 300 (17%)  > 300 (40%)  > 300 (0%)
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2014; Serra et al. 2014; Conlon et al. 2023), the peptide 
shows little selectivity for cancer cells. The LC50 value 
against non-neoplastic human umbilical vein endothelial 
cells of pustulosin-3 was 17 µM (Table 3). Future studies 
will address the design of analogs of the pustulosins with 
improved potencies and specificities.

Like the pustulosins investigated in this study, most 
ocellatins studied to-date exhibit relatively weak anti-
microbial activity (minimum inhibitory concentration, 
MIC ≥ 50 µM) against Gram-negative bacteria and are inac-
tive (MIC > 100 µM) against Gram-positive bacteria. Ocel-
latin-4 from L. ocellatus (Nascimento et al. 2007) and ocell-
atin-3N from Leptodactylus nesiotus (Barran et al. 2020) are 
exceptions to this generalization displaying broad-spectrum 
antimicrobial activity as well as moderately high hemo-
lytic activity. With very few exceptions, frog skin HDPs, 
including the ocellatins (Gomes et al. 2018), are cationic 
(molecular charge at pH 7 between + 1 and + 5), contain 
a high proportion of hydrophobic residues, and adopt an 
amphipathic α-helical conformation in a membrane mimetic 
environment (Kabelka and Vácha 2021). Pustulosin-1 and 
-3 exhibit a molecular charge of + 2 at pH 7 and, as shown 
in Fig. 5, Schiffer–Edmundson wheel representations of 
the predicted helical regions of the peptides (Schiffer and 
Edmundson 1967) constructed using the HeliQuest web-
server (Gautier et al. 2008) indicate that both peptides are 
associated with a hydrophobic domain comprising several 
Leu, Ile, and Val residues that facilitates binding to (phos-
pho)lipids in the bacterial cell membrane and an extensive 
hydrophilic domain comprising multiple Lys, Glu, and Asp 
residues that promotes loss of integrity of the membrane 
(Vineeth Kumar and Sanil 2017). The occurrence of so many 
negatively charged amino acids in the > 1000 amphibian 
HDPs listed in the APD3 Antimicrobial Peptide Database 
(Wang et al. 2016) is unusual. The presence of these Glu 
and Asp residues in pustulosin-1 and -3 may account for 

relatively weak growth inhibitory activity of the peptides 
against the bacteria tested. The bacterial cell membrane is 
rich in anionic phospholipids, such as phosphatidylglycerol, 
and negatively charged lipopolysaccharides (Strahl and Err-
ington 2017), so that the presence of multiple Glu and Asp 
residues in the peptides may inhibit binding and/or insertion 
into the membrane. Nevertheless, the pustulosins, possibly 
acting in concert with other toxic compounds in the skin 
secretions, may at least contribute to the observed antimicro-
bial activity of the bio-foam used by the male frogs to nest 
build (Brozio et al. 2021). The possibility remains open that 
the pustulosins play additional roles such an involvement 
in the reproductive strategy of the frog as in the case of 
the peptide pheromone splendipherin produced in the skin 
of Litoria splendida (Wabnitz et al. 2000) and Leptodacty-
lus Aggression Stimulating Peptide (LASP) present in skin 
secretions of Leptodactylus fallax that provokes male–male 
aggressive interactions at the onset of the breeding season 
(King et al. 2005).

The term tigerinin refers to a group of small (11–13 
amino acid residues), structurally related peptides that 
contain an intramolecular disulfide bond and two or more 
proline residues. The tigerinins were first identified in the 
Indian frog Hoplobatrachus tigerinus (formerly Rana tige-
rina) (Sai et al. 2001) in the family Dicroglossidae but have 
subsequently been isolated from skin secretions of Hop-
lobatrachus rugulosus (Ojo et al. 2011), Hoplobatrachus 
occipitalis (McLaughlin et al. 2016), and Fejervarya canc-
rivora (Song et al. 2009) also in the family Dicroglossidae. 
The primary structures of these peptides are compared with 
tigerinin-1EP in Fig. 6. In common with tigerinin-1EP, most 
tigerinins studied to-date lack antimicrobial and hemolytic 
activities but incubation of tigerinin-1R from H. rugulosus 

Fig. 5   A Schiffer–Edmundson wheel representation of the predicted 
α-helical domains of pustulosin-1 and pustulosin-3. Basic amino 
acids are shown in blue, acidic amino acids in red, and strongly 
hydrophobic amino acids in yellow

Fig. 6   A comparison of the primary structure of tigerinin-1EP from 
E. pustulosus with tigerinins isolated from frogs belonging to the 
family Dicroglossidae. Conserved residues are shown in red. Gaps 
denoted by * are inserted into the sequences to maximize sequence 
similarity
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with murine peritoneal macrophages and human peripheral 
blood mononuclear cells increased production of the anti-
inflammatory cytokine IL-10 (Pantic et al. 2014). In addi-
tion, tigerinin-1R (Ojo et al. 2011) and tigerinin-1O from H. 
occipitalis (McLaughlin et al. 2016) potently stimulated the 
release of insulin from BRIN-BD11 clonal β-cells and tiger-
inin-4O stimulated the release of glucagon-like peptide-1 
from GLUTag enteroendocrine cells (McLaughlin et al. 
2016). Clearly, further studies are warranted to assess the 
therapeutic potential of tigerinin-1EP as an immunomodula-
tory agent in patients with endotoxemic complications such 
as severe sepsis and septic shock and/or as an antidiabetic 
agent in patients with Type 2 diabetes.

Conclusion

The study has expanded our knowledge of the naturally 
occurring host-defense peptides by showing that skin secre-
tions a frog belonging to the sub-family Leiuperinae contain 
cytotoxic peptides of a type not previously described. The 
work has clinical implications in that one particular pep-
tide, pustulosin-3, has therapeutic potential as a template 
for development into an anti-cancer agent. However, further 
structure–activity studies are required to design analogs that 
show greater selectivity for tumor-derived cells compared 
with non-neoplastic cells.
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