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A MUSCL-scheme on staggered grids for the
Euler equations on unstructured meshes

Charbel Ghosn Thierry Goudon Sebastian Minjeaud
Université Cote d’Azur, Inria, CNRS, LJAD

Abstract

We set up a MUSCL approach for the 2D DDFV-like scheme intro-
duced in [3] for the full Euler equations, discretized with unstructured
meshes. It is a finite volume staggered discretization framework where
numerical densities, energies and velocities are stored on different loca-
tions. For the MUSCL scheme, a combination of several approaches is
needed for the reconstruction of the densities and the velocities, in order
to reach the second order accuracy. This work focuses on the reconstruc-
tion of the mass density and internal energy. The improved accuracy is
already sensitive on problems containing contact discontinuities. We pro-
vide a set of numerical simulations to illustrate the enhanced accuracy.

1 Introduction
We consider in this work the Euler system of gas dynamics

dp+V - (pu) =0,
O (pu) + V- (pu®@u) + Vp=0, (1)
O (pE) + V- (pEu) + V - (pu) =0,

where p, u, F and p stand for the mass density, the velocity field, the total
energy and the pressure, respectively. These unknowns depend on the time and
space variables (t,z) € [0,00) x  with Q@ C R? a polygonal bounded domain.
System (1) is supplemented by the following equation of state

E= M +e and =(y—
= p=(y—1pe,
where e is the internal energy and v > 1.

We aim at building a second order scheme on general staggered grids. Our
approach is based on the first order scheme presented in [3] and a multislope
MUSCL reconstruction of the variables (see [2] for a related but different ap-
proach). Since we work on staggered grids, the densities and velocities are stored



Figure 1: Meshes and associated notations.

at different locations of the mesh. The densities are cell-based variables and the
velocities are defined on vertices. Thus, the reconstruction procedure will not
be the same for these variables. We present here the MUSCL reconstruction
of the mass density p and the density of internal energy pe, the reconstruction
for the velocity being an ongoing work. We use a multislope method to recon-
struct the densities [4], which will be used to define the mass and internal energy
fluxes. This is not enough to obtain a second order convergence but we show
with the numerical simulations of 1D contact discontinuities (where the velocity
is constant) that it already provides improved results.

2 Notation: meshes, unknowns

We construct three partitions of the domain €2: the primal mesh, the dual mesh
and the diamond mesh. The steps of the construction are illustrated in Fig. 1
(see details in [3]).

The primal mesh 90, in blue in Fig. 1, is a partition of €2 by polygonal convex
subsets K called “primal cells”. The centers of these cells are labeled zx. The
dual mesh ¥, in red in Fig. 1, consists of cells “built around the vertices xx«”
of the primal mesh. The dual cell K* is formed by joining the centers xzx of
all cells having K* as a vertex. The diamond mesh ®, in green in Fig. 1, is
made of quadrilateral cells D, ,« obtained by joining the endpoints of the edge
0 =[xk, x+] of the primal mesh to the centers xx and zy, of the primal cells
that share this edge. The segment o* = [zx, x| is an edge of the dual mesh.

We do not pay attention in this article to the description of the meshes
near the boundary 02 and, more generally, to boundary conditions. We refer
the reader to [3] for futher details. As in [3], we use the following notation:
we denote § = Dy 5+|D,, . the face separating two diamond cells Dy ;- and
D, ,.r; for K € M, we denote D = {Dy o« € D,0 € OK}; for K* € M,
we similarly denote D g+ = {Dy o+ € D,0* € IK*}; for a cell X of M, M*




or ® and for r € 0X, we define a unit vector nx , normal to the face r of the
cell X and pointing outwards: ng , (with o € 0K for K € M), ng» o+ (with
o* € OK* for K* € M*), and np_ . s (with s € 9D, o+ for Dy o« € D).

The unknowns of the mesh are defined as piecewise constants over the cells

1. The mass density (py,0)p, ,.co and the internal energy (€s5+)p, ,.co
are piecewise constants over the diamond cells. We set py o« = (7 —

1)pa'7a* €o,0%-

2. The numerical velocity fields (ux)rxeom and (ug+)k-com+ are piecewise
constants over the primal and dual cells, respectively.

3 A MUSCL reconstruction on staggered grids

Let us first recall how the first order scheme is constructed in [3], the MUSCL
scheme being described in a second part.

