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On the Hardness of the
Finite Field Isomorphism Problem

Dipayan Das and Antoine Joux

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany.
dipayan.das@cispa.de, joux@cispa.de

Abstract. The finite field isomorphism (FFI) problem was introduced in
PKC’18, as an alternative to average-case lattice problems (like LWE, SIS,
or NTRU). As an application, the same paper used the FFI problem to
construct a fully homomorphic encryption scheme. In this work, we prove
that the decision variant of the FFI problem can be solved in polynomial
time for any field characteristics q = Ω(βn2), where q, β, n parametrize
the FFI problem. Then we use our result from the FFI distinguisher to
propose polynomial-time attacks on the semantic security of the fully
homomorphic encryption scheme. Furthermore, for completeness, we also
study the search variant of the FFI problem and show how to state it as
a q-ary lattice problem, which was previously unknown. As a result, we
can solve the search problem for some previously intractable parameters
using a simple lattice reduction approach.

1 Introduction

The Finite Field Isomorphism (FFI) problem has been introduced in [DHP+18]
as a new hard problem to study post-quantum cryptography. Informally, it states
the following.

For a hidden element x (with sparse minimal polynomial) in the finite field
Fqn , if small β-bounded linear combinations of powers of x are given, in terms
of powers of a uniform generator y, it is hard to recover x.

The decisional version of the problem states the following.
Given the y-basis representation of finite field elements, it is hard to decide

whether they are picked from the FFI distribution or the uniform distribution,
with a non-negligible advantage over random guessing.

The FFI assumption is based on the fact that the basis transformation con-
verts “good” representations to “bad” representations of Fqn . At a high level
of abstraction, the heuristics of the FFI problem is comparable to many lattice
problems, which involve recovering a “good” secret basis from a “bad” public
basis (example, [GGH97,HPS98]). However, despite this high-level similarity,
the details are quite different and a dedicated security analysis is required.

In the papers [DHP+18,HSWZ20], the authors thoroughly analyzed the generic
hardness of the FFI problem. From their analysis, the best known attack for the
decisional problem has 2O(n) time complexity, whereas the best known attack
for the search problem has O(n!) time complexity. Based on their analysis, they
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proceed to propose a fully homomorphic encryption scheme [DHP+18] and a
signature scheme [HSWZ20] as applications of the FFI problem.

1.1 Our Contribution

This paper re-examines the hardness of the FFI problem in both its decisional and
computational versions. We use basic finite field theory to study the hardness of
the FFI problem.

In Section 4, we prove the values of the trace of the hidden polynomial
x-basis are bounded in absolute value by n. The proof is based on combinato-
rial techniques. Thus, by a linearity argument, the trace of FFI samples can be
bounded in absolute value by βn2. This observation provides a polynomial-time
distinguisher to solve the decisional version of the FFI problem for any field with
characteristic q ≥ 4βn2.

In Section 5, we complement the attack on the decisional FFI problem by
breaking the semantic security of the fully homomorphic encryption scheme
from [DHP+18]. First, we give a simple semantic attack by using the bound
on the trace of the ciphertext. Then we provide an additional semantic attack
that offers a slight improvement on the lower bound on the field characteristic q,
using the distribution of the trace of the inverse of the finite field elements. Both
attacks apply to the proposed parameter of the scheme.

In Section 6, we exploit the notion of dual basis of a finite field basis to solve
the computational FFI problem. By definition, the trace of any basis element
with respect to its dual basis can be expressed as the Kronecker delta function.
Consequently, the traces of FFI samples with respect to the dual x-basis are
bounded by β. Using this observation, we recover the dual x-basis from the
given FFI samples Ai. This is done by reducing an adequate lattice built from
traces of well-chosen finite field elements. We also show that a partial recovery of
the dual x-basis can be leverage into a full cryptanalysis with good probability.

Finally, we provide some experiments on lattice reduction to find the shortest
vectors in this lattice.

2 Preliminaries

2.1 Notations

The parameter q denotes a (moderately large) prime integer throughout the
paper.

The finite field with q elements is denoted by Fq. All vectors are in columns
and are denoted with bold letters. We identify polynomials and vectors as being
the same data type using the coefficient embedding. For any vector v, we write
‖v‖ for the `∞ norm of v, and ‖v‖2 for the `2 norm of v. Representatives of the
elements of Fq are centered around zero, i.e. chosen in the interval

[
− q−1

2 , q−1
2

]
.

