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Exploring the formation of gold/silver nanoalloys

with gas-phase synthesis and machine-learning assisted

simulations†

Quentin Gromo�,a Patrizio Benzo,a Wissam A. Saidi,b,c Christopher M. Andolina,b,c Marie-

José Casanove,a Teresa Hungria,d Sophie Barre,a Magali Benoita and Julien Lama,e�

While nanoalloys are of paramount scienti�c and practical interests, the main processes leading to

their formation are still poorly understood. Key structural features in the alloy systems, including

crystal phase, chemical ordering, and morphology, are challenging to control at the nanoscale, mak-

ing it di�cult to transfer their usage to industrial applications. In this contribution, we focus on the

gold/silver system that has two of the most prevalent noble metals, and combine experiments with

simulations to uncover the formation mechanisms at the atomic-level. Nanoparticles are produced us-

ing state-of-the-art inert-gas aggregation source and analyzed using transmission electron microscopy

and energy-dispersive x-ray spectroscopy. Machine-learning-assisted molecular dynamics simulations

are employed to model the crystallization process from liquid droplets to nanocrystals. Our study

�nds a preponderance of nanoparticles with �ve-fold symmetric morphology, including icosahedron

and decahedron which is consistent with previous results on mono-metallic nanoparticles. However,

we observe that gold atoms, rather than silver atoms, segregate at the surface of the obtained

nanoparticles for all the considered alloy compositions. These segregation tendencies are in contrast

to previous studies and have consequences on the crystallization dynamics and the subsequent crystal

ordering. We �nally show that the underpinnings of this surprising segregation dynamics is due to

charge transfer and electrostatic interactions rather than surface energy considerations.

1 Introduction

By combining two or more metallic elements within the same
nanoparticle, synergistic properties can emerge and result into in-
novative technological applications.1–4 Numerous research fields
including optics, catalysis, bio-medicine and electronics are al-
ready considering these so-called nanoalloys mainly because they
exhibit the fundamental advantage of an extremely rich struc-
tural landscape with a variety of shapes, chemical orderings and
crystalline phases. However, since the physical and the chemi-
cal properties of nanoalloys are intrinsically related to their in-
ternal structure, advances in this field are strictly constrained by
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synthesis experiments, and it becomes crucial to better under-
stand the intricate relationship between the experimental condi-
tions and the obtained structures. Addressing this pivotal chal-
lenge first comes directly from experimental studies, where two
types of complementary approaches are usually considered: (1)
Systematic variations of experimental conditions are followed by
post-mortem structural analysis5–10 and (2) In situ experiments
allow for a direct observation of the nanoalloys formation.11–17

Computational simulations have been the ideal complementary
tool because it offers an unambiguous atomistic picture and en-
ables standardized examinations of various experimental param-
eters. In this context, the dynamics of nanoalloy formation are
usually investigated with classical force fields via Monte Carlo
and molecular dynamics simulations, typically employed to study
large-scale systems.18–22 The derived predictions, however, often
lack chemical accuracy and can hardly be used to draw quanti-
tative conclusions. As an alternative, quantum simulations based
on first-principles density functional theory (DFT) have been per-
formed in order to address this accuracy issue.23–27 However, due
to their high computational costs, these methods are often limited
to the equilibrium properties of bulk systems or small clusters.
Recently, machine-learning approaches have been proposed to
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bridge the gap between these two approaches. Indeed, machine-
learning interaction potentials (MLIP) are constructed by combin-
ing a very complex mathematical formulation with numerous fit-
ting parameters along with an extensive DFT-generated database
composed of different structures in conjunction with their associ-
ated energies, forces, and virials. Evidence of the success of these
methods can be seen through the very diverse types of materials
that were so far modeled with MLIP, including metals, oxides, car-
bon and silicon-based, organics, and perovskites.28–44 Prompted
by these advances, DFT accurate large scale simulations can fi-
nally be carried out to investigate the intricate formation pro-
cesses occurring in nanoparticle synthesis.