The first order scheme. The time discretization is explicit. We denote
by 0t the time step and ¢ the update at time ¢ + §t of any quantity ¢ at time
t. The space discretization is a finite volume scheme based on a splitting of the
mass flux inspired from the kinetic framework which involves the sound speed

c(e) = /(v — 1)e of system (1). Let

0 if u < —c,
P .
}—+(pa c, u) = / gM[p,c,u] (E)df = Z(u + C)2 if |u‘ <6
£>0 c .
pu ifu>e,

where p
f ER+—— M[p,c,u}(g) = ?Cllf—u\go

The function F~ is defined by F~ (p, ¢,u) = —F " (p, ¢, —u), so that the functions
F* satisfies consistency property F*(p, c,u)+F (p,c,u) = pu. We thus define
the mass flux Fp,_ . s from the diamond cell D, ,« through the interface s =
Dy o+ \DU,J*/ using the upwind principle as follows

fD = FBU.O‘* 5 + FB

o,0% 8 o, 0% 8

. + . —_ _ —
Wlth fDU_U* 5 F+(p0’,0‘* y Css UDG’U* 75) a‘nd ‘FDG o*,5 ‘F (po-’,o-*/ » Css UDG’U* 75)'
The sound speed and the normal velocity used in the expression above are

averaged values defined for s = D, o+|D,, .. = [Tk, ZK+] by:
Ug + Ug+ €s,0% + Cot ox!
UD, s = 5 DD, e and ¢, =c —



The discrete mass equation on a cell D, 5+ € D is given by

Po,o* — Poo* 1
: + > slFp,,..s =0
5t Dol 5 .

The averaged density on a cell K of the primal mesh is defined by

D, NK
PK = Z %po”g* for K e M
DU’G*EQK | |

and on a cell K* of the dual mesh, we set

_ |‘DU,U* N K*‘ * *
P+ = Z 7|K*| Po,o for K* e IM*.
Dy ox €D

To these densities we associate averaged mass fluxes Fgx , outgoing from a
primal cell K and Fg~ ,+ outgoing from a dual cell K*, with

FE = M Z ﬂ + _ M Z ﬂ}-:F
Ko |DU7U*| s€oD n |0’| D ox 8 |Do',a*| i | ‘ Dy %8
sCL sCK
Fho . = Pee DK g sl gy 1Dow DL g bl e
o |Dgﬁg*| eimr o] Dy o ,5 |Da,a*| i B Dg.o# 5
sCL* SCK*

Using these fluxes, we can give the definition to the momentum fluxes G , for
the primal cells and Gg+ o+ for the dual cells

_ r+ - _ r+ =
gK,o =S KoUK +FK70uL and gK*,a* =F « o UK* +F g UL*-

The discrete momentum equation now reads

_|_7

PrUK — PKUK 1
_ s+ (V =0,
5 K] > l0|GK,o + (Vap)x

oo* EDK

Pr+UK* — PEK+UK* 1 Z

* — v « =0,
5t + |K*| |J |gK , JF( dp)K

Dy ox €D g

with a suitable definition of the pressure gradients [3].

Finally, for the discretization of the internal energy equation, we define the
following numerical fluxes, for all Dy o« € © and § = D, o+ \DU,’U*/,
gDo,a*ﬁ = egwa-*fgma*ys + 60./70*’.FB

*,5°

0,0



The discrete internal energy equation is given by

D +Cq yx — *€ * 1
po'7o' 0,0 = Po,o*€o,0 + = Z |5|5DG‘U* .
|1Doo| 550 .

+Poo (Va 1), 0 = Roges VDo €D

where V 4-1 is the discrete divergence operator, see [3], and R, o+ the correction
term which should keep track of possible discontinuities. This remainder is
defined so that it exactly balances the kinetic energy contributions that appear
when summing the internal energy equation and the kinetic energy equation.
This reconstruction allows us to derive a conservative discrete equation for an
averaged total energy [3]. This construction shares many similarities with the
DDFV framework since it works on dual grids and the discretization aims at
preserving the duality of div-grad operators, which is crucial in order to preserve
local conservations.

The MUSCL-scheme. We discuss how we adapt the MUSCL principles
to the staggered framework. We first reconstruct second order quantities at
edges of the cells (primal, dual or diamond) depending on the domain where
the variables are defined. Then, concerning the discretization of the mass flux,
we keep unchanged the velocity defined at the interface s and we shall replace
the UpWind value p, ,+ by a MUSCL reconstruction pM L . s Of the density: it

defines the upgraded mass flux F3 For the 1nternal energy, we combine

o ,5"
the upgraded mass fluxes FH'* with a MUSCL reconstruction of the inter-

el vL
nal energy defined from the ratio W, where (pe)p .5 is the MUSCL
reconstruction of py o+€s o+ at the interface s. We follow the multislope method
introduced in [4]. We compute the reconstructed values at the centers of the
interfaces M, (see Fig. 2). As in the original MUSCL method, both a backward
and a forward scalar slopes, respectively denoted s, and so 5, are computed for
each interface s of a given diamond cell D, ,+. In a class1ca1 way, we use a lim-
iter function ¢(s; , s, ) to ensure that no unphysmal oscillation is introduced.