The rationale for using this representation is that it is much better adapted to
the goal of obtaining vectors with short norms.
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2.2 Reminders from Finite Field Theory

For every prime q and every positive integer n, there exists a unique finite field
with qn elements. It is denoted by Fqn . The prime q and the integer n are
respectively called the characteristic and degree of the finite field.

Let f(x) and F (y) be two irreducible polynomials of degree n over Fq. We
can construct two isomorphic representations of the finite field Fqn as X :=
Fq[x]/(f(x)) and Y := Fq[y]/(F (y)). Every element of Fqn can be uniquely
represented by a polynomial in x with coefficients in Fq and degree less than n.
Similarly, there is a representation in terms of y. In other words, the set

{1,x, . . . ,xn−1}

is a basis of Fqn , viewed as a vector space over Fq. This basis is called the x-
polynomial-basis or x-basis for short. For ease of reading, we denote finite field
elements known in the x-basis by small letters and elements known in the y-basis
by capital letters.

To explicit an isomorphism between these two representations of Fqn , it suf-
fices to know the representation in the x-basis of a root of F (y) or conversely
the y-representation of a root of f(x). Note that each of the two polynomials
has n distinct roots, which are images of each other by the q-th power Frobenius
map.

For every element α ∈ Fqn , its conjugates are obtained by repeatedly apply-

ing the Frobenius map, i.e. they are α, αq, . . . , αq
(n−1)

. They are distinct if and
only if the minimal polynomial of α has degree n. The trace of an element in
Fqn is defined as the sum of all its conjugates:

Tr(α) := α+αq + · · ·+αq
(n−1)

∈ Fq

The trace function is linear, i.e.

Tr(α+ cβ) = Tr(α) + cTr(β)

for any α,β ∈ Fqn and c ∈ Fq.
Moreover, for every linear map L from Fqn to Fq, there exists a unique

element β in Fqn such that:

∀α ∈ Fqn : L(α) = Tr(β ·α).

We denote this linear function by Lβ.
To every basis ω1,ω2, . . . ,ωn of Fqn we associate a dual basis 1 ω̂1, ω̂2, . . . , ω̂n ∈

Fqn , defined as the unique one which satisfies:

Tr(ωiω̂j) = δji

where δji is the Kronecker delta function. From this definition, it is clear that
the bidual of a basis, i.e. the dual of its dual, is the basis itself.

1 Note that this notion of the dual basis of a finite field does not correspond to the
idea of the dual basis of a lattice. This paper only uses the term dual basis to refer
to the former notion.

3



2.3 Lattice Reduction

Given a (full rank) matrix B ∈ Zd×d, the lattice L generated by the basis B
is the set L(B) := {Bz : z ∈ Zd}, d is the lattice dimension. A lattice is called
q-ary if it contains qZd as a sublattice. The volume of a lattice L(B) is defined
as Vol(L) := |det(B)|. Any lattice of dimension d ≥ 2 has infinitely many
bases that generate the same lattice, and any two bases B,B′ are related by a
unimodular matrix U such that B = B′U . Note that the unimodular matrix
stands on the right because we use the convention of having vectors in columns.
The volume of a lattice is independent of the choice of lattice basis.

For a random lattice L, the Gaussian heuristic estimates the Euclidean
norm of the shortest non-zero vector in the lattice, which is approximately√

d
2πeVol(L)1/d [GN08].

For any basis B, we write B∗ to represent the Gram-Schmidt orthogonal-
ization (GSO) of B, where the i-th vector of B∗ is given by b∗i := πi(bi). Here,
the notation πi denotes the projection of a vector orthogonally to the vector
subspace spanned by b1, b2, . . . , bi−1.

A central problem in the algorithmics of lattices is to find shortest non-zero
vectors (SVP) from a lattice basis B. This can be a handy tool in cryptanaly-
sis. The most widely used lattice reduction algorithm is LLL [LLL82] which is
polynomial-time but only yields an approximation of SVP within an exponential
factor. Since this can be insufficient for cryptanalysis, it is standard practice to
use slower algorithms that produce better approximations.

For our needs, we use the implementation of the blockwise Korkine-Zolotarev
(BKZ) algorithm provided with the fplll software [The22].

2.4 Semantic Attack of an encryption scheme

An encryption scheme (KeyGen,Enc,Dec) that only encrypts bits (i.e. with
message space {0, 1}) has (t, δ) attack against the semantic security if there exists
an adversary A winning the following game against a challenger C.

– C samples m←↩ {0, 1}, (pk, sk)←↩ KeyGen(1λ).

– C gives pk, c := Enc(pk,m) to A.

– A outputs m′ ∈ {0, 1}.

