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Systems using Multiobjective Genetic Algorithms 
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Abstract –This paper explores the use of Multiobjective Genetic algorithms (MOGAs) for the 
Integrated Optimal Design (IOD) of complex heterogeneous power systems in electrical 
engineering. IOD consists in simultaneously optimizing architecture, structural characteristics, 
sizing of the constitutive elements and energy management in complex systems. An example of 
IOD is given in the paper through the case of a traction device for electric vehicles. It is shown 
that MOGAs lead on the one hand to the optimization of given objectives for performance 
improvement and on the other hand, provide a better understanding of system behavior through 
the analysis of Pareto-optimal solutions.  
 
Keywords: Genetic Algorithms, Multiobjective Optimization, Integrated Optimal Design, Power 
Systems, Electric Vehicles. 

 

I. Introduction 

The determination of innovative industrial solutions 
for complex energetic systems requires the improvement 
of design tools and methodologies. In particular, systems 
should be considered globally ensure optimal 
performance. Indeed the local optimization of system 
elements independently taken, does not guarantee the 
optimality of the whole. In most cases, couplings 
existing between the elements directly affect global 
efficiency. On the other hand, several aspects have to be 
considered at the same level in the design process such 
as the choice of the system architecture, the element 
sizing and the energy management strategy. These 
features are strongly coupled to global performance.  

Integrated Optimal Design (IOD) in electrical 
engineering aims at simultaneously optimizing the 
architecture, the element sizing and the energy 
management in heterogeneous power systems. IOD 
necessary leads to complex mixed variable optimization 
problems with multiple constraints and objectives. 
Classical optimization methodologies used in the past to 
solve this kind of problems have shown strong 
limitations. Today, MultiObjective Genetic Algorithms 
(MOGAs) offer interesting insight in the context of IOD 
and global optimization. In this paper, we illustrate the 
application of MOGAs to a typical example of IOD 
which consists in determining optimal traction devices 
for electric vehicles (EVs). 

The paper is organized as follows. In the first part, 
the concept of IOD is introduced and the main features 
are given. Secondly, a brief overview of MOGAs is 
carried out and their adaptation to the IOD context is 
discussed. Finally, the last part is devoted to the 
optimization of traction devices for EVs capable of 
fulfilling urban or road driving cycles. 

II. Integrated Optimal Design in Electrical 

Engineering 

II.1. The issue of Energetic System Design 

The design of electrical energetic systems represents 
a societal challenge. The increasing demands in terms of 
energetic needs and efficiency requirements for 
energetic systems have to be fulfilled. Instead of current 
devices which are generally oversized in relation to their 
power needs, innovative systems should now be 
designed as accurately as possible to avoid energetic 
wastes. The difficulties related to the optimization of 
such systems are related to several features: 

- these systems are characterized by a high level of 
complexity, being composed of multiple subsystems 
whose architecture and dimensioning have to be 
determined to reach optimal performance 

- these systems are strongly heterogeneous, multi-
domain composed of elements with different physical 
types (electric, mechanic, thermal) and multi-time scaled 
models. This leads the designer to raise the question of 
the level of representation for the system elements and 
the corresponding model types (analytical, numerical 
such as algebra-differential equations or finite element 
models) in relation to a compromise associated with 
accuracy and computational costs. 

Because of these main difficulties, the design process 
was simplified in the past using a sequential approach 
consisting in: 

- finding the most suitable system architecture 
- optimizing element sizing 
- finding an optimal energy management strategy for 

the system 
However, as indicated in Fig. 1, couplings existing 

between these factors and their influence on global 
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system efficiency require evolution toward a global 
optimization approach. We name this approach as 
Integrated Optimal Design (IOD) since it aims at 
concurrently optimizing architecture, element sizing and 
energy management in a given system.  
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Fig. 1. Design Process Approaches. 
(a) Sequential Design (b) Integrated Optimal Design 

II.2. The Electric Vehicle Example 

“Pure” electric vehicles (PEV’s) are typical examples 
of complex heterogeneous energetic systems. They are 
composed of several elements including the frame and 
the electrical traction device, itself constituted by an 
energy supply (battery) and a static power converter 
which controls the electrical motor. Power is transferred 
to the wheel through a reducer and a mechanical 
transmission line. The synoptic of the traction system of 
a PEV is given in Fig. 2. 
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Fig. 2. Synoptic of the traction system of a “pure” electric vehicle 

 
Note that the architecture of the electrical traction 

device can be more complicated in the case of hybrid 
vehicles (i.e. vehicles with multiple energy supplies) and 
multi-motor solutions (i.e. one motor per wheel for 
example).  

The electrical vehicle designer is confronted with 
choices related to traction device architecture, element 
type and size (i.e. batteries, static converters, motors). 
These choices are strongly linked to geometrical and 
mechanical characteristics of the vehicle (i.e. frame 
mass and volume, drag coefficient) and to its capacity to 
fulfill typical driving cycles (i.e. urban, road or highway 
cycles). Fig. 3 illustrates some coupling elements in a 
PEV.  

II.3. Integrated Optimal Design 

The main difficulty of the IOD approach resides in 
the choice of a suitable level of description for each 
element in the system. Models with low description 
levels can lead to an inaccurate system behavior and/or 
will not offer sufficient degrees of freedom for the 

objective improvement and the design constraint 
fulfillment. On the other hand, models with high 
description levels will be of greater complexity and will 
considerably affect the computational time and/or the 
difficulty to identify relevant design variables in the 
optimization process. A good compromise between 
accuracy and complexity should be done which often 
implies the exploitation of a priori information and 
knowledge by the designer and the specialists of each 
element in the system. 

Moreover, the corresponding optimization problems 
resulting from this approach are rather complex. In 
particular, they are usually characterized by:  

- an important number of design variables which can 
be discrete (combinatorial parameters related to system 
architecture, constitutive elements or materials) and/or 
continuous (sizing parameters and energetic variables).  

