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Abstract

In this paper, we introduce a specific modification of the numerical fluxes in order to
insure the well-balanced property of schemes on staggered grids for the Euler equations.
This property is crucial for the numerical representation of equilibrium solutions of
balance laws with source terms, like when describing flows subjected to gravity and a
complex topography. We propose first and second order versions of the well-balanced
scheme. The performances of the method are evaluated through a series of 1D and 2D
benchmarks.
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1 Introduction
The motivation of this paper comes from the development of numerical strategies to
compute the solutions of complex flows, by working on staggered grids. This means that
the numerical unknowns are stored in different locations, depending on their type. This
is in contrast with the standard approach when dealing with systems of conservation
laws, and a specific analysis should be developed for such schemes. It is expected that
such an alternative approach might have some advantages when dealing with certain
asymptotic regimes, like the low Mach regimes, or when some incompressibility-like
constraint arises in the model, see for instance [11, 30, 39] and the references therein.
Indeed, working with colocalized unknowns might lead to spurious instabilities, a dif-
ficulty that can be fixed by adopting dual discretizations, as illustrated by the MAC
scheme for incompressible viscous flows [34]. In fact, schemes on staggered grids are
widely used for CFD applications in industrial context, in particular for applications in
defense, astrophysics, weather forecast or nuclear safety [1, 3, 4, 8, 58]. Most of these
hydrocodes relies on the Lagrangian framework, in the spirit on the pioneering schemes
introduced in [55, 59], see the recent analysis in [19, 44]. Our work is concerned instead
with Eulerian methods, in the spirit of [4, 9, 10, 27, 26, 35, 37, 38, 42, 49, 52, 54, 56, 57]:
Eulerian numerical methods on staggered grids have been developed and analyzed for
the simulation of the Euler system, in the barotropic case as well as for the full set of
equations, in one and multi-dimensions, including with second-order extensions [31, 27]
or considering unstructured grids [32, 36].

Here, we address the issue of the treatment of source terms in such a staggered
framework. Indeed, it is well-known that a direct discretization of the source terms,
say for instance the gravity force, leads to inaccurate results, due to the inability to
preserve steady state solutions. A classical illustration is the simulation of the Shallow
Water system with topography. The difficulty has been pointed out on the seminal
papers [2, 14, 33] which have given raise to many progress in order to design suitable
methods that can handle accurately the source terms, for scalar equations [12], and for
systems [6, 5, 7, 15, 43]; we refer the reader to the detailed presentations in [13, 29].
The basic idea behind most of these methods is to modify the numerical fluxes by a
hydrostatic reconstruction and to introduce a source discretization to balance the flux
difference, compatible with the equilibrium state.
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The paper is organized as follows. Section 2 explains how the source terms can
be incorporated in the staggered mass and momentum fluxes. We detail the consis-
tency analysis, the well-balanced property and we identify the stability condition that
garanties the preservation of non negative densities. Next, we detail how the scheme
can be modified in order to reach the second order accuracy, in the spirit of MUSCL
procedures. Section 3 illustrates the abilities of the scheme in capturing equilibrium
solutions, through a series of standard test cases in 1D and 2D.

2 Well-balanced scheme for the barotropic Eu-
ler system
2.1 Staggered scheme: notation and definitions
We consider the one-dimensional barotropic Euler system{

∂tρ + ∂x (ρu) = 0,

∂t (ρu) + ∂x (ρu ⊗ u) + ∂x (p(ρ)) = −ρ∂xz.
(1)

This model describes the evolution of a compressible fluid: the unknowns ρ and u stand
respectively for the local density and velocity field of the fluid. They depend on the
time and space variables, t ⩾ 0 and x ∈ R. The pressure p depends on the density
ρ only: we suppose that ρ 7→ p(ρ) belongs to C1 ([0, ∞)) ∩ C2 (]0, ∞)) and satisfies
p(0) = 0, p′(0) = 0 and

p(ρ) > 0, p′(ρ) > 0, p′′(ρ) ⩾ 0, ∀ρ > 0.

For instance, these properties hold for p(ρ) = κργ with κ > 0 and γ > 1. The force
density function x 7→ z(x) is given. We refer the reader to the classical treatises
[18, 28, 46, 51] for a thorough introduction to these equations and for a description of
the numerical issues. A case of particular interest is when γ = 2 (and κ = 1/2): the
corresponding Shallow-Water system describes the free surface of a layer of fluid of con-
stant density in hydrostatic balance, bounded from below by the bottom topography.
In this case, ρ stands for the water depth, and z defines the bottom topography. In
what follows, formula that apply to this specific case are distinguished by the tag (SW).

As said above, preserving numerically the equilibrium solutions is far from obvious.
Here, we focus on the equilibrium states at rest that satisfy

u = 0, ∂xp = −ρ∂xz.

Let us set
E (ρ) = p(ρ)

ρ
+
∫ ρ

0

p(s)
s2 ds

so that
E ′(ρ) = p′(ρ)

ρ
.
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Therefore, the equilibrium satisfy

E (ρ) + z = constant.

In the specific case of the Shallow-Water system, we simply have

(SW) p(ρ) = ρ2

2 , E (ρ) = ρ.

In the general case, E is a strictly increasing function on [0, ∞[ with E (0) = 0. Thus,
it is a one-to-one function from [0, ∞[ to its range and we denote by E −1 the inverse
function of E .

We address the issue of preserving equilibrium in the framework of staggered grids,
with numerical densities and velocities stored in different locations. According to Fig. 1,

• we introduce a set of J + 1 points x1 = 0 < x2 < ... < xJ < xJ+1 = L in
the computational domain; we denote by Cj+ 1

2
= [xj , xj+1], j ∈ J1, JK, the cells

defined by these points;
• we denote by xj+ 1

2
= (xj + xj+1)/2, j ∈ J1, JK, the centers of the cells; these

points define the dual cells Cj = [xj− 1
2
, xj+ 1

2
], j ∈ J2, JK;

• we set the following notation for the mesh-sizes

δxj+ 1
2

= xj+1 − xj , j ∈ J1, JK, and δxj =
δxj− 1

2
+ δxj+ 1

2

2 , j ∈ J2, JK,

(with the specific definition for the end-cells: δx1 = 1
2δx 3

2
and δxJ+1 = 1

2δxJ+ 1
2
).

The discrete densities ρj+ 1
2

are thought of as approximation of the density ρ on
the cells Cj+ 1

2
whereas the discrete velocities uj are thought of as approximation

of the velocity u on the cells Cj . Here and below, we denote

δx = max
{

δxj , δxj+ 1
2
, j ∈ {1, ...J}

}
.

Throughout the paper we shall use the notation

[z]+ = max(0, z) ⩾ 0, [z]− = min(0, z) ⩽ 0.

In what follows, we denote (ûj , ρ̂j+ 1
2
) a discrete equilibrium at rest with possibly

a dry area, thus characterized by

ûj = 0, E (ρ̂j+ 1
2
) + zj+ 1

2
= max

(
η, zj+ 1

2

)
. (2)

where η ∈ R is a given constant. We address the question of the conservation of
such an equilibrium by the numerical scheme.
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x1
•
u1

x 3
2
|

ρ 3
2

δx1

x2
•
u2
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2

...

...

xj− 1
2

|
ρj− 1
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δxj

xj

•
uj

δxj+ 1
2

xj+ 1
2

|
ρj+ 1

2

xj+1
•

uj+1

...

...

xJ+1
•

uJ+1

Figure 1: Staggered grid in dimension one.