A wins the game if A has running time t and advantage δ, where the advantage
is defined by

|Pr[m′ = m]− Pr[m′ 6= m]|

3 Finite Field Isomorphism Problem

This section formally describes the FFI problem in both its computational and
decisional forms.
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Let X,Y be two representations of the finite field Fqn as before. In the rest
of the paper, we assume n ≥ 50 to be out of range of easy exhaustive search
attacks. The defining polynomial of X is sampled uniformly from the set of all
sparse irreducible polynomials of the form xn+g(x) with deg g(x) ≤ bn/2c and
‖g(x)‖ ≤ 1, i.e. g(x) has ternary coefficients. The defining polynomial of Y is
sampled uniformly from the set of arbitrary monic irreducible polynomials. Let
φ(y) be an isomorphism from X to Y. Note that there is an efficient algorithm
to compute an isomorphism between the two representations [BCS97].2 Let χβ
be a distribution over X that samples polynomials ai(x) with ‖ai(x)‖ ≤ β. Let
Ai(y) be the corresponding image of ai(x) under the isomorphism φ.

Definition 1 (Computational Finite Field Isomorphism Problem (CFFIq,k,n,β)).
Given Y by F (y) and k samples A1(y), . . . ,Ak(y) recover f(x).

Definition 2 (Decisional Finite Field Isomorphism Problem (DFFIq,k,n,β)).
Given Y by F (y) and k samples B1(y),B2(y), . . . ,Bk(y) that are either sampled
from FFI distribution (having pre-images bounded by β) or sampled uniformly at
random in Y, DFFIq,k,n,β problem is to distinguish, with some non-negligible
advantage, the correct source distribution of the samples Bi(y).

Note that the sparsity constraint on the defining polynomial of X is not di-
rectly included in the definition of the FFI problem given in [DHP+18,HSWZ20].
However, the noise growth analysis of [DHP+18, Appendix B] explicitly rewrites3

f(x) as xn + f ′(x) and proceeds to bound the noise-growth during multiplica-
tion in X under the assumption that the degree d of f ′ satisfies d < n/2. For
clarity, we instead chose to directly include this low-degree constraint as part of
the definition.

3.1 Previous Attacks

In this section, we briefly describe all the attacks that have been considered for
both decisional and computational FFI problem in [DHP+18,HSWZ20].

Decisional Finite Field Isomorphism Problem

Lattice Attack
The decisional FFI problem could be solved by predicting if there is any
good representation of the given samples, which is very unlikely for uniform
samples. To achieve this, the authors of [DHP+18,HSWZ20] suggested lattice
reduction on the q-ary lattice

LA,q := {ai ∈ Zk : AΨi = ai mod q for some Ψi ∈ Zn}
2 In practice, SageMath provides the FiniteFieldHomomorphism generic(Hom(.))

function available under sage.rings.finite rings.hom finite field package for
this task.

3 In the rewriting, f ′(x) does not denote the derivative of f but an auxiliary poly-
nomial. In our definition, we use the notation g(x) to avoid any possible confusion
with the derivative.
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with each row of the matrix A generated from the given y-basis representa-
tions of samples. For FFI samples, there are unusually short vectors in the
lattice that corresponds to the x-basis (or small linear combination of x-
basis) representation. For uniform samples, it is highly unlikely to have such
short vectors in the lattice.

Computational Finite Field Isomorphism Problem

Hybrid attack
The authors of [DHP+18,HSWZ20] propose to find the shortest vectors in
the lattice LA,q, in the hope that they correspond to the coefficients of some
powers of x. Since the shortest vectors appear in a somewhat random-looking
order, the authors suggested adding a combinatorial algorithm to resolve the
ordering issue and recover the x-basis representations of the FFI samples.
This gives an attack to the computational FFI problem. They estimate the
cost of the combinatorial step to be O(n!), thus infeasible. One might argue
that this could possibly be improved by some form of meet-in-the-middle to
O(
√
n!). We do not examine this direction since we show in Section 6 that

we can get rid of the combinatorial step altogether.
Non-linear attack

The non-linear attack involves solving the non-linear system of equations
to recover the hidden isomorphism φ using Gröbner basis computation. An
adversary can solve for 2n − 2 unknowns of (φ, (ai(x)) from the equation
φ(ai(x)) = Ai(y). Solving such an equation is believed to be hard.

4 Proposed Attack on the Decisional FFI problem

This section proposes a new polynomial-time attack on the DFFI problem. We
show that when a sample Ai(y) comes from the FFI distribution, the underlying
trace of Ai(y) is bounded by a small multiple of n2. We use this fact to mount
a distinguishing attack on the DFFI problem.