- multiple constraints intrinsic to each subsystem or 
related to the associative compatibility between 
elements in the system.  

- several objectives to optimize, typically energetic 
criteria (efficiency, energetic consumption, energetic 
losses), sizing factors (volume, mass) or economic costs. 

In this context, Multiobjective Genetic Algorithms 
(MOGAs) seems to be well suited to solve this kind of 
problems. 
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Fig. 3. Example of coupling elements in a PEV 

III. Multiobjective Optimization with 

Genetic Algorithms 

III.1. Multiobjective Optimization Problems and 
Pareto Optimality  

Multiobjective optimization seeks to simultaneously 
minimize n objectives where each of them is a function 
of a vector X of m parameters (decision variables or 
design variables). These parameters may also be subject 
to k inequality constraints, so that the optimization 
problem may be expressed as:  
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For this kind of problem, objectives typically conflict 

with each other. Thus, in most cases, it is impossible to 
obtain the global minimum at the same point for all 
objectives. Therefore, the problem has no single optimal 
solution but a set of efficient solutions representing the 
best objective trade-offs. These solutions consist of all 
design variable vectors for which the corresponding 
objective vectors cannot be improved in any dimension 
without disimprovement in another. They are known as 
Pareto-optimal solutions in reference to the famous 
economist [1]. Mathematically, Pareto-optimality can be 
expressed in terms of Pareto dominance. Consider two 
vectors X and Y from the design variable space. Then, 
X is said to dominate Y if and only if : 
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All design variable vectors which are not dominated 

by any other vector of a given set are called non-
dominated regarding this set. The design variable 
vectors that are non-dominated over the entire search 
space are Pareto-optimal solutions and constitute the 
Pareto-optimal front. We illustrate in Fig. 4, the Pareto-
dominance of any solution X relative to a given solution 
Y in the objective space, for a two dimensional case 
(n=2).   
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Fig. 4. Pareto-dominance – Two-objective minimization 

III.2. Multiobjective Optimization Methods and 
Decision Making 

Multiobjective optimization techniques aim to 
provide the designer with one or multiple Pareto-optimal 
solutions. They can be separated into three different 
classes [2], [3] in relation to the decision making 
process associated with the optimization procedure. The 
most popular multiobjective approaches are given in 
Fig. 5. 

 
• A priori approaches: The Decision Maker combines 

the differing objectives into a global quality function. 
Thus, the multiobjective problem is transformed into a 
standard scalar one which can be solved using 
traditional optimization methods. This approach 

includes aggregation based methods such as 
weighting-sum or fuzzy logic techniques, ε–constraint 
procedure and goal attainment method [2]-[5]. 
Although they have been widely used in the past, a 
priori techniques have various drawbacks. In 
particular, in one optimization run, they provide a 
single Pareto-optimal solution. Moreover, this solution 
is very sensitive to the objective scalarization and 
decision parameter choice (e.g. weighting coefficients, 
target values) associated with the Decision Maker 
preferences. 

• Progressive and sequential approaches: The 
optimization process and the Decision Making are 
intertwined. The preferences of the Decision Maker 
are sequentially updated during the optimization 
process. Note that a priori approaches can be 
iteratively used as progressive approaches as well as 
traditional techniques such as the lexicographic 
method. Contrary to many references (e.g. [3]), we 
choose to classify this method in progressive and 
sequential approaches because it requires multiple 
optimization steps to obtain the solution of a given 
problem 

• A posteriori approaches: these approaches provide in 
a single optimization run, a set of Pareto-optimal 
solutions (Decision Maker can choose among that set). 
They essentially include population-based 
optimization methods such as Multiobjective 
Evolutionary Algorithms (e.g. Genetic Algorithms) 
[6]-[21] or Multiobjective Particle Swarm 
Optimization techniques [22]-[24]. 
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Fig. 5. Classification of multiobjective optimization methods 

III.3. Multiobjective Genetic Algorithms 

Since the mid-1990s, there has been a growing 
interest in solving multiobjective problems by Genetic 
Algorithms. Extensive research in this field has been 
carried out because of the GA capacity to approximate 
the set of optimal trade-offs in a single run by 
investigating multiple solutions in parallel. More than 
2000 papers related to this topic are referenced in the 
EMOO Website [36]. A classification of MOGAs is 
given in Fig. 6. MOGA approaches can be divided into 
two groups according to whether they exploit or not the 
concept of Pareto dominance. Most efficient algorithms 
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are Elitist MOGAs associated with niching and 
clustering methods.  

 
Elitist MOGAs use an external population, namely 

archive, which preserves non-dominated individuals in 
the population. In these algorithms, a fitness assignment 
procedure is generally used to assess the individual 
adaptation as a function of their Pareto-dominance. At 
each generation, individuals (parents) selected from the 
archive (and/or from the population) are crossed and 
mutated to create new individuals (children). The 
population of children and the archive are merged to 
assess the non-dominated set of the next generation. If 
the number of non-dominated individuals is higher than 
the size of the archive, a clustering method is used to 
preserve most representative solutions and eliminate 
others in order to keep a constant archive size. Note that 
a niching procedure [10] is used in the selection process 
when competing individuals have a similar fitness or a 
similar Pareto ranking. The skeleton of an Elitist MOGA 
is given in Fig. 7 and the characteristics of the most 
popular algorithms of this class are summarized in 
Table 1.  
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Fig. 6. MOGA classification 
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POPULAR ELITIST MOGAS 
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III.4. Description of the NSGA-II 

We specifically present the second version of the Non-
dominated Sorting Genetic Algorithm (NSGA-II) which 
has been used to show the interest of MOGAs in the 
IOD context. NSGA-II is based on the principles 
previously given. It determines all successive fronts in 
the population (the best front corresponding to the non-
dominated set). Moreover, a crowding distance called I-
distance estimates the density of solutions surrounding 
each individual on a given front. The computation of the 
I-distance is given by the following pseudocode [20] : 
 

For each individual belonging to a front F of size Fl =  

Set 0)( =distanceiI  

For each objective n 
Sort individual of the front F using the nth objective 

value 
Set ∞=−= distancedistance lII )1()1(  

For i = 2 to l-1  

  
)1()(

)1()1(
)()(

nn

nn
distancedistance flf

ifif
iIiI

−

−−+
+=  

 
where fn(i) denotes the n-th objective relative to the i-th 
individual of the front F. Note that contrary to [20], 
implicit scalarization of the objectives is carried out by 
normalizing the I-distance with the maximum objective 
deviation. An example of I-distance computation is 
illustrated in Fig. 8 for a two objective problem. 