Therefore, the reconstructed values read as follows:

pD poa*+¢( So,55 05) ||CD M5||a

where Cp_ _. is the center of the diamond cell D, 5=

We dlscuss next the building of the slopes. For that, we denote by Wy o+
the set of the diamond cells sharing at least a vertex with D, ,«. The idea is
to determine two points Hf and H; both located on the axis (Cp, . Ms),
respectively backward and forward the point Cp, . (see Fig. 2). These points
are a priori neither vertices of the grid, nor element centers. However, these
points are located by construction on a line joining two element centers so that
densities Pr- and Py at these points can be obtained by a linear interpolation.
The backward and forward slopes are then computed as follows:

o,0 75
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Figure 2: Forward and backward points Hf and H_

_ Po,o* — PH; 4 Pat — Po,o*

S = S = .
"~ Cp, . H. | "™ [[Cp, Hi|

o,0%

We present next the process to determine the points H and H;. Let
Di € Ws o+ be the most backward neighboring diamond cell of D, - with
respect to the direction (CD(M* M;) and CD; its center, in the sense that

COS(CD;CD *,CDGYU*Mﬁ):DénaX cos(CDCD

o,0*

* 9 CDUJ,.* Ms) . (2)

g0 g,0

Let now C Dy be the center of the next most backward diamond cell, provided
that it is located on the other side of the axis (Cp, . Ms), that is

cos (CD; Cp,...Cp, . Ms) = Demwax cos (CpCp, ,.,Cp, . M), (3)

where W, - is the set of diamonds D € W, ,« different from D; such that

sin (CDCD

g,0

-»Cp, . M,) -sin (Cp, Cp, .. Cp, ,. My <0.

Next, we define the point H to be the intersection between the axis (Cp,_ . Ms)
and the line (CD; Cp; ). The point H lies in the segment (CD; Cp; ). There-

fore, we let (a7, a5 ) to be the barycentric coordinates of H, with respect of
(CD; Cp; ), that is

ICp. H | ey H|

aT = >0, af=———2>0, of +ta, =1.
LT IC,Cp > = IC,-Cp |l e



In a symmetric way, we determine the points C D} and C Df for the forward

direction (we take the minimum instead of the maximum in (2) and (3)), then
H{ will be the intersection between (Cp, . M,) and (CD;’CD;)’ and (o], a3)
its barycentric coordinates such that

ICp: B lICpyH
TN~ —~ | = ) a = T~  ~ -
HCDTCD;H 2 ||CD+CD+||

<l

af = >0, of +af =1.

Note that the computation of the coefficients i and ai depends only on
the mesh and it is done once for all. Finally we compute the densities at points
H_ and H according to simple weighted means:

Pu; = Oél_pD; +042_ng, Puat = O‘Tpr +a;pD;-
Similarly, we reconstruct the den51ty of internal energy pe denoted by (pe)M Lg* 5
The reconstructed internal energy e Da . is then defined by (pe) ML Dy s /oM DU s

Finally, the second order mass ﬂux is deﬁned by

Foh e =Fot v Fol,
with
Fj\i[;-i:g ]:+<pDU o550 csyuDU,a*,s) and ]:]V{,La w5 F (p%jwa*,,s’ Css uDU,U*,ﬁ)a
and the internal energy flux is given by
g[al,‘a*,s = eADiL,Uhs‘Fg[L(,—is te D ,10*/,5 g{f:;s

4 Numerical test on a Riemann problem

We illustrate the method with a comparison between the first order scheme and
the MUSCL scheme presented above. We take v = 1.4. We consider two 1D
Riemann problems. The initial data p,w and p are piecewise constant functions
with a discontinuity located at x¢p = 0.5. The initial constants at left and right
of £y = 0.5 and the final time T are given in Table 4. In the two cases, the
solution consists in a left rarefaction, a contact discontinuity and a right shock.
The tests are preformed with the 2D code on the square [0, 1] x [0, 0.1], with a
triangular mesh with approximatively 256 grid points in the direction z. Fig. 3
presents the results obtained at time T. The MUSCL approach does not reach
the 2nd order accuracy since the velocity is not reconstructed but we can already
see that the numerical diffusion at the contact discontinuity in the density and
internal energy profiles is significantly reduced by the MUSCL approximation
(the velocity being constant).



Test 1

Test 2

Pl Pr

Uy U y4i Dr T

Test1 | 1 0.125
Test 2 | 1 1

0 0 1 0.1 0.25
0 0 1000 0.1 0.012

Table 1: Initial data for the Riemann problems

— — — exact solution
MUSCL
order 1

MUSCL
order 1

‘ — — — exact soluton

34

exact solution
MUSCL

— order1

exact solution
MUSCL
— order1

density

internal energy

Figure 3: Numerical results (cutline along z-axis): density and internal energy

at time T



5 Conclusion

We present a MUSCL approach based on the first order “DDFV-like” scheme
introduced in [3]. We focus here on the reconstruction of the mass density and
the internal energy, inspired from [4]. This approach gives improved results
for 1D contact discontinuity problems. To reach 2nd order, it is needed to
equally reconstruct the velocity. The strategy, to be detailed elsewhere, is based
on similar reconstructions but the point H;t can be located on the edge of
(primal/dual) cell and the interpolation becomes easier since discrete values are
also available at cells vertices (see [1]).
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