Lemma 1. Let f(x) := xn + σ1x
n−1 + σ2x

n−2 + · · ·+ σn be the defining poly-
nomial of X, where σi ∈ {−1, 0, 1} for dn/2e ≤ i ≤ n, 0 otherwise4.

Then

Tr(xi) ≡


n (mod q), if i = 0

0 (mod q), if 1 ≤ i ≤ dn/2e − 1

±i (mod q), if σi 6= 0 and dn/2e ≤ i ≤ n− 1

0 (mod q), if σi = 0 and dn/2e ≤ i ≤ n− 1

Proof. The definition of trace function gives Tr(xi) = n when i = 0. To prove the
Lemma for i > 0, let us first recall the Girard-Newton identities relating the sum

4 Indeed, the smallest i with σi 6= 0 satisfies i + deg g = n. Since deg g = bn/2c this
corresponds to i = dn/2e.
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of powers to symmetric polynomials. Given n arbitrary numbers w0, . . . , wn−1 in
an arbitrary ring, define their symmetric polynomials as usual by: σ1 =

∑n−1
i=0 wi,

σ2 =
∑

0≤i<j<n wiwj , σ3 =
∑

0≤i<j<k<n wiwjwk, . . . , σn =
∏n−1
i=0 wi. Then, for

any 1 ≤ d < n, we have:

n−1∑
i=0

wdi = (−1)d
∑

r1+2r2+···+drd=d
ri∈N

d · (r1 + r2 + · · ·+ rd − 1)!

r1!r2! . . . rd!

d∏
j=1

(−σj)rj (1)

Note that the coefficients in this equation, while written as fractions for nota-
tional purposes are, in fact, integers. As a consequence, the identity holds in
every ring. In particular, when working modulo q as we are. However, to avoid
any potential division by 0, the coefficients should first be computed as exact
integers and only reduced modulo q afterwards.

The set of all the roots of f(x) are given by

{α0 := x,α1 := xq, . . . ,αn−1 := xq
n−1

}

Let now the (σj)1≤j≤n denote the n symmetric polynomials in these roots. We
know that we can write

f(x) = xn − σ1x
n−1 + σ2x

n−2 − . . . (−1)nσn.

Thus, σ1 = σ2 = · · · = σdn/2e−1 = 0.
Since, Tr(xi) is a sum of i-th power of αjs, we can use the above identity to

express it in terms of the σjs. Depending on the value of i, two cases arise:

Case 1 (1 ≤ i ≤ dn/2e − 1). Since all contributions include a σj for j ≤ i
with value zero, there is no non-zero term in the sum of the right-hand side of
Equation (1), we have

Tr(xi) = 0

Case 2 (dn/2e ≤ i ≤ n− 1). Again, since σj = 0 for 1 ≤ j ≤ dn/2e − 1, there is

exactly one element in the set {(r1, r2, . . . , ri) :
∑i
l=1 lrl = i} that contributes in

the sum of the right-hand side of Equation (1), namely (r1 = 0, r2 = 0, . . . , ri = 1).
Indeed, the sum of two contributions above dn/2e is always greater than i. This
gives

Tr(xi) =

{
±i for non-zero σi,

0 for σi = 0

Lemma 2. Let Ai(y) be an FFIq,k,n,β sample. Then |Tr(Ai(y))| ≤ 0.39βn2.

Proof. Let ai(x) be the representation of Ai(y) in the x-basis. Since the trace
of a finite field element is invariant to the basis representation, both ai(x) and
Ai(y) must have the same trace. So in order to bound the trace of Ai(y), it is
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sufficient to bound the trace of ai(x). By the linearity of the trace and by the
previous Lemma, we have

|Tr(Ai(y))| ≤ β
n∑

j=dn/2e

j

≤ 0.39βn2 for n ≥ 50.

Theorem 1. Let q ≥ 1.56βn2, then there exists a polynomial-time algorithm
with advantage 1−Ω(1/2k) to distinguish the DFFIq,k,n,β problem.

Proof. Let B1(y),B2(y), . . . ,Bk(y) be the given k samples to distinguish be-
tween FFI distribution and uniform distribution. The distinguisher finds the cor-
rect distribution of the samples by computing the trace of the samples. In a
finite field, the trace function is uniformly distributed. Thus for a uniform sam-
ple Bi(y), Tr(Bi(y)) is uniformly distributed over Fq. For an FFI sample Bi(y),
by the previous Lemma, |Tr(Bi(y))| ≤ 0.39βn2. Combining the number of sam-
ples and condition on q, the distinguisher outputs 1 when the samples come from
FFI distribution with probability 1, and outputs 1 when the samples come from
uniform distribution with probability at most 1/2k.