The I-distance density estimator index is then used in 
the selection and the clustering procedures:  

- in a tournament, if individuals belong to the same 
front, the selected one has the greater I-distance.  

- at the end of a generation, individuals of the global 
population (created children and archive elements of the 
current generation) are sorted in relation to their Pareto 
rank (i.e. the front they belong to, the first front being 
composed of non-dominated individuals). Then 
individuals of each front are resorted according their  
I-distance by giving preference to individuals of greater 
I-distance (extreme solutions of the front and isolated 



 

individuals). Finally, the new archive is obtained by 
truncation from this widened population considering the 
previous sorts. It should be noted that one particularity 
of the NSGA-II resides in the fact that the archive is 
diversified since it can contain non-dominated 
individuals as well as individuals of the successive 
dominated fronts. Finally, we implement the NSGA-II 
with the self-adaptive recombination scheme described 
in [21] to increase its robustness. 
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Fig. 8. Example of I-distance computations 

III.5. Design constraint handling in MOGAs 

Some specificities of the IOD approach require the 
adaptation of standard MOGAs to take all design 
constraints into account. Contrary to mathematical 
problems, constraints cannot be simultaneously 
evaluated but have to be sequentially computed. For 
instance, it is obvious that it is not possible to determine 
constraints and objectives related to a given system if 
one of its elements is itself non-feasible. Consequently, 
for each IOD problem, a constraint graph can be 
established characterizing the couplings and the 
sequence of the design constraints in the system model. 
A constraint graph example is given in Fig. 9 as an 
illustration. Note that the constraint graph can be 
decomposed into different levels to facilitate its analysis. 
Only constraints belonging to the same level can be 
computed in parallel. Note that objectives are also 
subject to this representation and can figure in the 
constraint graph.  
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Fig. 9. Illustration of the constraint graph concept 

 

In the example of Fig. 9, it can be seen that the 
objectives are computable if the constraints g1 to g6 are 
fulfilled, the last constraint being assessable in parallel. 
The higher the number of levels in the graph, the more 
difficult the problem. Furthermore, in IOD problems, 
constraints can be divided into two groups according to 
whether their determination is done before or after the 
system simulation (main cost in CPU time). On the one 
hand, presimulating constraints are mainly “local” 
relative to specific elements of the system or to their 
association in the system. On the other hand, 
postsimulating constraints are essentially “global” 
concerning the whole system. As underlined before, the 
sequential computation of the constraint increases the 
difficulty of the optimization problem. Violated 
constraints act as a barrier with regard to the 
optimization algorithm which is in addition “blind” 
towards non-computable constraints of the higher levels. 
In practice, when a constraint g(X) cannot be 
computable (because it depends on another violated 
constraint at a lower level in the graph) we chose to 
assign for its value the maximum penalty (death penalty) 
i.e. g(X) = +∞. To take into account the design 
constraints in MOGAs, the Pareto-dominance rule can 
be modified as follows: 

- if two individuals are non-feasible, the Pareto-
dominance relative to these individuals is applied in the 
constraint space. 

- if two individuals are feasible, the Pareto-dominance 
relative to these individuals is applied in the objective 
space. 

- if one individual is feasible and the other non-
feasible, the feasible individual dominates the non-
feasible individual. 

In this manner, Pareto ranking tournaments between 
individuals include the constraint minimization as well 
as the objective minimization. Note in the case of the 
NSGA-II, for non-feasible individuals belonging to a 
given front in the constraint space, the computation of 
the I-distance density estimator is carried out in relation 
to all constraints. In this way, niching will occur in the 
two different spaces (i.e. constraint and objective space) 
and diversity will be preserved to avoid premature 
convergence. 

IV. The PEV Design Model 

There is an important volume of research carried out 
in the field of electric vehicles. Most advanced solutions 
from the technical and economic point of view are 
hybrid structures which combine an internal combustion 
engine with an electrical motor associated with storage 
elements (batteries or supercapacitors). PEVs suffer 
from problem related to the embedded energy storage. 
In effect, the ratio Energy/Mass is significantly lower for 
standard electrochemical accumulators in comparison 
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with those of petroleum fuels. Therefore, even if PEVs 
are theoretically energetically more efficient than 
standard fuel vehicles (FVs), they are strongly penalized 
by a higher mass. Improvement of PEVs in relation to 
FVs implies the reduction of the mass disadvantage of 
electrochemical accumulators. On the other hand, some 
innovative and interesting solutions can emerge by using 
an IOD approach. As a case study, we investigate the 
IOD of traction devices for PEVs. The considered 
system corresponds to the example of Fig. 2. It is 
composed of a lithium-ion battery, a power DC-AC 
converter and a permanent magnet synchronous 
electrical motor associated with a reducer of fixed ratio. 
In the next subsections, we specify some particularities 
concerning the different models and technological data 
with regard to the parameterization of the system.  