With these notations, we update the numerical unknowns, having at hand the
ρj+1/2’s and the uj ’s, by

ρj+ 1
2

− ρj+ 1
2

δt
+ Fj+1 − Fj

δxj+ 1
2

= 0, (3)

ρjuj − ρjuj

δt
+

Gj+ 1
2

− Gj− 1
2

δxj
+

Πj+ 1
2

− Πj− 1
2

δxj
= −Sj , (4)

where the overlined quantities ρj+ 1
2
, ρjuj denotes the updated numerical unknowns

and ρj is an averaged quantity on the cell Cj (see (9) below). These discrete formula
are intended to mimic the integration of the mass conservation equation over [nδt, (n+
1)δt] × Cj+ 1

2
and of the momentum balance over [nδt, (n + 1)δt] × Cj : the details of the

numerical methods depend on the design of the numerical fluxes Fj , Gj+ 1
2
, Πj+ 1

2
on the

interfaces of the control volumes. The construction uses the values of the unknowns
stored on the interface and in the neighbouring cells. Namely, our study is motivated
by the scheme defined in [10, 11, 31]: taking into account the characteristic speeds of
the system

λ±(ρ, u) = u ± c(ρ), c(ρ) =
√

p′(ρ),
we adopt the following definition that relies on the upwinding principles,

Fj = F+
j + F−

j ,

with
F+

j = F+(ρj− 1
2
, uj) and F−

j = F−(ρj+ 1
2
, uj). (5)

The flux functions F± are given by

F+(ρ, u) =


0 if u ⩽ −c(ρ),

ρ

4c(ρ)(u + c(ρ))2 if |u| ⩽ c(ρ),

ρu if u ⩾ c(ρ),
(6)

and

F−(ρ, u) =


ρu if u ⩽ −c(ρ),
− ρ

4c(ρ)(u − c(ρ))2 if |u| ⩽ c(ρ),

0 if u ⩾ c(ρ).
(7)
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This simple formula is inspired from the kinetic schemes [17, 22, 23, 41, 47, 48] since
they can be defined through a “microscopic velocity variable”

F±(ρ, u) =
∫

±ξ>0
Mρ,u(ξ) dξ,

where Mρ,u is the “Maxwellian state”

Mρ,u(ξ) = 1
2c(ρ)1|ξ−u|≤c(ρ).

An alternative definition of the numerical fluxes can be obtained by using the Dirac
mass centred on the material velocity: Mρ,u(ξ) = δ(ξ = u); this gives the scheme
introduced in [37]. As a matter of fact, the flux function satisfy the symmetry property

F−(ρ, u) = −F+(ρ, −u),

and the flux–consistency condition

F+(ρ, u) + F−(ρ, u) = ρu. (8)

For stability analysis, it is important to observe that

ρ 7−→ ±F±(ρ, u) are non decreasing functions.

We turn to the momentum balance. We start by setting

ρj =
δxj+ 1

2
ρj+ 1

2
+ δxj− 1

2
ρj− 1

2

2δxj
, (9)

and

F±
j+ 1

2
=

F±
j + F±

j+1
2 , Fj+ 1

2
= F+

j+ 1
2

+ F−
j+ 1

2
. (10)

Remarkably, the conservation relation

ρj − ρj + δt

δxj
(Fj+ 1

2
− Fj− 1

2
) = 0 (11)

holds. The convection fluxes are obtained by applying the UpWinding principle, based
on the “sign” of the mass fluxes Fj and Fj+1, to the velocity field; we set

Gj+ 1
2

= ujF+
j+ 1

2
+ uj+1F−

j+ 1
2
. (12)

(The scheme designed in [37] adopts a different averaged definition for obtaining the
momentum fluxes from the mass fluxes.) Finally, the pressure gradient at xj+ 1

2
is

naturally centred
Πj+ 1

2
= p(ρj+ 1

2
). (13)

Owing to (8), the momentum flux is consistent. Without source terms, the scheme can
be shown to preserve the positivity of the density and the entropy dissipation property
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under a suitable CFL condition [10], it is thus consistent with the Euler system [9].
For the source term, a natural approach consists in setting

Sj = ρj

zj+ 1
2

− zj− 1
2

δxj
.

Unfortunately this definition does not produce satisfactory results, since it is not con-
sistent with the equilibrium solution (see Remark 2.2 for further comments, describing
a specific situation – for the Shallow-Water equation and the fluxes of [37] – where
such a definition is well-balanced, though).

2.2 Incorporation of the source terms
According to [12] and [5, 6, 7, 13], we introduce hydrostatic reconstructions of the
density, compatible with the equilibrium, defined at the interfaces xj (see Fig. 2) by
setting

zj = max(zj+ 1
2
, zj− 1

2
),

E (ρr
j) =

[
E (ρj+ 1

2
) + zj+ 1

2
− zj

]
+,

E (ρℓ
j) =

[
E (ρj− 1

2
) + zj− 1

2
− zj

]
+.

(14)

xj− 1
2

|
ρj− 1

2

xj

•
uj

xj+ 1
2

|
ρj+ 1

2

xj+1
•

uj+1

ρℓ
j

ρr
j ρℓ

j+1 ρr
j+1

Figure 2: Reconstruction of a WB density.

It is important to note that, as proved in the sequel, these two reconstructions ρr
j

and ρℓ
j are equal if the system is at an equilibrium state. Accordingly, it allows us to

exactly preserve equilibrium states when proceeding as follows. With these quantities
ρℓ

j and ρr
j at hand, we replace the definition of the mass flux in (5) by

F+
j = F+(ρℓ

j , uj) and F−
j = F−(ρr

j , uj),

which still accounts for the upwinding principles. For the momentum, we proceed as
follows:

• the convection fluxes are defined with these reconstructed mass fluxes, by using
(10) and (12),

• the pressure gradient uses the centered definition based on the reconstructed
densities

p(ρr
j) − p(ρℓ

j).
The non-conservative source term is embodied in this definition.
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Thus, we introduce the following mass fluxes, momentum convection fluxes, and the
source term

Fj = F+(ρℓ
j , uj) + F−(ρr

j , uj),

Gj+ 1
2

= uj

2

(
F+(ρℓ

j , uj) + F+(ρℓ
j+1, uj+1)

)
+ uj+1

2

(
F−(ρr

j , uj) + F−(ρr
j+1, uj+1)

)
,

Sj = p(ρr
j) − p(ρj+ 1

2
) − p(ρℓ

j) + p(ρj− 1
2
).

The well-balanced scheme reads

ρj+ 1
2

= ρj+ 1
2

− δt

δxj+ 1
2

(
Fj+1 − Fj

)
,

ρjuj = ρjuj − δt

δxj

((
Gj+ 1

2
+ Πj+ 1

2

)
−
(
Gj− 1

2
+ Πj− 1

2

)
+ Sj

)
,

(15)

with Πj+ 1
2

= p(ρj+ 1
2
).

Consistency. The consistency with the exact fluxes comes directly from the con-
sistency of Fj and Gj+ 1

2
. Indeed, if zj− 1

2
= zj+ 1

2
= zj+ 3

2
then we have ρr

j = ρj+ 1
2
,

ρℓ
j = ρj− 1

2
and ρr

j+1 = ρj+ 3
2
, ρℓ

j+1 = ρj+ 1
2
, so that, in this case, Fj = Fj and

Gj+ 1
2

= Gj+ 1
2
. More interestingly, Sj/δxj is consistent with the source term ρ∂xz.

Let us denote by δzj the quantity zj+ 1
2

− zj− 1
2
. If z is a regular function this quantity

is of order δxj . We first investigate the specific case of the Shallow-Water system far
from dry/wet transition (more precisely assuming that min

(
ρj− 1

2
, ρj+ 1

2

)
⩾ |δzj | holds).

We get

(SW) Sj = 1
2(ρr

j − ρj+ 1
2
)(ρr

j + ρj+ 1
2
) − 1

2(ρℓ
j − ρj− 1

2
)(ρℓ

j + ρj− 1
2
)

where the equilibrium relations cast as

(SW) ρr
j = ρj+ 1

2
−
[
δzj

]
−, ρℓ

j = ρj− 1
2

−
[
δzj

]
+.