It is only left to show that the distinguisher is indeed polynomial-time. The
running time of the attack is dominated by trace computation of finite field ele-
ments. Since the trace of a finite field element can be computed efficiently in time
n1+o(1) log2+o(1) q using iterated Frobenius [KU08,Nar18], this is polynomial-
time.

5 Proposed Semantic Attack on the fully homomorphic
encryption scheme

In this section, we propose a polynomial-time attack on the semantic secu-
rity of the fully homomorphic encryption scheme E := (KeyGen,Enc,Dec,Eval)
from [DHP+18]. The working principle of the scheme is given below.

– KeyGen(1λ) : Generate the FFI parameters Ξ := (n, q, β) as a function of λ,
and two representations of the finite field by sampling f(x),F (y) with an
isomorphism φ like before. Choose two integers (S, s) satisfying

(
S
s

)
≥ 2λ.

Sample S many ci(x) from the distribution χβ and construct Ci(y) :=
pφ(ci(x)) for fixed constant p := 2. In the rest of the section, we assume p
is equal to 2 as in [DHP+18].
The secret key is sk := (Ξ,φ,f(x)).
The public key is pk := (Ξ,C1(y),C2(y), . . . ,CS(y),F (y), s, p).

– Enc(m, pk) : The encryption of a message m ∈ {0, 1} is

C :=
∑
i∈[s]

Ci(y) +m
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for uniformly random s samples Ci(y).

– Dec(C, sk) : The decryption recovers m by computing

m′ := p
∑
i∈[s]

ci(x) +m mod p

using the inverse of the secret isomorphism φ.

– Eval(C,C(1),C(2), . . . ,C(l)) : The homomorphic evaluation of ciphertexts
of a circuit C with gates (+,×) are done using homomorphic addition and
multiplication (with noise management) onC(i)s. It is shown that for q = 2n

ε

with ε ∈ (0, 1), the above encryption scheme E is fully homomorphic using
circular security and bootstrapping techniques (Theorem 3 of [DHP+18]).

The result of Theorem 1 invalidates the semantic security of the fully ho-
momorphic encryption scheme E (Theorem 1 of [DHP+18]). The next Theorem
gives a polynomial-time algorithm to break the semantic security of E .5

Theorem 2. Let q > 0.44sβ2n5 + 0.78βn2, then there exists a deterministic
polynomial time attack against the semantic security of the fully homomorphic
encryption scheme E defined as above.

Proof. Let the challenger C give the public key pk ←↩ KeyGen(1λ) and an en-
cryption C of a message m←↩ {0, 1} to the adversary A. Then

C = p
∑
i∈[s]

φ(ci(x)) +m (2)

A wins the semantic game by the following analysis.
We consider the following two cases for the choice of n.

1. When p = 2 is not a divisor of n.

Note that
∑
i∈[s] φ(ci(x)) is an FFIq,1,n,sβ sample. So the trace of the sum-

mation is small. By the linearity of trace and from Equation (2),

Tr(C) = pTr(
∑
i∈[s]

φ(ci(x))) + Tr(m)

Since Tr(1) = n and p is not a divisor of n, A breaks the semantic game for
the encryption C as below.

Tr(C) mod p =0, Return C is an encryption of 0

=n mod p = 1, Return C is an encryption of 1
5 Note that the attack does not use the homomorphic property of the encryption

scheme, just regular encryptions of bits.

9



2. When p = 2 is a divisor of n.
In this case, Tr(C) mod p will be 0 for both encryptions of 0 and 1. To get
a semantic attack, A needs to do a small modification here.
A picks an FFIq,1,n,β sample C∗ (with pre-image c∗) such that |Tr(C∗)| is not
a multiple of p. As any field isomorphism map elements in Fq to itself, this
happens with probability 1/p for each p−1Ci(y), where Ci(y) for 1 ≤ i ≤ S
are the public key samples, so A almost surely knows such a sample.
Multiplying both sides of Equation (2) by C∗, we get

CC∗ = p φ

(
∑
i∈[s]

ci(x))c∗

+mC∗ (3)

By the ternary sparse choice of the minimal polynomial of x, the noise
of polynomial multiplication in X grows at most by a factor of n3 (Equa-
tion 5 of [DHP+18]). So, the product of φ(

∑
i∈[s] ci(x)) and φ(c∗) is an

FFIq,1,n,0.28sβ2n3 sample, and hence, by Lemma 2, the absolute value of the
trace is bounded by 0.11sβ2n5. By the linearity of trace, we have from Equa-
tion (3)

Tr(CC∗) = p Tr

φ
(
∑
i∈[s]

ci(x))c∗)

+mTr(C∗)

Since Tr(C∗) is not a multiple of p, A breaks the semantic game for the
encryption C as below.