Herein we studied the formation of AuAg nanoalloys that
have been considered in many applications owing to, in particu-
lar, their plasmonic,45–47 catalytic45,47–49 and antibacterial50–53

properties. In this context, targeted technological applications re-
quire the control over two principle structural parameters. First,
different morphologies can be stabilized with a competition be-
tween truncated octahedron structures and five-fold symmetric
morphology including icosahedron and decahedron that origi-
nates from the balance between cohesive, surface and elastic
strain energies.54–64 Second, while metallic species can be found
in different chemical arrangements with the possibility of sur-
face segregation, there is currently no consensus in the literature
on whether gold or silver is more likely to segregate to the sur-
face.23,57,65–80

In this contribution, we experimentally show that gas-phase
synthesis can lead to decahedral and icosahedral AuAg nanoal-
loys both displaying unambiguous gold surface segregation. Our
machine-learning assisted simulations confirmed those experi-
mental findings and enabled investigations over a wider spectrum
of chemical compositions. Moreover, the simulations allow us to
go beyond post-mortem analysis, thus uncovering how gold seg-
regation can affect the nucleation process triggering the nanopar-
ticle crystallization at the atomistic level. When compared to
the current literature, the novelty of this work is three-fold:
(1) Pentatwinned decahedra/icosahedra are not only present in
mono-metallic systems and can also be stabilized in the case of
Ag/Au nanoalloys, (2) Gold atoms can segregate at the nanopar-
ticle’s surface even with equimolar and silver-rich compositions
and (3) Machine-learning assisted simulations can be used to
model nanoalloys accurately to observe atomic scale processes
occurring during their formation.

2 Methodology

Two complementary approaches were applied to investigate
the formation of AgAu nanoalloys. We used gas-aggregation
magnetron-sputter deposition from two elemental targets of gold
and silver to synthesize the AuAg nanoparticles. Note that
this synthesis process involves the nucleation and growth of the
nanoparticles inside a gas aggregation chamber, before their land-
ing on the substrate81. These nanoparticles are extremely pure,
i.e., free from any ligand or surfactant. The synthesized nanopar-
ticles were further investigated using high-resolution transmis-
sion electron microscopy (HRTEM) and high-angle annular dark-
field scanning TEM (HAADF-STEM) for uncovering their struc-

tural and morphological details. The chemical distribution of the
two elements inside a given nanoparticle was analyzed by energy-
dispersive x-ray spectroscopy (EDS-STEM). In concert, machine-
learning-assisted simulations were carried out. In particular, we
used a deep neural network potential (DNP) that was previously
developed by Andolina et al.82 and was further tested under nu-
merous conditions [see SI A]. A key advantage of using the DNP
approach is that, although this is not yet sufficient for reaching
the observed experimental sizes (≈7.5 nm), we still managed to
perform molecular dynamics (MD) with a much longer duration
and a larger number of atoms (≈15000 atoms ie. 6.3 nm) than
can be expected from typical DFT calculations.

2.1 Experimental setup

AuAg nanoparticles were grown in a water-cooled Nanogen-Trio
Gas Aggregation Source (GAS), from Mantis Deposition Ltd. The
nucleation and growth of the particles are obtained through DC
magnetron co-sputtering of extremely pure (99.99%) Au and Ag
targets of diameter equal to 1 inch, located side by side on an in-
tegrated magnetron sputtering head, positioned at 90 mm from
the exit slit of the aggregation zone. The DC magnetron cur-
rent, applied independently to the two targets, was fixed to 40
mA for both gold and silver. With the synthetic method, it would
be possible to control the stoichiometry by using an alloyed tar-
get with precise chemical composition. However, studying the
influence of the chemical composition would then require fabri-
cation of targets with different stoichiometry. For each of them,
the sputtering property would not necessarily be similar which
should change the nanoparticle size distribution. In order to
study the influence of the chemical composition for a fixed size
distribution, we opted instead to use two elemental targets with
a specific set of electrical powers applied in each of them. This
allows us to obtain different chemical compositions in a single
experiment all with the same sputtering conditions. Before de-
positing on the ultra-thin-carbon coated copper TEM grid, lo-
cated in the ultra-high-vacuum deposition Chamber (with a base
pressure of 10−9 mbar), the nanoparticles were size-selected by a
Quadrupole Mass Filter installed between the GAS and the depo-
sition chamber. The obtained nanoparticles were studied through
high-resolution TEM (HRTEM), atomically resolved high-angle
annular-dark-field scanning TEM (HAADF-STEM) and energy-
dispersive x-ray spectroscopy (EDS) experiments. A Cs corrected
200 kV FEI Tecnai F20 microscope was used for HRTEM stud-
ies, and a probe corrected Jeol ARM200F microscope was used
for HAADF-STEM and EDS studies. We note that no oxidation
of the nanoparticles was observed even if the EDS analysis was
performed several months after the synthesis.

2.2 Atomistic simulations

Regarding the interaction potentials, the complexity and non-
linearity of deep neural networks allow the development of in-
teraction potentials capable of making predictions close to DFT
accuracy. The deep neural network interaction potential for Au-
Ag (DNP) developed by Andolina et al.82 using the DeepPot-SE83

method of the DeePMD-Kit84 was selected for this work because
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of its excellent accuracy with pure as well as alloyed systems [See
SI A]. All DFT calculations were performed with VASP85–87 using
the Perdew-Burke-Ernzerhof88 (PBE) functional and the projec-
tor augmented wave (PAW) method89 with an energy cutoff of
400eV.