Hence, we obtain

(SW) Sj =
ρj+ 1

2
+ ρj− 1

2

2 δzj −
ρr

j − ρℓ
j

2 |δzj |. (16)

It follows that Sj is (first order) consistent with ρ∂xz. In the general case, the
consistency with the source term comes from the following expansion. As for the
case of Shallow-Water equations, the expression of ρr

j and ρℓ
j depends on the sign of

δzj . If δzj ⩾ 0, we have the exact equality ρr
j = ρj+ 1

2
. But, if δzj ⩽ 0, we have

ρr
j = E −1([E (ρj+ 1

2
) + δzj ]+). Thus, when δzj ⩽ 0, in the case where E (ρj+ 1

2
) ⩽ −δzj ,

we have ρr
j = 0 whereas, in the case where E (ρj+ 1

2
) ⩾ −δzj , a Taylor expansion leads

to

ρr
j = ρj+ 1

2
+ δzj

ρj+ 1
2

p′(ρj+ 1
2
) + o(|δzj |), (when δzj ⩽ 0 and E (ρj+ 1

2
) ⩾ δzj),
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since
(
E −1

)′(
E (ρ)

)
= ρ

p′(ρ) . Finally, we have

ρr
j =


0, if δzj ⩽ 0 and E (ρj+ 1

2
) ⩽ |δzj |,

ρj+ 1
2

+ δzj

ρj+ 1
2

p′(ρj+ 1
2
) + o(|δzj |), if δzj ⩽ 0 and E (ρj+ 1

2
) ⩾ |δzj |,

ρj+ 1
2
, if δzj ⩾ 0,

(17)

and, similarly,

ρℓ
j =


ρj− 1

2
, if δzj ⩽ 0,

ρj− 1
2

− δzj

ρj− 1
2

p′(ρj− 1
2
) + o(|δzj |), if δzj ⩾ 0 and E (ρj− 1

2
) ⩾ |δzj |,

0, if δzj ⩾ 0 and E (ρj− 1
2
) ⩽ |δzj |.

(18)

Following the same lines, since(
p ◦ E −1

)′(
E (ρ)

)
= ρ and

(
p ◦ E −1

)′′(
E (ρ)

)
= ρ

p′(ρ) ,

we have the following expressions for p(ρr
j) and p(ρℓ

j)

p(ρr
j) =


0, if δzj ⩽ 0 and E (ρj+ 1

2
) ⩽ |δzj |,

p(ρj+ 1
2
) + δzjρj+ 1

2
+

δz2
j

2
ρj+ 1

2

p′(ρj+ 1
2
) + o(|δzj |2), if δzj ⩽ 0 and E (ρj+ 1

2
) ⩾ |δzj |,

p(ρj+ 1
2
), if δzj ⩾ 0,

(19)
and

p(ρℓ
j) =


p(ρj− 1

2
), if δzj ⩽ 0,

p(ρj− 1
2
) − δzjρj− 1

2
+

δz2
j

2
ρj− 1

2

p′(ρj− 1
2
) + o(|δzj |2), if δzj ⩾ 0 and E (ρj− 1

2
) ⩾ |δzj |,

0, if δzj ⩾ 0 and E (ρj− 1
2
) ⩽ |δzj |.

(20)
We observe that the case where p(ρr

j) = 0 occurs only when ρj+ 1
2

is sufficiently small
since, in this case, ρj+ 1

2
⩽ E −1(|δzj |) −→

δx→0
0. Moreover, an expansion of p(ρj+ 1

2
) in

this case shows that

p(ρj+ 1
2
) = p ◦ E −1(E (ρj+ 1

2
)
)

= p ◦ E −1(0) +
(

p ◦ E −1
)′

(0) E (ρj+ 1
2
) + o(|E (ρj+ 1

2
)|)

= o(|E (ρj+ 1
2
)|).

(21)

This proves that, in the case where E (ρj+ 1
2
) ⩽ |δzj |, we have

p(ρj+ 1
2
) + δzjρj+ 1

2
= o(|δzj |).
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Thus, we finally have

p(ρr
j) =

{
p(ρj+ 1

2
) + δzjρj+ 1

2
+ o(|δzj |), if δzj ⩽ 0,

p(ρj+ 1
2
), if δzj ⩾ 0,

and similarly

p(ρℓ
j) =

{
p(ρj− 1

2
), if δzj ⩽ 0,

p(ρj− 1
2
) − δzjρj− 1

2
+ o(|δzj |), if δzj ⩾ 0,

It leads to the following equality for Sj

Sj =
{

δzjρj+ 1
2

+ o(|δzj |), if δzj ⩽ 0,

δzjρj− 1
2

+ o(|δzj |), if δzj ⩾ 0.

The term Sj/δxj is thus consistent with ρ∂xz.

Remark 2.1. Far from wet/dry transition (when min(E (ρj− 1
2
), E (ρj+ 1

2
)) ⩾ |δzj |)

a first order consistency error is obtained. Moreover, it also applies in dry area if
limρ→0 p′′(ρ) ̸= 0 since in this case, the o(|E (ρj+ 1

2
)|) in (21) is actually a O(|E (ρj+ 1

2
)|2).

Preservation of equilibrium state. A key property of the construction is the
equality ρr

j = ρℓ
j at equilibrium. Indeed, by definition of the equilibrium state (2)

associated to the constant η, we have

E (ρj± 1
2
) + zj± 1

2
= max

(
zj± 1

2
, η
)
,

so that, since zj = max(zj− 1
2
, zj+ 1

2
), at the equilibrium state we have

E (ρr
j) = E (ρℓ

j) = [η − zj ]+.

It ensures the equality ρr
j = ρℓ

j . Note that the positive part in the definiton (14) of ρr
j

and ρℓ
j is crucial to ensure the equality ρr

j = ρℓ
j in the dry area (where zj > η).

Thus, if the system is at an equilibrium state, that is, in particular, ρj− 1
2

= ρ̂j− 1
2
,

ρj+ 1
2

= ρ̂j+ 1
2
, ρj+ 3

2
= ρ̂j+ 3

2
, uj = 0, uj−1 = 0 and uj+1 = 0, as mentionned above,

we have ρr
j = ρℓ

j and ρr
j+1 = ρℓ

j+1. Thus, the mass fluxes vanish at xj+ 1
2

and xj− 1
2

since, by consistency of the splitting, they are equal to ρr
j+1uj+1 = ρℓ

j+1uj+1 = 0 and
ρr

juj = ρℓ
juj = 0 respectively. The density remains unchanged. Since uj = 0, uj−1 = 0

and uj+1 = 0, the momentum fluxes vanish and the sum of the pressure and source
term which is equal to p(ρr

j) − p(ρℓ
j) is also zero since ρr

j = ρℓ
j . The velocity remains

unchanged and the equilibrium states are perfectly preserved.
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Remark 2.2 (A simple staggered WB scheme for the Shallow-Water system, [24]).
For the Shallow-Water system, the following simple staggered scheme, proposed in [24],
based on the upwinding according to the material velocity as in [37]

ρj+ 1
2

= ρj+ 1
2

− δt

δxj+ 1
2

([uj+1]+ρj+ 1
2

+ [uj+1]−ρj+ 3
2
)︸ ︷︷ ︸

Fj+1

)

− δt

δxj+ 1
2

([uj ]+ρj− 1
2

+ [uj ]−ρj+ 1
2
)︸ ︷︷ ︸

Fj

,

ρjuj = ρjuj − δt

2δxj

(
uj [Fj + Fj+1]+ + uj+1[Fj + Fj+1]−

)
− δt

2δxj

(
uj−1[Fj−1 + Fj ]+ + uj [Fj−1 + Fj ]−

)
− δt

δxj
(p(ρj+ 1

2
) − p(ρj− 1

2
)) − δt

δxj
(ρj+ 1

2
+ ρj− 1

2
)
zj+ 1

2
− zj− 1

2

2

(22)

is well-balanced in the case where there is no dry area. If (ρ̂j+ 1
2
, ûj) is an equilibrium

state with no dry area (see (2) with η > maxj

(
zj+ 1

2

)
), the mass fluxes and the con-

vection fluxes vanish since ûj = 0, while the last two terms of the momentum equation

in (22) recombine as
ρ̂

j+ 1
2

+ρ̂
j− 1

2
2

(
(ρ̂j+ 1

2
+ zj+ 1

2
) − (ρ̂j− 1

2
+ zj− 1

2
)
)
. Away from wet/dry

transition, this term vanishes too. Note that the well-balanced property of the scheme
(22) in this case crucially relies on the specific form of both the numerical fluxes and
of the pressure law.