Tr(CC∗) mod p =0, Return C is an encryption of 0

=1, Return C is an encryption of 1

If the q is chosen as in the Theorem to avoid modular reduction, A returns
m′ ∈ {0, 1} with advantage δ = 1. The adversary A runs in polynomial time by
the argument given in Theorem 1.

Below we also provide an alternative approach to break the semantic security
of the homomorphic encryption scheme that gives a tighter lower bound on q.
The main ingredient of this approach is to break the semantic security of the
scheme by the distribution of the trace of the inverse of p.

Theorem 3. Let q > 0.44sβ2n5 + 0.39βn2, then there exists a deterministic
polynomial time attack against the semantic security of the fully homomorphic
encryption scheme E defined as above.

Proof. Let the challenger C give the public key pk ←↩ KeyGen(1λ) and an en-
cryption C of a message m←↩ {0, 1} to the adversary A. A computes

Cp−1 =
∑
i∈[s]

φ(ci(x)) +mp−1 (4)

A wins the semantic game by the following analysis.
We consider the following two cases for the choice of n.
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1. When p = 2 is not a divisor of n.
Since any field isomorphism φ map elements in Fq to itself,

∑
i∈[s] φ(ci(x))

is an FFIq,1,n,sβ sample. As a consequence, from Equation (4), Cp−1 is an
FFIq,1,n,sβ sample for an encryption of 0, thus have small trace. But for an
encryption of 1, by linearity, trace of Cp−1 is dominated by the trace of 1/p.
We now claim the absolute value of Tr(1/p) is close to the boundary point
(q − 1)/2 of the Fq representation, thus trace of Cp−1 is large.
By the definition of trace,

Tr(1/p) = n/p mod q

= n(q + 1)/p mod q

= (n+ q)/p mod q since p is not a divisor of n

(5)

To see the validity of the last line of the above equation, writing n = pi+ 1,
we have

n(q + 1)/p mod q = (pi+ 1)(q + 1)/p mod q

= i+ (q + 1)/p mod q

= (n+ q)/p mod q

Finally, we have |Tr(1/p)| = (q − n)/p in the representation of Fq. Thus A
breaks the semantic game for the encryption C from Lemma 2 as below.

|Tr(Cp−1)| ≤0.39sβn2, Return C is an encryption of 0

Otherwise, Return C is an encryption of 1

2. When p = 2 is a divisor of n.
In this case, from the first line of Equation (5), the trace of Cp−1 will be
small for both encryptions of 0 and 1. To get a semantic attack, A needs to
do a small modification here as in the previous Theorem.
A picks an FFIq,1,n,β sample C∗ such that |Tr(C∗)| is not a multiple of p.
Multiplying both sides of Equation (4) by C∗, we get

C∗Cp−1 = C∗
∑
i∈[s]

φ(ci(x)) +mC∗p−1 (6)

Again, by the choice of the minimal polynomial of x, the noise of polynomial
multiplication in X grows at most by a factor of n3 (Equation 5 of [DHP+18]).
For an encryption of 0, since C∗ and Cp−1 are FFIq,1,n,β and FFIq,1,n,sβ sam-
ples, respectively, C∗Cp−1 is an FFIq,1,n,0.28sβ2n3 sample. Thus the trace of
the product C∗Cp−1 is still small. But for an encryption of 1, by Equa-
tion (6), the trace of C∗Cp−1 is dominated by the trace of second summand
C∗p−1. Since the absolute value of Tr(C∗p−1) is close to the boundary point
(q − 1)/2, the trace of CC∗p−1 is large in this case.
To see the above claim, let Tr(C∗) = t, where |t| ≤ 0.39βn2 and |t| is not a
divisor of p. By the linearity of trace and from the previous analysis,

Tr(C∗p−1) = 1/pTr(C∗)

= (t+ q)/p mod q

11



Finally, we have |Tr(C∗p−1)| = (q − t)/p in the representation of Fq.
By the Equation 5 of [DHP+18] and Lemma 2, A breaks the semantic game
for the encryption C as below.

|Tr(CC∗p−1)| ≤0.11sβ2n5, Return C is an encryption of 0

Otherwise, Return C is an encryption of 1

The condition on q in the Theorem ensures A returns m′ ∈ {0, 1} with advantage
δ = 1. The adversary A runs in polynomial time by the argument given in
Theorem 1.