IV.1. The Electrochemical Lithium-ion Accumulator 
Model  

The battery is made up of elementary cells associated 
in series and in parallel, the total number of cells being 
obtained by multiplying the number of cells in series (ns) 
with the number of branch (np) in parallel. Each cell can 
be represented by an internal resistance R0 in series with 
an internal voltage E0. This electromotive force depends 
on the state of charge SOC of the cell which evolves 
during the driving cycle of the vehicle following 
Peukert’s law [26]. For technological reasons, the 
electromotive force is bounded by two values 

determined by the manufacturer ( max
00

min
0 EEE ≤≤ ). The 

SOC variations (∆SOC) are related to the current Icell 
provided (or absorbed during the braking phases) by the 
cell and to the charge capacity C3 (defined for a 
discharge in 3 hours at constant current I3 = C3/3).  
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where k denotes the time step index, ∆tk the 
corresponding time variation, and n is the Peukert 
coefficient (typically n = 1.1 for lithium-ion cells). Note 
that the accumulator cell state of charge is maximum at 
the beginning of the driving cycle (SOC = 1 and 

max
00 EE = ). Three different kinds of lithium-ion cells of 

the SAFT manufacturer [35], whose characteristics are 
given in Table II, are considered in the IOD process. 
“Partial” objectives related to the battery are computed 
from these data. Accumulator losses Pbat are represented 
by Joule losses in the internal resistance of each cell. 
They are deduced from the R0 value and from the Icell 
current obtained during the driving cycle. The battery 
mass is evaluated from the mass of one cell and from the 
total number of cells ( spcell nnn ×= ). 

TABLE II 

CHARACTERISTICS OF THE ACCUMULATOR CELLS IN THE IOD 

PROCESS 

Cell 
Type 

C3 
Capacity 

Internal  
Resistance R0 

Mass 
Internal Voltage 

min
0E   max

0E  

1 39 A.h 7 mΩ 1.05 kg 2.7 V 4 V 
2 25 A.h 16.75 mΩ 0.75 kg 2.7 V 4 V 

3 16 A.h 23 mΩ 0.68 kg 2.7 V 4 V 

IV.2. The DC-AC Converter Model  

The electric motor control is ensured with a DC-AC 
converter operating at the Fswitch switching frequency. 
The voltage inverter is composed of six IGBT power 
semiconductors in association with antiparallel diodes to 
guarantee current reversibility. Inverter losses Pinv are 
computed by means of an analytical model which takes 
into account switching losses Pswitch and conduction 
losses Pcond [27] 

 

( ) ( )[ ]

( )

( ) �
�

�

�
++

��
�

�
++

+
=

+= �
+

4
 

 
2

6

d 
2

6

2
max

max

I
cc

I
bb

aa
F

WW
F

P

offon

offon
offon

switch

offon
switch

switch

π

θθθ
π

πϕ

ϕ

 (4) 

with 
	


	
�
�

++=

++=

2

2

 
coffcoffoffoff

concononon

IcIbaW

IcIbaW
 (5) 

 
where Imax denotes the maximum value of the motor 
current and aon, bon, con (respectively aoff, boff, coff) are 
interpolating coefficients obtained from the turn-on  
(respectively the turn-off) energy curve given by the 
manufacturer data sheets. Conduction losses depend on 
the modulation factor ma, on the maximum motor 
current Imax and on the technological characteristics of 
the diodes (VD(on), RD(on)) and IGBTs (VCE(on), RIGBT(on)) :  
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and batma VVm 22=  (8) 

 
where ϕ  represents the phase between the motor current 
Im and the motor voltage Vm and where Vbat is the battery 
voltage.  

A thermal model of the inverter based on classical 



 

state-circuit representation allows us to deduce the 
temperature on the IGBT-diode pack module and the 
thermal resistance of the radiator RTH_RAD, to operate at 
the specified temperature conditions (in particular, the 
module temperature must not exceed 100°C). This 
model is represented in Fig. 10. Finally, the radiator 
mass Mrad, which approximates the inverter mass, is 
deduced from its length lrad and the mass density per unit 
length (typically 14.58 kg for a AAVID 
THERMALLOY OSX43 [37]). For this radiator, the 
length lrad can be obtained from the thermal resistance 
RTH_RAD by interpolating manufacturer data (see Fig. 11).  
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Fig. 10. The inverter thermal model 
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Fig. 11. The Radiator Sizing 

 
TABLE III 

CHARACTERISTICS OF THE INVERTER POWER MODULES IN THE IOD 

PROCESS 

 MII200-12A4 MII300-12A4 MII400-12E4 

Ic25 270 330 420 
RIGBT(on) 7 mΩ  6.2 mΩ 5.3 mΩ 
VCE(on) 1.5 V 1.3 V 1.0 V 
RD(on) 3.4 mΩ 2.4 mΩ 1.3 mΩ 
VD(on) 1.3 V 1.3 V 1.3 V 

aon 0.075 0.01 0.002 
bon 0.0 3.25e-5 -8.33e-6 
con 6.66e-7 3.97e-7 3.83e-7 
aoff 0.005 0 0 
boff 1.33e-4 1.65e-4 1.083e-4 
coff 0 -7.5e-8 -2.77e-8 

Vmax 1200 V 1200 V 1200 V 
RTH1 0.11 K/W 0.088 K/W 0.078 K/W 
RTH2 0.003 K/W 0.002 K/W 0.002 K/W 
CTH1 0.4 J/K 0.5 J/K 0.52 J/K 

CTH2 0.93 J/K 1.16 J/K 1.29 J/K 

 
Three kinds of IGBT modules of the IXYS 

manufacturer [36] (referenced MII200-12A4, MII300-
12A4, and MII400-12E4) are considered in the IOD 
process. The characteristics of these modules are given 
in Table 3. 

IV.3. The Synchronous Motor Model  

The sizing model of the Permanent Magnet 
Synchronous Motor (PMSM) is developed in [27], [28]. 
It depends on geometrical characteristics (number p of 
pole pairs, number Nspp of slots per pole per phase, 
radius / length ratio Rrl = rs/lr) as well as electro-
mechanical features (current density Js, base speed Ωb 
and corresponding base torque Tb). 
 