Stability analysis. The numerical scheme should at least preserve the positivity of
the density, which can be seen as a minimal stability criterion. To this end, we observe
that ρ 7→ E (ρ) is non decreasing. Hence, since zj ⩾ zj± 1

2
, we have E (ρℓ

j+1) ⩽ E (ρj+ 1
2
),

E (ρr
j) ⩽ E (ρj+ 1

2
) and thus ρℓ

j+1 ⩽ ρj+ 1
2
, ρr

j ⩽ ρj+ 1
2
. The monotonicity of the flux

function leads to F+(ρℓ
j+1, uj+1) ⩽ F+(ρj+ 1

2
, uj+1) and F−(ρr

j , uj) ⩾ F−(ρj+ 1
2
, uj).

Since F+(ρℓ
j , uj) ⩾ 0 and −F−(ρr

j+1, uj+1) ⩾ 0, we arrive from (15) at

ρj+ 1
2

⩾ ρj+ 1
2

− δt

δxj+ 1
2

F+(ρℓ
j+1, uj+1) + δt

δxj+ 1
2

F−(ρr
j , uj)

⩾ ρj+ 1
2

− δt

δxj+ 1
2

F+(ρj+ 1
2
, uj+1) + δt

δxj+ 1
2

F−(ρj+ 1
2
, uj).

We can now conclude as in [10, Prop. 3.7]: under the CFL-condition

δt

δxj+ 1
2

([
λ+(ρj+ 1

2
, uj+1)

]
+ +

[
λ−(ρj+ 1

2
, uj)

]
−

)
⩽ 1

the scheme (15) preserves the positivity of the discrete density.
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2.3 Second order version of the WB scheme
We propose a second-order accurate version of the scheme. To this end, we make use
of the principles of the MUSCL methods [53]. For the source-free problem, we refer
the reader to [31] for the adaptation of this framework to the scheme described in
Section 2.1. Let us denote

W = E (ρ) + z

the quantity conserved by the equilibrium. The idea is to introduce a P1 interpolation
of the numerical unknowns in order to define new interface values. Namely, we set

ρ−
j = ρj− 1

2
+ πj− 1

2
(xj − xj− 1

2
), ρ+

j = ρj+ 1
2

+ πj+ 1
2
(xj − xj+ 1

2
),

and we proceed similarly with

W −
j = Wj− 1

2
+ π̃j− 1

2
(xj − xj− 1

2
), W +

j = Wj+ 1
2

+ π̃j+ 1
2
(xj − xj+ 1

2
).

In these formula, πj+ 1
2
, π̃j+ 1

2
are some appropriately defined slopes, that accounts for

a limitation mechanism in order to prevent under/overshoots in the vicinity of shocks;
in such regions the scheme degrades to first order. The design of limiters is completely
standard; we refer the reader to [31] and the references therein for further details. We
reconstruct an interface data for the bottom topography by introducing

z−
j = W −

j − E (ρ−
j ), z+

j = W +
j − E (ρ+

j ).

Next, we set
zml

j = max(z−
j , z+

j ),

bearing in mind that these reconstructed quantities might vary at each time step, while
the force density z does not depend on time. Finally, we reconstruct the interface
densities by using the same idea as before, using the interpolated values

E (ρml,r
j ) =

[
E (ρ+

j ) + z+
j − zml

j

]
+ =

[
W +

j − zml
j

]
+,

E (ρml,ℓ
j ) =

[
E (ρ−

j ) + z−
j − zml

j

]
+ =

[
W −

j − zml
j

]
+.

The mass fluxes are then set to

F ml
j = F+(ρml,ℓ

j , uj) + F−(ρml,r
j , uj).

For the momentum equation, we similarly reconstruct a velocity

u−
j+ 1

2
= uj + νj(xj+ 1

2
− xj), u+

j+ 1
2

= uj+1 + νj+1(xj+ 1
2

− xj+1),

where νj are convenient slopes defined from limiters. We then adapt accordingly the
definition of the convection fluxes:

G ml
j+ 1

2
=

u−
j+ 1

2

2

(
F+(ρml,ℓ

j , uj) + F+(ρml,ℓ
j+1 , uj+1)

)
+

u+
j+ 1

2

2

(
F−(ρml,r

j , uj) + F−(ρml,r
j+1 , uj+1)

)
.
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The centered approximation of the pressure with

Πj+ 1
2

= p(ρj+ 1
2
)

gives a second order approximation. What is more subtle is the treatment of the source
terms. So far, we have just replaced ρ

r/ℓ
j (or uj) by the values ρ

ml,r/ℓ
j (or u∓

j± 1
2
) obtained

by using the limited interpolation. Proceeding similarly with the source term produces
an approximation which is not consistent (essentially since the reconstructions z±

j used
in the definition of ρ

ml,r/ℓ
j are two (second order) approximations of z at the same point

xj). A further inspection of formula (16) shows that the obstacle for having a second
order approximation seems to come from the term

ρr
j − ρℓ

j

2 |δzj |

By the way, the scheme discussed in Remark 2.2 precisely disregard this term. This
suggests that we should stick to the definition of the source term with (14) and just
correct the first order defect; namely, we use

Sml
j = p(ρr

j) − p(ρj+ 1
2
) − p(ρℓ

j) + p(ρj− 1
2
) +

ρr
j − ρℓ

j

2 |δzj |. (23)

The scheme thus reads

ρj+ 1
2

= ρj+ 1
2

− δt

δxj+ 1
2

(
F ml

j+1 − F ml
j

)
,

ρjuj = ρjuj − δt

δxj

((
G ml

j+ 1
2

+ Πj+ 1
2

)
−
(
G ml

j− 1
2

+ Πj− 1
2

)
+ Sml

j

)
,

with Πj+ 1
2

= p(ρj+ 1
2
).

Consistency. For the Shallow-Water system (when min(ρj− 1
2
, ρj+ 1

2
) ⩾ |δzj |), (23)

exactly casts as

(SW) Sml
j =

ρj+ 1
2

+ ρj+ 1
2

2 (zj+ 1
2

− zj− 1
2
).

We recover the treatment of the pressure gradient/source term devised in Remark 2.2,
which is indeed a second order approximation of ρ∂xz at xj . Hence, for reaching the
second order accuracy, we remove from the centered well-balanced formula p(ρr

j) −
p(ρj+ 1

2
) − p(ρℓ

j) + p(ρj− 1
2
) the correction term (ρr

j − ρℓ
j)|δzj |/2 (which produces a O(1)

error). This simple approach applies to more general pressure laws. We are led to
evaluate the consistency error of

Sml
j = (p(ρr

j) − p(ρj+ 1
2
)) − (p(ρℓ

j) − p(ρj− 1
2
)) − 1

2(ρr
j − ρℓ

j)|δzj |.

13



We go back to (17), (18), (19) and (20) to obtain the following expansions

p(ρr
j) − p(ρj+ 1

2
) + 1

2ρr
j |δzj | =



−p(ρj+ 1
2
), if δzj ⩽ 0 and E (ρj+ 1

2
) ⩽ |δzj |,

1
2δzjρj+ 1

2
+ o(|δzj |2), if δzj ⩽ 0 and E (ρj+ 1

2
) ⩾ |δzj |,

1
2δzjρj+ 1

2
, if δzj ⩾ 0,

p(ρℓ
j) − p(ρj− 1

2
) + 1

2ρℓ
j |δzj | =


−1

2ρj− 1
2
δzj , if δzj ⩽ 0,

−1
2ρj− 1

2
δzj + o(|δzj |2), if δzj ⩾ 0 and E (ρj− 1

2
) ⩾ |δzj |,

−p(ρj− 1
2
), if δzj ⩾ 0 and E (ρj− 1

2
) ⩽ |δzj |.

Bearing in mind that, in the case where E (ρj± 1
2
) ⩽ |δzj |, we have

p(ρj± 1
2
) + δzjρj± 1

2
= o(|δzj |),

we obtain

Sj =


1
2(ρj− 1

2
+ ρj+ 1

2
)δzj + o(|δzj |), if min

(
E (ρj− 1

2
), E (ρj+ 1

2
)
)
⩽ |δzj |,

1
2(ρj− 1

2
+ ρj+ 1

2
)δzj + o(|δzj |2), otherwise.