Effect of the attacks on the recommended parameters: The recom-
mended parameters of [DHP+18] (Appendix C, Table 1) for the different level
of the (somewhat) fully homomorphic encryption scheme falls within the range
of our semantic attacks, except the first level (which has a small q and tolerates
very little noise).

6 Proposed Attack on the Computational FFI problem

In this section, we first express the CFFI problem as a lattice problem. The
improvement over the previous attack is that here we can avoid the additional
combinatorial step (see Subsection 3.1) to solve the CFFI problem. Furthermore,
we show how to solve the problem from a small number of shortest lattice vectors.
We rely on the dual of the x-basis recovered from the shortest vectors of a q-ary
lattice generated from FFI samples.

We first define a q-ary lattice for the given FFI samples.

Definition 3 (Trace lattice). Let A1(y),A2(y), . . . ,Ak(y) be the FFIq,k,n,β
samples for k > n. We define a generating matrix T of order k × n with coeffi-
cients in Fq and ij-th element defined by Tr(Ai(y)yj−1). The q-ary trace lattice
is defined as

LT ,q = {α ∈ Zk : T C = α mod q for some C ∈ Zn}

By linearity of trace, the lattice LT ,q contains traces of every finite field element
(represented in y-basis) with respect to FFI samples Ai(y).

Lemma 3. The q-ary lattice LT ,q has the following properties.

1. Its dimension is k.
2. Its volume is qk−n.
3. It contains n linearly independent vectors αi such that ‖αi‖ ≤ β for 1 ≤ i ≤

n.

Proof. The first two properties of the Lemma are true for any q-ary lattice of
this form. We prove the third point.
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For 1 ≤ i ≤ n, let Ci−1 be the dual x-basis in the finite field Fqn . Then,
recalling the definition of the dual basis,

Tr(xj−1Ci−1) = δj−1
i−1

It follows from the linearity of the trace function that any FFI sample Aj has

|Tr(AjCi−1)| ≤ β

Thus the trace lattice contains n linearly independent vectors αi (corresponding
to each Ci−1), such that

‖αi‖ = ‖Tr(AjCi−1)‖ ≤ β, 1 ≤ j ≤ k

This concludes the proof.

Since β is reasonably smaller than (q− 1)/2, the n vectors αi are very likely
the shortest vectors in the lattice LT ,q. The lattice vectors αi have Euclidean

norm bounded above by β
√
k, which is much smaller than that of the Gaussian

heuristics.
Note that the shortest vectors of the trace lattice correspond to the dual

x-basis, given in the y-basis representation. By recomputing the dual of this
dual basis, we obtain the x-basis in the form of its y-basis representation, thus
recovering the hidden isomorphism φ. This approach eliminate the O(n!) cost
associated with the combinatorial step of the previously mentioned hybrid at-
tack.

In practice, it is generally too costly to find the n shortest vectors in a lat-
tice and thus get the complete Ci-basis by just using lattice reduction. When
applying BKZ reductions with high block size using aborting techniques [CN11],
which is often seen in cryptanalysis, it is more reasonable to only expect get-
ting a small number of shortest lattice vectors. To account for this, we give a
probabilistic approach to recover φ from a subset of two or more elements of
the Ci-basis. This is based on the observation that each lattice vector associated
with the Ci-basis has the same expected norm and is all as likely to appear as
a shortest vector while reducing the lattice LT ,q. We can thus assume that we
are getting random elements from the Ci-basis.

Lemma 4. In a set of m > 1 elements, sampled uniformly at random from the
set of all the dual x-basis, there is, with probability Ω(m2/n), at least a pair of
dual x-basis elements (Ci,Cj) whose quotient gives φ.

Proof. For the uniform choice of the dual x-basis elements, there exists at least
a pair of consecutive elements (Ci,Cj) with probability O(m2/n), i.e a pair with
j = i+ 1.

In the good case for us, this pair with j = i+ 1 is going to satisfy Ci = xCj
which allows us to compute x as Ci/Cj .

To see why, recall that by definition, Ci is the unique element such that, for
all 0 ≤ k < n, Tr(xkCi) = δki . Similarly, Cj satisfies Tr(xkCj) = δkj .

13



Rewriting Tr(xk−1(xCj)) for Tr(xkCj), we can check that xCj already sat-
isfy all necessary conditions needed for Ci, except the final one with k = n.