• The Geometric Model  

 
The geometrical characteristics of the motor are 

illustrated in Fig. 12. The bore radius rs is related to the 
fundamental value of the air gap magnetic flux density 
(B1g) and to the slot depth / bore radius ratio Rdr as 
follows:  
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where Kr is the slot filling coefficient. B1g is computed 
from the magnet properties (relative permeability 
µr = 1.05 and remanent induction Br = 1.1 T for NdFeB 
magnet) and from the electrical half pole width αm: 
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where lm/g’ represents the ratio between the magnet 
thickness and the air gap corrected by the carter 
coefficient.  

In these two equations, the unknown variables are set 
to typical values, i.e. Rdr = 0.25, Kr =0.5, αm � 1.31 (i.e. 
75°) and lm/g’ = 3.5 and the Carter coefficient is 
neglected (Kc � 1 which implies g’=g). 

The magnet width wm can be deduced as follows:  
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The motor air gap g is calculated from the empiric 

relation:   
 

 rls Rrg /003.0001.0 +=  (12) 

 
Tooth and slot widths are then obtained from the bore 

radius and the number of slots per pole per phase Nspp:   
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and the slot depth dS is given by:  
 
 sdrS rRd =  (14) 

 
Finally, the yoke thickness is obtained as follows: 
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Fig. 12. The geometrical characteristics of the PMSM 

 
where the yoke induction is set to 1.6 T and where the 
maximum magnetic flux density in the air gap is 
evaluated from the following relation:  
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• The Circuit Model  
 

Electric circuit parameters of the motor are computed 
from the previous geometric variables. In particular, 
leakage inductances Ll are obtained from [34] by 
considering a trapezoidal slot as shown in Fig. 13.  
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2 cssspprl NpNlL λµ=  (17) 

 
where Ncs denotes the number of conductors per slot and 
where the λs coefficient depends on the slot geometrical 
characteristics (18), (19).  
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Fig. 13. The geometrical characteristics of a slot 

 
The main inductance Lp, the magnetic flux Φs and the 

stator resistance Rs can be also expressed as a function 
of Ncs:  
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where the winding factor K1b is approximated with:  
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Note also that the motor current Im can be obtained 

from the current density Js as follows:  
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To compute all circuit parameters of the motor, the 

number of conductors Ncs in one slot has to be 
determined. It should be designed in order to fulfill 
operating conditions at the base point. The permanent 
magnet machine must be able to provide the base torque 
Tm = Tb under supply voltage Vm = Vb at the electrical 
pulsation ω = ωb. By setting Ncs = 1 in (17), (20), (21), 
(22) and (24) circuit variables Ll1, Lp1, Φs1 Rs1 and Im1 
can be obtained from one conductor per slot, which 
implies:  
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By considering the electrical diagram of the motor 

(see Fig. 14), operating at the base point (Tb, ωb), the 
number of conductors in one slot can be deduced as:   
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Fig. 14. The electrical diagram of the motor at the base point 

 
Geometric and electric parameters are thus 

completely known. Indeed, the motor behavior can be 
characterized in transient mode using a standard model 
based on Park’s equations. The control law allows 
reaching torque and speed specifications required by the 
driving cycle. According to the system working point, 
the motor is controlled with a strategy operating in 
maximum torque per ampere capacity or in defluxing 
mode.  

 
• The Thermal Model   

 
An additional circuit model simulates the thermal 

behavior of the motor in each of these constitutive 
elements (slot copper, slot insulation, stator yoke) in 
relation to their thermal characteristics (thermal 
resistance and capacity of the corresponding elements) 
and external conditions (i.e. the surrounding 
temperature). This model is coupled to electromagnetic 
phenomena through iron and Joule losses (see Fig. 15).  
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Fig. 15. The thermal model of the motor 

 
The thermal resistances of this model are given by the 

following equations: 
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where the geometric variables R1, R2, R3, R4, R5, R6 and 
R7 are defined as follows: 
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Note that in these equations, thermal conductivities of 
the materials (copper, insulator, iron and aluminum) are 
set to typical values, i.e. λcu=5 W.m−1.K−1, λins=0.25 
W.m−1.K−1, λyo=25 W.m−1.K−1, and λca=180 W.m−1.K−1. 
 

The thermal capacities associated in the circuit model 
are calculated as follows: 
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where the mass density per volume and the thermal 
capacity of the materials are:   

 

KJ.kg 883kg.m 2787

KJ.kg 460kg.m 7650

KJ.kg 1250kg.m 1200
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• The calculation of motor masses 

 
The motor masses are obtained from the volume of 

each constitutive element and the corresponding mass 
density. The rotor volume Vrotor can be approximated by: 
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where rrotor = rs – g – lm and dR = d y. The corresponding 
mass is given by: 

 
 ironrotorrotor VM ρ=  (42) 

 
The stator volume Vstator is composed of yoke and 

teeth volumes  
 
 yoketeethstator VVV +=  (43) 

 
which can be approximated as follows:  
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The corresponding mass is  
 

 ironstatorstator VM ρ=  (45) 

 
Total iron mass in the motor can be expressed by 

summing stator and rotor iron masses 
 

 rotorstatoriron MMM +=  (46) 

 
Similarly, the magnet volume is given by:  
 

 ( )22)( rotorsprmagnet rgrKlV −−= π  (47) 

 
and the corresponding mass by: 

 
 magnetmagnetmagnet VM ρ=  (48) 

 
with ρmagnet = 7400 kg.m−3. Finally, the copper mass is 
deduced from the copper volumes in the slots and in the 
winding heads  
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which implies 
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The total mass of the motor is then approximated by 

summing the masses related to each component:  
 
 magnetcopperironmotor MMMM ++=  (51) 

 
• The calculation of motor losses  

 
Iron losses in the motor are divided into hysteresis 

(PHyst) and eddy current losses (PEddy) in the stator parts 
(i.e. yoke and teethes). Iron losses in the yoke are 
computed as follows [29] :    
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where the filling coefficient Kp equals 0.833 and where 
KH and αp are empiric factors depending on the material 
(typically KH = 52 and αp = 0.06 for FeSi 3%). 
Similarly, iron losses in the teethes can be deduced by 
the following relation  
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Global iron losses in the motor are then obtained by 
summing all hysteresis and eddy current losses:  
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Joule losses Pj are also added to compute total motor 

losses:  
 



 

 23 msj IRP =  (56) 

 
Note that copper losses have been neglected in this 

model.  