The term 1
2(ρj− 1

2
+ ρj+ 1

2
)δzj/δxj provides a second order accurate approximation of

the source term ρ∂xz at the point xj . Thus, Sj/δxj can reach a second order accuracy
away from dry/wet transition (more precisely when min

(
E (ρj− 1

2
), E (ρj+ 1

2
)
)
⩾ |δzj |).

Preservation of equilibrium state. Equilibrium states (2) with no dry area
(that is Wj+ 1

2
= η) are preserved by the MUSCL reconstruction (i.e. W ±

j = η) and,
as proved in the previous Section, we then obtain ρr

j = ρℓ
j and ρml,r

j = ρml,ℓ
j . It readily

follows that the second order version of the scheme preserves equilibrium with no dry
area. In the presence of dry area, the preservation of equilibrium states is also valid.
However, the MUSCL reconstruction no longer exactly preserves the equilibrium states
near wet/dry transitions. Nevertheless we can observe, thanks to the properties of the
reconstruction that W ±

j ⩾ η, since at equilibrium we have Wj+ 1
2

= max(η, zj+ 1
2
) ⩾ η.

Moreover, we have

Wj+ 1
2

= η =⇒ (W +
j = η, W −

j+1 = η)

Wj+ 1
2

= zj+ 1
2

=⇒ (ρ+
j = 0, ρ−

j+1 = 0).

Indeed, when Wj+ 1
2

= η, we necessarily have Wj− 1
2
⩾ Wj+ 1

2
and Wj+ 3

2
⩾ Wj+ 1

2
, so

that the properties of the slope-limiter implies that π̃j+ 1
2

= 0, ensuring the asserted
property. The second line is similarly obtained since when Wj+ 1

2
= zj+ 1

2
, we have
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ρj+ 1
2

= 0 ⩽ min(ρj− 1
2
, ρj+ 3

2
) so that πj+ 1

2
= 0. With these properties at hand, it is

now straightforward to prove that ρml,r
j = ρml,ℓ

j . Indeed, we distinguish four cases.
First, if Wj− 1

2
= η and Wj+ 1

2
= η then we have W ±

j = η which leads to the equality
ρml,r

j = ρml,ℓ
j . If Wj− 1

2
= zj− 1

2
and Wj+ 1

2
= zj+ 1

2
then ρ±

j vanish, so that z±
j = W ±

j

and the equality ρml,r
j = ρml,ℓ

j still holds. Finally the two last cases are symmetric.
For instance, if Wj− 1

2
= zj− 1

2
and Wj+ 1

2
= η then we have ρ−

j = 0 and W +
j = η.

This implies that η ⩽ W −
j = z−

j ⩽ zml
j . Thus, ρml,r

j and ρml,ℓ
j both vanish in this

case. The equality ρml,r
j = ρml,ℓ

j is ensured in the four possible cases and, as previously,
it guarantees that the second order version of the scheme preserves the equilibrium
states (2).

3 Numerical experiments
To illustrate the ability of the proposed approach in handling balance laws with complex
source terms, we challenge the scheme against several benchmark tests, in 1D and 2D.
The presented simulations are performed for the Shallow-Water equation (γ = 2),
written in the form

∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + gρ2/2) = −gρ∂xz

(24)

with g > 0, the gravity constant, for the sake of comparison, but it also applies for
general pressure laws. For all the 1D simulations, the time step is fixed at each time
iteration by imposing the following equality

δt = Cδt
δx

maxj |uj | + maxj c(ρj+1/2)

where Cδt is a constant whose value is made precise in the description of each test case.

3.1 Lake at rest
We first check that the order 1 and order 2 schemes solve exactly the lake at rest
solutions. The computational domain is [0, 20]. We choose a bottom topography with
a parabolic obstacle defined by

z(x) =
{

0.2 − 0.05(x − 10)2, if 8 < x < 12,
0, otherwise.

The initial velocity is set to zero and the initial height is set to

ρ(x) =
{

0.1 − z(x), if x < 10 −
√

2 or x > 10 +
√

2,
0, otherwise,

so that the free surface is horizontal and there is a dry zone at the top of the obstacle
for x between 10 −

√
2 and 10 +

√
2. The initial data is a stationnary solution of the

problem. The final time of the simulation is set to T = 1000 and Cδt is set to 0.9. We
observe that the schemes (first and second order versions) exactly preserve the initial
state whatever is the mesh size (δx = 1, 0.1, 0.01).
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(a) Free surface ρ + z (b) Discharge ρu

Figure 3: Perturbations of the lake at rest: numerical solutions obtained for δx = 0.01

3.2 Perturbations of the lake at rest solution
Referring to [45] (see also [7, 16]), we investigate the propagation of small perturbations
of the lake at rest steady solution. The computational domain is now the interval [0, 2]
and the gravity constant is g = 9.8. The bottom topography is defined by

z(x) =
{

−1 + 0.25
(

1 + cos
(
10π(x − 0.5)

))
, if 1.4 < x < 1.6,

−1, otherwise.

The steady state solution is a flat free surface at rest. It is perturbed by a pulse and
two opposite waves appear over the bump. The initial data are given by

u(x) = 0, ∀x ∈ [0, 2], and ρ(x) =
{

−z(x) + 0.001, if 1.4 < x < 1.6,

−z(x), otherwise.

The final time of the simulation is set to T = 0.2 and Cδt is set to 0.5. The numerical
results are presented in Fig. 3 (the free surface at left and the discharge q = ρu at
right). A reference solution is computed with δx = 4 × 10−4, it is plotted in black solid
line. The numerical results obtained with δx = 10−2 are plotted in blue dashed line for
the first order scheme and in red dotted line for the second order scheme. The results
are comparable to those obtained in the literature and we clearly see the advantage of
running the second order scheme.

3.3 Flow over an isolated bump
In this Section, we consider flows governed by Shallow-Water equations, over an isolated
convex obstacle which is assumed to be symmetric with respect to its crest. The flow
goes from the left to the right. Its velocity and height far from the obstacle are
denoted by u0 > 0 and ρ0. A transient motion develops at the obstacle and moves
in both directions. After sufficient time has elapsed, the flow reaches a steady state
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in the vicinity of the obstacle; transient structures move away from the obstacle and
reach asymptotic states. The asymptotic states can be entirely characterized from the
values of u0 and ρ0 and the geometry of the bump, as it is fully detailed in [40]. For
the sake of completeness, we recall here the different situations which can occur and
how the asymptotic reference solution can be computed in the different cases. Let us
denote by F0 be the Froude number computed from u0 and ρ0:

F0 = u0√
gρ0

,

while Zc stands for the height of the obstacle crest. We distinguish two situations
depending on the values of the coefficient

M0 = 1
2F 2

0 − 3
2F

2/3
0 + 1

compared to the normalized height of the obstacle crest

Mc = Zc

ρ0
.

In the case where
Mc < M0,

the flow reaches a steady state. More precisely, when F0 < 1 the free surface at the
steady state dips symmetrically over the symmetrical obstacle (see Fig. 4a) whereas
when F0 > 1 the steady state rises over the obstacle (see Fig. 4b). The reference
solution can be obtained by solving the steady state equations

u2

2g
+ ρ + z = constant1,

ρu = constant2.

Using the background state (ρ0, u0) far from the obstacle, we can thus obtain ρ from

ρ2
0u2

0
2gρ2 + ρ + z = u2

0
2g

+ ρ0,

and then u = ρ0u0/ρ. Note that ρ and u depends on the space variable x since in these
equations z is a function of x.

The situation is more intricate when

Mc > M0.