However, we now prove that even this final equation is often satisfied. When,
it is, we indeed haveCi = xCj . We can compute the missing condition as follows:

Tr(xn−1(xCj)) = Tr(xnCj) = Tr(−g(x)Cj),

the last equality holds because xn = −g(x) (mod f(x)). Since g has degree
< n, Tr(−g(x)Cj) is simply the coefficient of xj in −g. When g is chosen as in
Section 3, as a uniform ternary polynomial of degree ≤ bn/2c, this coefficient is
always zero when j > bn/2c and it is zero with probability at least 1/3 otherwise.

6.1 Lattice Reduction on Trace lattice

In this section, we discuss the experimental results of lattice reduction to find the
shortest non-zero vectors in the trace lattice. The parameter (n, q) = (256, 32771)
appeared in the level 1 fully homomorphic encryption scheme of [DHP+18]. We
consider (n, q) close to it for our experiments.

The sample size k, which is the lattice dimension, is the parameter that
dominates the running time of lattice reduction. If k is too small, for instance,
too close to n, the lattice reduction technique could not extract any meaningful
vectors. If k is too large, then the running time of the lattice reduction algorithm
is too slow. In our experiments, we choose k = 2n.

For small n, it is convenient to recover the shortest vectors with a small block
size BKZ algorithm, as expected6. But as n increases, the larger block size makes
the attack inadequate. To circumvent this, we reduce the lattice dimension by
applying a pre-processing lattice reduction step with a smaller block size, whose
cost is negligible in the context of the attack.

The choice of the parameters (n, q) in our experiments allow to find “some-
what” short vectors in the trace lattice during the pre-processing step. These
short vectors do not correspond to the dual x-basis, as expected, but have mean-
ingful properties.

Let C̄i be the recovered finite field basis corresponding to the short lattice
vectors. Heuristically, the C̄i-basis act as a pseudo dual x-basis in Fqn , i.e.

|Tr(C̄ixj)| / β

As a result, for any FFI sample Aj

|Tr(C̄iAj)| / nβ2 (7)

The recovered C̄i-basis contains information about x. To exploit this additional
information of x, we generate a new integer trace lattice LT̄ ⊂ Zk of dimension
n from the lattice basis T̄ computed using the C̄i-basis (instead of y-basis in

6 For example, we recover the complete dual x-basis for the parameter (n = 100,
q = 10007) using BKZ block size 5.
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Definition 3). 7 The observation from Equation (7) ensures the basis vectors
are unusually small in a (relatively) low dimensional lattice, which allows using
stronger lattice reduction algorithms effectively to recover the shortest vectors.
The details of our experiments are given in Table 1.

n q Pre-Processing C̄i-basis Final Status

200 32771 BKZ 12 X BKZ 60 Solved

240 32771 BKZ 20 X – Unsolved

256 32771 BKZ 21 X – Unsolved
Table 1. Experimental results

In general, the running time of a BKZ lattice reduction algorithm is exponen-
tial on the blocksize. The authors of [CN11] successfully perform high blocksize
BKZ reductions (with extreme pruning originated in [GNR10]) on different lat-
tices for a small number of rounds under the heuristics that most of the progress
of BKZ algorithm is made in the early rounds. In the experiments, we also use
a similar approach.

We apply a high block size BKZ algorithm (with extreme pruning) on the
lattice basis T̄ , aborting regularly to check if some shortest lattice vectors are
achieved, continuing otherwise. For (n = 200, q = 32771), we could able to find
five shortest vectors within 7 days of running BKZ 60 (aborting regularly) in an
Intel Xeon CPU E5-2683 v4 @ 2.10GHz with 1200 MHz processor. The Gram-
Schmidt norms of the reduced bases are given in Figure 1. For other parameters,
we couldn’t find the shortest vectors running the (high block size) aborted BKZ
reduction in the fplll software for a couple of months. The application of a more
sophisticated lattice reduction approach is beyond the scope of the current paper.
We, therefore, invite the cryptanalytic efforts on the other set of parameters,
possibly using more advanced lattice reduction tools (example, G6K [ADH+19]).

7 Conclusion

In this paper, we illustrate on the FFI problem that having a lattice-reduction
approach that fails to solve a problem does not necessarily imply that the prob-
lem itself is difficult. Indeed, lattice reduction might not be the optimal strategy
to approach it.

7 It is to be noted that we can always generate arbitrary many samples by doing simple
arithmetic from the given FFI samples.
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toring polynomials with rational coefficients. Mathematische annalen,
261(ARTICLE):515–534, 1982.

Nar18. Anand Kumar Narayanan. Fast computation of isomorphisms between finite
fields using elliptic curves. In Lilya Budaghyan and Francisco Rodŕıguez-
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