IV.4. The Reducer Model 

The mechanical transmission line of the vehicle from 
the motor to the wheels is assimilated to a reducer of 
fixed ratio. A simplified analytical model [30] allows us 
to assess the reducer sizing variables from the 
dimensioning torque Tred, the reducer ratio N, and the 
corresponding partial objectives (i.e. the reducer loss 
Pred and Mred mass). The structure of the reducer is 
illustrated in Fig. 16.  
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Fig. 16. The reducer model 

 
The sizing variables of the reducer are defined by the 

empiric relations: 
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The mass of the reducer is approximated by:  
 

 ( ) ( )( )ππρ 2 
2

2 
1 redredred 5.05.0 ddbKM +=  (60) 

 
where ρred = 7650 kg.m−3 and Kred = 1.1.  

 
The reducer efficiency ηred is assumed to be linear, 

varying from 1 to 0.9 for reducer ratios between 1 and 
10. Reducer losses are computed as follows:  
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IV.5. The Dynamic Model of the PEV 

To simulate the vehicle’s course, the torque and the 
speed imposed on the electrical motor must be known. 

These variables depend on the driving cycle of the 
vehicle i.e. on particular speed profiles and specific road 
profiles (typically a road slope during the course) as 
well as external conditions (wind velocity, road-wheel 
grip). A mechanical model [31] simulates the efforts 
imposed on the vehicle (i.e. vehicle weight, drag force, 
acceleration force) and provides torque and speed 
references for the electrical traction motor.  

The global effort Ftot, imposed to the vehicle on its 
course, can be decomposed as follows:  

 
 accgravaerorolltot FFFFF +++=   (62) 

 
The rolling resistance Froll force is defined as:  
 

 MgfF rroll =  (63) 

 
where g denotes the acceleration of gravity, M 
represents the total mass of the vehicle (including a 
frame mass of 800 kg) and fr is the rolling resistance 
coefficient. For radial tires, this coefficient is 
approximated as a function of the vehicle speed V, by 
the empiric relation 

 
  000051.00051.0  Vfr +=  (64) 

 
By neglecting the wind velocity, the aerodynamic 

drag force Faero essentially depends on the vehicle 
speed, on the drag coefficient Cx and on the vehicle 
section area S  
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  VSCF xairaero ρ=  (65) 

 
where the density of air ρred is set to 1.293 kg.m−3. Note 
that we use typical values for Cx and S (S = 2 m2 and 
Cx = 0.4) 

 
The force due to the gravity Fgrav is expressed 

according to the road slope θ :  
 

 θsinMgFgrav =  (66) 

 
and the acceleration force Facc is classically defined as:  
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dV
MFacc =  (67) 

 
Finally, torque and speed on the mechanical 

transmission can be deduced from the global effort on 
the vehicle and the corresponding velocity  
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where r denotes the wheel radius (typically r = 0.33 m) 

IV.6. The Driving Cycle 

Some driving cycles established by the INRETS (the 
French national institute for transport and safety 
research) corresponds to typical cycles obtained from 
statistical studies on real vehicle courses [32]. Road 
profiles can be considered flat (i.e. θ =0) without loss of 
generality. Two different specific cycles are 
investigated: 

- The urban driving cycle described by Fig. 17 and 
characterized by low speeds (40 km/h on average) with 
a maximum peak value at 90 km/h. The cycle duration is 
1374 s (i.e. about 23 min) and the corresponding course 
with regard to the considered speeds equals 12.2 km. 
Note that this elementary cycle has to be repeated 16 
times to achieve a minimum range of 200 km for the 
vehicle. 

- The road driving cycle described by Fig. 18 which 
presents higher speed values with a maximum peak at 
120 km/h. The cycle duration is 734 s (i.e. about 
12 min) and the corresponding course with regard to the 
considered speeds equals 15.4 km. In this case, the 
elementary cycle has to be repeated 13 times to achieve 
a minimum range of 200 km for the vehicle. 
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Fig. 17. The urban driving cycle 
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Fig. 18. The road driving cycle 

V. IOD Example: Optimization of Traction 

Devices for Pure Electric Vehicles  

In this section, we illustrate the application of 
MOGA’s to the IOD of PEVs with the aim at 
minimizing the total losses and the embedded mass (i.e. 
the mass of the traction device) in the vehicles.  

V.1. The Design Variables 

All design variables and their corresponding bounds 
considered in the IOD process, are given in Table IV. 
Seven variables associated with the sizing and energetic 
parameters are continuous whereas six variables related 
to the system structure are discrete. 
 

TABLE IV 
DESIGN VARIABLE CHARACTERISTICS 

Design Variable Nature Bounds 

 Battery  
Number of  cells 

in series 
Discrete ns ∈ {1,..,200} 

Cell branches 
in parallel 

Discrete np ∈ {1,..,200} 

Type of cells Discrete Cell ∈ {1, 2, 3} 
Inverter 

Switching 
Frequency 

Continuous Fswitch ∈ [0.001, 100]   [kHz] 

IGBT Type Discrete IGBT ∈ {1, 2, 3} 
Permanent Magnet Synchronous Motor 

Radius/length 
ratio 

Continuous Rrl ∈ [0.1, 10] 

Number of 
pole pairs 

Discrete p ∈ {1,..,10} 

Number of 
slots/pole/phase 

Discrete Nspp ∈ {1, 2, 3} 

Current density Continuous Js ∈ [1, 10]   [A/mm2] 
Base torque Continuous Tb ∈ [1, 2000]   [N.m] 
Base speed Continuous Ωb ∈ [1, 10 000]   [rad/s] 

Mechanical Reducer 
Reducer ratio Continuous N ∈ [1, 10] 

Sizing torque Continuous Tred ∈ [1, 2000]   [N.m] 

V.2. The Design Constraints 

Twelve constraints must be fulfilled to ensure the 
PEV feasibility and to allow it to comply with the 
driving cycle. In particular, the constraint graph 
resulting from the sizing and simulating models can be 
obtained and divided into three levels: 

- the first level is constituted by two constraints (g1 
and g2) associated with the electrical motor sizing. They 
concern the number of copper windings per slot. This 
number has to be higher than one and bounded by the 
slot section in relation to the minimum winding section 
Swinding (this last is set to 0.5 mm²).   
 