The obstacle partially blocks the flow, a bore forms around the obstacle and the flow
becomes discontinuous, hydraulic jumps appear. A discontinuity appears downstream
the obstacle and propagates towards the left. The flow is sonic at the crest of the
obstacle, that is, denoting (ρc, uc) the flow state at the crest of the obstacle, we have
uc = √

gρc. Upstream the obstacle, two slightly different situations can asymptotically
occur. In the first case, a discontinuity appears after the obstacle and propagates
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towards the right (see Fig. 4c) whereas in the second case, a stationary shock lies
above the obstacle (see Fig. 4d). In both cases, a rarefaction wave allows the flow
to go back to the background state (ρ0, u0). The asymptotic reference solution can
be obtained as follows. We denote by (ρA, uA) the constant state reached after the
downstream hydraulic jump (before the obstacle). It is linked to the background state
(ρ0, u0) by the following Rankine-Hugoniot condition

ρAuA = ρAu0 + (ρ0 − ρA)
√

g

2
ρA

ρ0
(ρ0 + ρA).

Moreover, it is also linked to the state above the obstacle by steady state equations
u2

A

2g
+ ρA = u2

c

2g
+ ρc + Zc,

ρAuA = ρcuc.

Thus, since ρcuc = √
gρ

3/2
c , ρA can be obtained by solving

ρ3
c + 2ρ2

A = (3ρc + 2Zc)ρ2
A,

where

ρc =
(

ρA
u0√

g
+ (ρ0 − ρA)

√
g

2
ρA

ρ0
(ρ0 + ρA)

) 2
3

.

Next, we compute the asymptotic reference solution after the bore. We first assume
that we are in the situtation where an hydraulic jump propagates away from the ob-
stacle. We are led to compute two constant states to compute (ρB, uB) and (ρx, ux)
(see Fig 4c). The states (ρc, uc) and (ρB, uB) are linked by steady states equations

ρ3
c + 2ρ2

B = (3ρc + 2Zc)ρ2
B, (ρB ̸= ρA).

It allows us to compute ρB since now ρc is known. Then uB = ρcuc/ρB. Next, the
states (ρB, uB) and (ρx, ux) are linked by the Rankine-Hugoniot condition

ρBuB = ρBux + (ρx − ρB)
√

g

2
ρB

ρx
(ρx + ρB)

Finally, the states (ρx, ux) and (ρ0, u0) are linked by a rarefaction wave so that the
Riemann invariants are preserved

ux − 2√
gρx = u0 − 2√

gρ0.

Thus, ρx can be obtained by solving

ρBuB = ρB

(
u0 − 2√

gρ0 + 2√
gρx

)
+ (ρx − ρB)

√
g

2
ρB

ρx
(ρx + ρB).

The displacement velocity of the shock is (ρxux − ρBuB)/(ρx − ρB). We distinguish
now two cases: if this velocity is positive the shock propagates away from the obstacle
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and we have obtained the asymptotic reference solution (see Fig 4c); if this velocity is
negative, the obtained solution is not physically relevant and should be disregarded.
We have to construct a solution with a stationary shock above the obstacle. In this
case, we are left with the task of determining three states (ρ−, u−), (ρ+, u+) and ρx, ux

(see Fig 4d). The states (ρA, uA) and (ρ−, u−) are linked by steady state equations
u2

−
2g

+ ρ− + Z∗ = u2
A

2g
+ ρA,

ρ−u− = ρAuA,

where Z∗ stands for the height of the obstacle at the shock position. The states (ρ−, u−)
and (ρ+, u+) are linked by the Rankine-Hugoniot conditions for a stationary shock

ρ−u− = ρ+u+,

ρ+u+ −
√

g

2ρ+ρ−(ρ− + ρ+) = 0.

The states (ρ+, u+) and (ρx, ux) are linked by steady state equations
u2

+
2g

+ ρ+ + Z∗ = u2
x

2g
+ ρx,

ρ+u+ = ρxux.

Finally, as before, the states (ρx, ux) and (ρ0, u0) are linked by a rarefaction wave

ux − 2√
gρx = u0 − 2√

gρ0.

Thus, we deal with the four following equations

ρ2
Au2

A

2gρ2
−

+ ρ− + Z∗ = u2
A

2g
+ ρA,

ρAuA −
√

g

2ρ+ρ−(ρ− + ρ+) = 0

ρ2
Au2

A

2gρ2
+

+ ρ+ + Z∗ = ρ2
Au2

A

2gρ2
x

+ ρx,

ρAuA

ρx
− 2√

gρx = u0 − 2√
gρ0,

to determine ρ−, ρ+, ρx and Z∗.
In conclusion, there exists four different classes of asymptotic solutions as illustrated

in Fig. 4. We numerically investigate these cases. The obstacle is defined by

z(x) = 1
10

(
1 − x2

16

)
,

so that Zc = 0.1. We fix ρ0 = 0.2 and compute the velocity u0 from different values
of F0 = 0.2, 0.3, 0.7, 1.9, the gravity g being fixed to 9.8. In these test cases, we set
Cδt = 0.5.
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ρ0

ρc

Zc

steady state

(a) Mc < M0 and F0 > 1

ρ0

ρc

Zc

steady state

(b) Mc < M0 and F0 > 1

ρ0

1-shock

ρA

ρc

Zc
ρB

1-shock
ρx

ρ0

2-rarefaction
steady state

(c) Mc > M0, upstream moving shock.

ρ0

1-shock

ρA

ρc

Z∗

1-shock

ρ−

ρ+

ρx

ρ0

2-rarefaction
steady state

(d) Mc > M0, stationnary shock.

Figure 4: Flow over an isolated obstacle: structure of the asymptotic solution. Free surface
(solid lines) and obstacle (dotted lines)

20



(a) Height ρ (b) Velocity u

(c) Discharge ρu (d) Froude number

Figure 5: Flow over an isolated obstacle: numerical solutions obtained for F0 = 0.2, δx = 0.05
at T = 2000
.

3.3.1 Cases F0 = 0.2 and F0 = 1.9
In these two cases, we have Mc < M0. As expected, the numerical solutions reach a
steady state. The results obtained at time T = 2000 with our schemes (order 1 and
order 2) are presented in Fig. 5 and Fig. 6 for δx = 0.05. We obtain a good agreement
with the reference profile computed with the procedure explained above. In the case
F0 = 0.2, the free surface dips over the obstacle whereas in the case F0 = 1.0, it rises
over the bump.

In Fig. 7, we present the discrete error in L1-norm as a function of the mesh size.
As expected, we observe that the MUSCL reconstruction procedure allows to reach the
second order accuracy for the velocity u and the height h.
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(a) Height ρ (b) Velocity u

(c) Discharge ρu (d) Froude number

Figure 6: Flow over an isolated obstacle: numerical solutions obtained for F0 = 1.9, δx = 0.04
at T = 2000
.
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(a) Height ρ (b) Velocity u

Figure 7: Flow over an isolated obstacle: discrete error in L1-norm as a function of the mesh
size

3.3.2 Case F0 = 0.3
In this case, we have Mc > M0, this is the situation illustrated in Fig. 4d. A stationary
shock appears behind the obstacle. The result obtained at time T = 30 with our scheme
(order 1 and order 2) are presented in Fig. 8 for δx = 0.1. We also represent with
a solid line the asymptotic reference profile. We observe that the constant states ρA

and ρ+, the value ρ− and the equilibrium profiles (before and after the stationary
shock) perfectly match with the reference profile. However, the numerical solutions at
time T = 30 present some additional structures compared to the reference asymptotic
solution. These additional structures appear near the upstream shock and near the
downstream rarefaction wave. Since the obtained numerical solutions seems to be
converged with respect to δx and δt, we guess that we face transient structures that
do not appear, by definition, in the asymptotic profile. We plot in Fig. 9 and Fig. 10
a zoom on the structure for three larger final times T = 100, T = 250 and T = 2000.
We indeed observe that the bump in Fig. 9 and the oscillations in Fig. 10 vanish as the
time increases.

3.3.3 Case F0 = 0.7
In this case, we still have Mc > M0, but now in the situation of Fig. 4c. The shock
which appears behind the obstacle is moving to the right. The results obtained at time
T = 30 with our schemes (order 1 and order 2) are presented in Fig. 11 for δx = 0.1.
We also represent with a solid line the asymptotic reference profile. Again, we observe
that the constant states ρA, ρB, ρx and the equilibrium profile perfectly match with
the reference profile. The position of the shocks is also in agreement with the reference
asymptotic solution. As previously, at time T = 30, we also observe an additional
transient structure in the numerical solutions compared to the reference asymptotic
solution in the neighborhood of the rarefaction wave.
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(a) Height ρ (b) Velocity u

(c) Discharge ρu (d) Froude number

Figure 8: Flow over an isolated obstacle: numerical solutions obtained for F0 = 0.3, δx = 0.1
at T = 30
.

(a) T = 100 (b) T = 250 (c) T = 1000

Figure 9: Flow over an isolated obstacle: numerical solutions obtained for F0 = 0.3, δx = 0.2,
zoom on the density
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(a) T = 250 (b) T = 1000 (c) T = 2000

Figure 10: Flow over an isolated obstacle: numerical solutions obtained for F0 = 0.3, δx =
0.2, zoom on the density

(a) Height ρ (b) Velocity u

(c) Discharge ρu (d) Froude number

Figure 11: Flow over an isolated obstacle: numerical solutions obtained for F0 = 0.7, δx = 0.1
at T = 30
.
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3.4 Wet/dry fronts in a nonflat bassin
We consider in this Section a test case proposed by [25] (see also [7, 16]). The compu-
tational domain is [0, 25] and the gravity is g = 9.8. The bottom topography is defined
by

z(x) =
{

−13, if 25/3 < x < 25/2,
−14, otherwise.

With q = ρu, the initial data are given by

ρ(x) = −z(x) − 4, and q(x) =
{

−350, if x ⩽ 50/3,
350, if x > 50/3.

We use δx = 5×10−3 and Cδt = 0.4. The numerical solution obtained with our schemes
are presented in Fig. 12 (for the first order scheme) and in Fig. 13 (for the second order
scheme) at different times t = 0.05, t = 0.25 and t = 0.45. Two rarefaction waves
propagate in opposite directions creating a dry bed. The schemes capture correctly
the generation and propagation of the wet-dry fronts (even when the wave propagates
over the step).

3.5 Thacker test: oscillation in a 2D-paraboloid
In this Section, we consider the 2D problem of a free surface oscillating in a paraboloid
[50, 20, 21]. The computational domain is [−2, 2] × [−2, 2]. The topography is given
by

z(x, y) = 1
2(x2 + y2 − 1).

The initial data are given by

ρ(x, y) =
(
0.125 ∗ (4x − 1) − z(x, y)

)
1(x−0.5)2+y2<1,

u(x, y) =
(

0
0.5

)
× 1(x−0.5)2+y2<1.

This is a planar free surface with a non-vanishing initial velocity. The solution is
exactly known; it is given by

ρ(t, x, y) =
(

0.125
(
4x cos(t) + 4y sin(t) − 1

)
− z(x, y)

)
1(x−0.5 cos(t))2+(y−0.5 sin(t))2<1,

u(t, x, y) = 1
2

(
− sin(t)
cos(t)

)
.

The solution is 2π-periodic with respect to the time variable. The free surface remains
planar in time with a moving circular wet/dry transition line. The numerical results
obtained with the first and second order schemes are presented in Fig. 14 and 15. For
this test case, the time step is defined by

δt = 0.2 min
(
δx, δy

)
.

Figure 14 shows the discrete error in L1-norm at time T = 4π as a function of the mesh
size. As expected, we observe that the MUSCL rescontruction procedure reaches higher
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(a) Free surface ρ + z (b) Velocity u

(c) Discharge ρu

Figure 12: Wet/dry fronts in a nonflat bassin: numerical solutions obtained with the first
order scheme, δx = 0.005

.
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(a) Free surface ρ + z (b) Velocity u

(c) Free surface ρu

Figure 13: Wet/dry fronts in a nonflat bassin: numerical solutions obtained with the second
order scheme, δx = 0.005

.
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Figure 14: 2D Thacker test: discrete error in L1-norm as a function of the mesh size (1st
and 2nd order schemes)

accuracy (1.8 convergence order). The approximate solutions obtained at T = 4π with
δx = 0.01 and δy = 0.01 are presented in Fig. 15. At the left, in Fig. 15a, we provide
the contour lines of the free surface. We clearly observe the circular shoreline and the
planar free surface. In Fig. 15b, we provide a cutline along the axis y = 0 and we
compare the results obtained with the first or second order scheme with the reference
exact solution.

References
[1] CALIF3S, a software components library for the computation of reactive turbulent

flows.
[2] M. V. A. Bermudez. Upwind methods for hyperbolic conservation laws with source

terms. Computers & Fluids, 23:1049–1071, 1994.
[3] A. Arakawa and V. R. Lamb. Computational design of the basic dynamical pro-

cesses of the UCLA general circulation model. Methods in Computational Physics:
Advances in Research and Applications, 17:173–265, 1977.

[4] A. Arakawa and V. R. Lamb. A potential enstrophy and energy conserving scheme
for the shallow water equations. Monthly Weather Rev., 109(1):18–36, 1981.

[5] E. Audusse, F. Bouchut, and M.-O. Bristeau. A well-balanced positivity preserving
“second-order” scheme for shallow water flows on unstructured meshes. J. Comput.
Phys., 206(1):311–333, 2005.

29



(a) Contour lines of the free surface (b) Cutline y=0 of the free surface

Figure 15: 2D Thacker test: numerical solution obtained with δx = δy = 0.01 using the 2nd
order scheme (left) and comparison of a cutline with the first order scheme

[6] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame. A fast
and stable well-balanced scheme with hydrostatic reconstruction for shallow water
flows. SIAM J. Sci. Comput., 25(6):2050–2065, 2004.

[7] E. Audusse, C. Chalons, and P. Ung. A simple well-balanced and positive numer-
ical scheme for the shallow-water system. Comm. Math. Sci., 13(5):1317–1332,
2015.

[8] D. Benson. Computational methods in lagrangian and eulerian hydrocodes. Com-
put. Methods Appl. Mech. Eng., 99:235–394, 1992.

[9] F. Berthelin, T. Goudon, and S. Minjeaud. Consistency analysis of a 1D finite
volume scheme for barotropic Euler models. In Finite volumes for complex appli-
cations VII. Methods and theoretical aspects, volume 77 of Springer Proc. Math.
Stat., pages 97–105. Springer, Cham, 2014.

[10] F. Berthelin, T. Goudon, and S. Minjeaud. Kinetic schemes on staggered grids for
barotropic Euler models: entropy-stability analysis. Math. Comp., 84(295):2221–
2262, 2015.

[11] F. Berthelin, T. Goudon, and S. Minjeaud. Multifluid flows: a kinetic approach.
J. Sci. Comput., 66(2):792–824, 2016.

[12] R. Botchorishvili, B. Perthame, and A. Vasseur. Equilibrium schemes for scalar
conservation laws with stiff sources. Math. Comp., 72(241):131–157, 2003.

[13] F. Bouchut. Nonlinear stability of finite volume methods for hyperbolic conser-
vation laws and well-balanced schemes for sources. Frontiers in Mathematics.
Birkhäuser, 2004.

[14] P. Cargo and A.-Y. LeRoux. Un schéma équilibre adapté au modèle d’atmosphère
avec termes de gravité. C. R. Acad. Sci. Paris Sér. I Math., 318(1):73–76, 1994.

30



[15] M. Castro, A. Milanes, and C. Pares. Well-balanced numerical schemes based on
a generalized hydrostatic reconstruction technique. Math. Models Methods Appl.
Sci., 17:2055–2113, 2007.

[16] M. J. Castro, A. Pardo, C. Parés, and E. F. Toro. On some fast well-balanced
first order solvers for nonconservative systems. Math. Comp., 79(271):1427–1472,
2010.

[17] F. Coron and B. Perthame. Numerical passage from kinetic to fluid equations.
SIAM J. Numer. Anal., 28:26–42, 1991.

[18] C. Dafermos. Hyperbolic conserrvation laws in continuum physics, volume 325 of
Grundlehren der mathematischen Wissenschaften. Springer, 2010. Third ed.