 011 ≤−= csNg  (69) 

 02 ≤−=
cs

rSS
winding N

Kwd
Sg  (70) 



 

 
- the constraints of the next level ensure that the 

electrical motor is capable of operating at its base point 
(Τb, Ωb)  in permanent operating mode. In particular, a 
specific constraint (g3) related to the maximum stator 
flux density (itself coupled with the motor current) and 
the magnet flux density prevents magnet 
demagnetization 

 

 0ˆ),(ˆ
3 ≤−−Ω= DgbbS BBTBg  (71) 

 
with BD is set to −0.2 T and where 
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++
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An additional constraint (g4) verifies that the 
temperature of the copper windings does not exceed the 
critical limit of insulators (i.e. 160°C): 

 
 0160),(4 ≤°−Ω= bbcopper TTg  (73) 

 
- the constraints of the third level are related to the 

fulfillment of the driving cycle. Firstly, three specific 
constraints are associated with the electrical motor. As 
previously for the base point, the motor magnet 
demagnetization and the thermal constraint on copper 
windings have to be assessed in transient operating 
mode during the vehicle course. Therefore, two 
additional constraints g5 and g6 (respectively similar to 
g3 and g4) are computed for each point (Τm, Ωm) of the 
driving cycle.  

 

 0)ˆ),(,0max(8 ≤−−Ω=�
k

Dgmm
k
S BBTBg  (74) 

 0)140),(,0max(6 ≤°−Ω=�
k

mm
k

copper TTg  (75) 

An additional constraint g specifies that all cycle 
points are reachable in standard or defluxing mode  

 

 0),(7 ≤Ω=�
k

mmk TRg  (76) 

where k represents a cycle point and with Rk(Tm, Ωm) = 0 
if the kth cycle point is reachable and Rk(Tm, Ωm) = 1 if 
not. The next constraints concern the DC-AC converter. 
In particular, the temperature on the semiconductor 
junctions does not exceed 125°C. Therefore, the g8 
constraint must be fulfilled  

 0)125),(,0max(8 ≤°−Ω=�
k

mm
k

j TTg  (77) 

where Tj
k denotes the temperature on semiconductor 

junctions for kth cycle point. Moreover, to avoid 
excessive harmonic voltage content, the inverter 

switching frequency has to be higher than the maximum 
motor frequency (a factor 20 is chosen), which leads in 
the following relation  

 

 0)220,0max(9 ≤−=�
k

switchFg πω  (78) 

 
Two additional constraints are relative to the battery 
cells. As underlined above, a minimum state of charge 
(i.e. 20%) in each accumulator cell has to be guaranteed 
to avoid the falling of the corresponding cell voltage to 
below its technological limit. 

 

 0)2.0,0max(10 ≤−=�
k

kSOCg  (79) 

On the other hand, the battery must provide sufficient 
power to the motor (taking into account all losses in the 
cell resistances) to fulfill the driving cycle. This leads to 
the following constraint 
 

 � Ω=
k

mmk TBg ),(11  (80) 

 
where Bk(Tm, Ωm) = 0 if the accumulator cells are able to 
furnish the required current Ibat and Bk(Tm, Ωm) = 1 if 
not. Finally, the last constraint related to the reducer and 
ensures that it is not subject to torque values higher than 
its sizing torque during the driving cycle: 
 

 0),0max(12 ≤−=�
k

redm TTg  (81) 

 
According to the constraint handling strategy 

previously presented in section �III.5, the constraints of 
the third level are not computed if some constraints of 
the first (or the second) level are not fulfilled. In this 
case, the complete simulation of the vehicle on this 
course can be avoided. Note also that fulfilled 
constraints are always set to zero to give preference to 
objective minimization for feasible solutions. 

V.3. PEV Optimization with the NSGA-II 

The optimization of the electrical traction devices of 
the vehicles is carried out with the NSGA-II by 
considering the driving cycles (road and urban cycles) 
previously presented. Two objectives have to be 
minimized i.e. the global losses in the vehicle and the 
embedded mass (total mass of the traction device 
without including the frame). The skeleton of the 
optimization process is shown in Fig. 19.  
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Fig. 19. The global model of PEV in the IOD process 

 
All simulating models as well as the NSGA-II were 

implemented in standard ANSI C programming 
language. Note that the time associated to the 
optimization algorithm development is clearly less 
expensive in comparison with the time devoted to the 
establishment of each model and the key steps of the 
decision maker in the design process (i.e. choice of a 
relevant representation level for the system elements, 
suitable design variable and constraint setting). Well-
known GA programming environments (e.g. GAlib [38], 
EO [39]) are useful for those who are not familiar with 
evolutionary computation. These environments can be 
easily associated with traditional CAD softwares.  

The optimization of the electrical traction devices of 
the vehicles is carried out with the NSGA-II by 
considering the driving cycles (road and urban cycles) 
previously presented. The population size and the 
number of archive elements in the NSGA-II are set to 
100. Mutation and recombination operators are similar 
to those presented in [21]. They are used with a 
crossover probability of 1, a mutation rate on design 
variables of 1/m (m denoting here the total number of 
design variables in the problem) and a mutation 
probability of 5% for the X-gene parameter used in the 

self-adaptive recombination scheme. The number of 
generations is 1500. Ten independent runs with random 
initial populations are performed to take account of the 
stochastic nature of MOGAs and in order to verify 
convergence and result reproducibility. Note that the 
CPU time necessary to evaluate feasible individual 
objectives approximately equals 0.25 seconds on a 
standard computer equipped with a 1 GHz processor. 
Consequently, by considering the previous control 
parameters (i.e. 100 individuals in the population and 
1500 generations) the CPU time of the ten performed 
runs can vary from one to four days according to the 
number of feasible solutions explored during the 
optimization.  