[19] G. Dakin, B. Després, and S. Jaouen. High-order staggered schemes for com-
pressible hydrodynamics. weak consistency and numerical validation. J. Comput.
Phys., 376:339–364, 2019.

[20] O. Delestre. Simulation du ruissellement d’eau de pluie sur des surfaces agricoles.
PhD thesis, Université d’Orléans, 2010.

[21] O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T.-N.-T. Vo,
F. James, and S. Cordier. SWASHES: a compilation of shallow water analytic
solutions for hydraulic and environmental studies. Int. J. for Numer. Methods in
Fluids, 72(3):269–300, 2013.

[22] S. M. Deshpande. Kinetic theory based new upwind methods for inviscid com-
pressible flows. In AIAA 24th Aerospace Science Meeting, Jan 6-9, 1986, Nevada,
USA, 1986. AIAA paper 86-0275.

[23] S. M. Deshpande. On the Maxwellian distribution, symmetric form and entropy
conservation for the Euler equations. Technical report, NASA Langley Research
Centre, Hampton, VA, 1986. NASA TP2613.

[24] D. Doyen and P. H. Gunawan. An explicit staggered finite volume scheme for the
shallow water equations. In Finite Volumes for Complex Applications VII-Methods
and Theoretical Aspects, volume 77 of Springer Proceedings in Mathematics &
Statistics. Springer, 2014.

[25] T. Gallouët, J.-M. Hérard, and N. Seguin. Some approximate Godunov schemes to
compute shallow water equations with topography. Computers & Fluids, 32:479–
513, 05 2003.

[26] L. Gastaldo, R. Herbin, W. Kheriji, C. Lapuerta, and J.-C. Latché. Staggered
discretizations, pressure correction schemes and all speed barotropic flows. In
Finite Volumes for Complex Applications VI, Problems and Perspectives, Prague,
Czech Republic, volume 4, pages 839–855, 2011.

[27] L. Gastaldo, R. Herbin, J.-C. Latché, and N. Therme. A MUSCL-type segregated-
explicit staggered scheme for the Euler equations. Computers & Fluids, 175:91–
110, 2018.

[28] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems
of conservation laws, volume 118 of Applied Mathematical Sciences. Springer,
New-York, 1996.

31



[29] L. Gosse. Computing Qualitatively Correct Approximations of Balance Laws, vol-
ume 2 of SIMAI Springer Series. Spinger, 2013.

[30] T. Goudon, J. Llobell, and S. Minjeaud. An asymptotic preserving scheme on
staggered grids for the barotropic Euler system in low Mach regimes. Numer.
Methods PDE, 36(5):1098–1128, 2020.

[31] T. Goudon, J. Llobell, and S. Minjeaud. An explicit MUSCL scheme on staggered
grids with kinetic-like fluxes for the barotropic and full Euler system. Commun.
Comput. Phys., 27(3):672–724, 2020.

[32] T. Goudon, J. Llobell, and S. Minjeaud. An explicit finite volume scheme on
staggered grids for the Euler equations: unstructured meshes, stability analysis,
and energy conservation. Internat. J. Numer. Methods Fluids, 94(1):76–119, 2022.

[33] J. M. Greenberg and A.-Y. Leroux. A well-balanced scheme for the numerical pro-
cessing of source terms in hyperbolic equations. SIAM J. Numer. Anal., 33(1):1–
16, 1996.

[34] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. Phys. Fluids, 8(12):2182–2189, 1965.

[35] R. Herbin, W. Kheriji, and J.-C. Latché. Staggered schemes for all speed flows.
ESAIM:Proc, 35:122–150, 2012. Actes du Congrès National de Mathématiques
Appliquées et Industrielles.

[36] R. Herbin, J.-C. Latché, S. Minjeaud, and N. Therme. Conservativity and weak
consistency of a class of staggered finite volume methods for the Euler equations.
Math. Comp., 90:1155–1177, 2021.

[37] R. Herbin, J.-C. Latché, and T. T. Nguyen. Explicit staggered schemes for the
compressible Euler equations. In Applied mathematics in Savoie—AMIS 2012:
Multiphase flow in industrial and environmental engineering, volume 40 of ESAIM
Proc., pages 83–102. EDP Sci., 2013.

[38] R. Herbin, J.-C. Latché, and T. T. Nguyen. Consistent segregated staggered
schemes with explicit steps for the isentropic and full Euler equations. ESAIM-
Math. Model. Numer. Anal., 52(3):893–944, 2018.

[39] R. Herbin, J.-C. Latché, and K. Saleh. Low Mach number limit of some staggered
schemes for compressible barotropic flows. Math. Comp., 90:1039–1087, 2021.

[40] D. D. Houghton and A. Kasahara. Nonlinear shallow fluid flow over an isolated
ridge. NCAR Manuscript, 259a, 1967.

[41] S. Kaniel and J. Falcovitz. Approximation of the hydrodynamic equations by a
transport process. In R. Rautman, editor, Proceedings of IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems, volume 771 of Lecture Notes
in Math. Springer-Verlag, 1980.

[42] W. Kheriji, R. Herbin, and J.-C. Latché. Pressure correction staggered schemes
for barotropic one-phase and two-phase flows. Computers & Fluids, 88:524 – 542,
2013.

32



[43] C. Klingenberg, G. Puppo, and M. Semplice. Arbitrary order finite volume well-
balanced schemes for the Euler equations with gravity. SIAM J. Sci. Comput.,
41(2):A695–A721, 2019.

[44] F. Lespagnol and G. Dakin. High order accurate schemes for Euler and Navier-
Stokes equations on staggered Cartesian grids. J. Comput. Phys., 410:109314,
2020.

[45] R. LeVeque. Balancing source terms and flux gradients in high-resolution go-
dunov methods: The quasi-steady wave-propagation algorithm. J. Comput. Phys.,
146(1):346–365, 1998.

[46] R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts
in Applied Mathematics. Cambridge University Press, Cambridge, 2002.

[47] B. Perthame. Second order Boltzmann schemes for compressible Euler equations
in one and two space dimension. SIAM J. Numer. Anal., 29(1):1–19, 1992.

[48] B. Perthame. Kinetic formulation of conservation laws. Oxford Lecture Series in
Math. and its Appl. Oxford University Press, 2003.

[49] G. Stelling and S. Duinmeijer. A staggered conservative scheme for every Froude
number in rapidly varied shallow water flows. Internat. J. Numer. Methods Fluids,
43(12):1329–1354, 2003.

[50] W. C. Thacker. Some exact solutions to the nonlinear shallow-water wave equa-
tions. J. Fluid Mech., 107:499–508, 1981.

[51] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer-
Verlag, Berlin, third edition, 2009.

[52] D. R. van der Heul, C. Vuik, and P. Wesseling. A conservative pressure-correction
method for flow at all speeds. Computers & Fluids, 32(8):1113–1132, 2003.

[53] B. van Leer. Towards the ultimate conservative difference scheme. V. A second-
order sequel to Godunov’s method. J. Comput. Phys., 135(2):227–248, 1997. With
an introduction by Ch. Hirsch, Commemoration of the 30th anniversary of J.
Comput. Phys.

[54] B. van’t Hof and A. E. P. Veldman. Mass, momentum and energy conserving
(MaMEC) discretizations on general grids for the compressible Euler and shallow
water equations. J. Comput. Phys., 231(14):4723–4744, 2012.

[55] J. VonNeumann and R. D. Richtmyer. A method for the numerical calculation of
hydrodynamic shocks. J. Appl. Phys., 21:232–237, 1950.

[56] I. Wenneker, A. Segal, and P. Wesseling. A Mach-uniform unstructured staggered
grid method. Internat. J. Numer. Methods Fluids, 40(9):1209–1235, 2002.

[57] I. Wenneker, A. Segal, and P. Wesseling. Conservation properties of a new un-
structured staggered scheme. Computers & Fluids, 32(1):139–147, 2003.

[58] P. Wesseling. Principles of computational fluid dynamics, volume 29 of Springer
Series in Computational Mathematics. Springer, 2001.

[59] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid
flow with strong shocks. J. Comput. Phys., 54:115–173, 1984.

33