The global Pareto-optimal fronts obtained from these 
runs for the two driving cycles investigated are 
represented in Fig. 20. The corresponding design 
variable variations of Pareto-optimal solutions are given 
in Table V. We also illustrate in Fig. 20, the efficiency 
of typical “road-sized vehicles” when they are subject to 
the urban cycle. On the other hand, note that the “urban 
vehicles” energetically sized as accurately as possible 
are unable to comply with the more demanding road 
cycle in terms of power. Results show the importance of 
taking driving cycles into account to determine the 
optimal performance of PEVs. 
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Fig. 20. PEV Pareto-optimal solutions  

 
TABLE V 

DESIGN VARIABLE RANGE OF PARETO-OPTIMAL SOLUTIONS 

Design Variable 
Urban Cycle 

Min  Max 
Road Cycle 

Min  Max 

Number of cells in series ns 118 200 97 200 
Branches in parallel np 1 2 2 3 

Cell type 1 (39Ah) 1 (39Ah) 
Switching frequency Fswitch  1.2 2.0 1.27 1.74 

IGBT type MII400-12E7 MII300-12E4 
Radius/length ratio Rrl 0.98 1.91 0.58 1.12 

Number of slots/pole/phase Nspp 1 1 1 1 
Number of pole pairs p 5 7 4 4 

Current density Js 1.31 2.15 1 1.075 
Base speed Ωb 378 644 356 412 
Base torque Tb 218 387 172 196 
Reducer ratio N 1 1 1 1 

Sizing Torque Tred No reducer (direct transmission) 



 

V.4. Exploitation of the IOD Process for System 
Analysis 

IOD with MOGAs leads to the optimization of system 
performance by determining multiple Pareto-optimal 
configurations. On the other hand, the analysis of these 
solutions allows a posteriori access to valuable 
information associated with the system, hard to establish 
prior to IOD process. In particular, coupling phenomena 
in the system can be investigated through the study of 
the Pareto-optimal solution objectives in relation to the 
associated constraints and design variables. We briefly 
illustrate this point in the case of PEVs specifically sized 
for urban cycles 
 
• Partial Objective Analysis  
 

In the case of the urban driving cycle, the partial 
objective (losses and masses) evolution of the PEVs 
along the Pareto-optimal front is represented in Fig. 21 
and Fig. 22. Note that all optimized configurations are 
characterized by a direct transmission (without speed 
reducer, i.e N = 1 which implies Pred = 0 and Mred = 0) 
and present a DC-AC converter with a negligible mass 
(Mrad � 6 kg) in comparison with other masses in the 
system. The partial objective analysis of Pareto-optimal 
solutions emphasizes the “critical” elements of the 
system which mainly affect global efficiency. In the case 
of PEVs, it can be shown in Fig 21 and Fig 22, that 
global objectives are mainly conditioned by both the 
electrical motor and the battery. 
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Fig. 21. Partial masses of Pareto-optimal solutions 
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Fig. 22. Partial loses of Pareto-optimal solutions  

 

• Coupling analysis 
 

Similarly to the study of partial objectives along the 
Pareto-optimal front, the observation of physical 
variable (i.e. structural, sizing, or energetic variables as 
well as constraints) evolution for Pareto-optimal 
solutions can point out coupling phenomena in the 
system. For the urban driving cycle, it can be seen in 
Fig. 23 and Fig. 24, that the number of accumulator cells 
in series in the battery and the number of copper 
windings per slot are strongly coupled since their 
evolution is correlated (they present similar variations). 
However, in a number of cases, couplings between 
continuous variable are not always graphically 
emphasized from their evolution along the Pareto-
optimal front. Therefore, we have suggested a more 
quantitative approach based on correlation coefficients. 
This approach will not be described in this paper but we 
invite the reader to refer to earlier publications [25], 
[33] for more details. 
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Fig. 23. Number of Accumulator Cells in Series for Pareto-optimal 

Solutions 
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Fig. 24. Number of copper winding per slots for Pareto-optimal 
solutions 

VI. Conclusions 

In this paper, the concept of IOD for energetic 
systems in electrical engineering has been developed. 
The particularity of the optimization problems resulting 
from this global approach has also been underlined. The 
resolution of these problems notably requires the use of 
mixed variable and multiobjective optimization methods 
capable of integrating all design constraints. For that 
purpose, elitist MOGAs with a Pareto ranking procedure 
seem to be highly suitable. The interest of applying them 
to a real-world problem has been illustrated in the case 
of the traction device design for PEVs. The example 
considered is rather complex (7 continuous variables, 6 
discrete variables, 13 constraints and 2 global 
objectives) and typical of the IOD approach 
investigated. The results obtained on this problem show 
the interest of using MOGAs in this context. On the one 
hand, they lead to the objective optimization by 
determining Pareto-optimal configurations, thus 
improving vehicle efficiency. On the other hand, they 
provide the designer with a posteriori background 
concerning the system. In particular critical elements in 
the system which mainly affect global performance can 
be pointed out through the study of partial objectives 
along the Pareto-optimal front. Moreover, couplings 
between design variables, constraints and objectives can 
be established from Pareto-optimal solution analysis. As 
regards future perspectives, it would be interesting to 
apply the IOD approach on systems with higher 
architecture complexity. In this context, the optimization 
of hybrid traction devices for electrical vehicles would 
be an interesting case study to examine MOGA 
efficiency, in comparison with other traditional design 
methodologies such as dynamic programming. 
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