The molecular dynamics (MD) trajectories are obtained using
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) coupled to the DNP. We employed constant volume
and constant temperature (NVT) ensemble in these simulations
with a time-step of 1 fs and a damping coefficient of 100 fs. Liq-
uid droplets are obtained by melting nanoparticles of three sizes
(250, 500 and 750 atoms with respectively 1.4 nm, 2.0 nm and
2.4 nm) for three stoichiometries (Ag3Au, AgAu and AgAu3) at
2000 K. For the freezing simulations, we utilized a cooling rate of
2×1011 K/s from 750K to 350K. The process is repeated three
times with different initial velocities. The employed numerical
setup that consists in freezing disordered liquid droplets was al-
ready used to simulate nanoparticle formation and mimic gas-
phase synthesis90–92. In addition, to assess the stability of our
obtained systems, we also carried out hybrid MD/MC simulations
that consists of 10 Monte Carlo (MC) moves combined with 10
atomic species swapping every 100 MD time steps.

We note that our choice of simulation protocol assumes that
the nanoparticles are formed from the liquid phase. However,
we must note that similar experiments have also been modeled
with atom by atom growth directly from solid precursors93–95.
At this stage, it remains difficult experimentally to know which
formation pathway is more likely to occur in our experimental
protocol.

Finally, simulations are analyzed using Ovito96 built-in func-
tions. Common neighbor analysis is employed to measure crys-
tal ordering97. To obtain the size of the largest ordered clus-
ter, atoms with crystalline order are grouped together in clusters
within a cut-off equal to 3.5 Å.

3 Results

3.1 Morphology

We begin by analyzing the morphologies of both the experimen-
tally synthesized and the simulated structures. The HAADF-STEM
observations show that the synthesized nanoparticles are well-
dispersed on the substrate and display a narrow size distribu-
tion with a mean diameter of 7.4 nm and a standard deviation
of 0.75 nm (see SI B). When suitably oriented along (or close
to) one of their low-index zone axes, the synthesized nanoparti-
cles can be clearly identified as either decahedra or icosahedra,98

both exhibiting triangular surfaces dominated by (111) orienta-
tions. Fig. 1(a-c) show three different HRTEM images of represen-
tative nanoparticles, one 10.5 nm large decahedron (Fig. 1(a)),
one 7.5 nm large icosahedron (Fig. 1(b)) and one 9.9 nm large
icosahedron (Fig. 1(c)). Similarly, although not with the same
size because of the computational cost of the numerical freez-
ing setup, our MD simulations in conjunction with the DNP were
able to reproduce the (111) surface preponderance signature of
the icosahedron and decahedron shapes [See Fig. 1(d-f)]. In ad-
dition, DNP simulations allow for characterizing the crystal struc-

ture at the atomic scale [Fig. 1(d-f)]. In all cases, the facets con-
sist of face-centered cubic triangles whose edges are character-
ized by hexagonal close-packed atoms which is consistent with
the (111) orientation of the surfaces. To better characterize the
crystallinity of the simulated nanoparticles, we also measured the
atomic strain distribution with respect to the radial position [See
SI E]. The strain map shows overall a very small deviations from
the bulk. The latter is slightly more pronounced for atoms located
at droplet surface, which can be attributed to an inherent surface
relaxations. Importantly, out hybrid MD/MC simulations did not
observe any structural modification thus confirming the stability
of five-fold symmetric shapes [See SI C]. Altogether, our results
suggest that icosahedron/decahedron can be stabilized instead of
truncated octahedron even with in Au/Ag nanoparticles in the in-
vestigated size regime, i.e. up to 10.5 nm in experiments and up
to 2.4 nm in simulations.

For metallic systems in general, icosahedron/decahedron and
truncated octahedral shapes are considered more stable respec-
tively at small and large sizes according to surface vs. volume
energy considerations54–56,56,59–64 However, the size threshold
allowing for the transition between the two shapes is still highly
debated. In experiments for mono-metallic systems, icosahe-
dron and decahedron were usually obtained by physical methods
of synthesis.54–56,58 Furthermore, previous studies studied gold
nanoparticles of diameters up to 10 nm and showed that the as-
obtained icosahedron/decahedron-shaped nanoparticles remain
stable after long periods of electron irradiation in the TEM ex-
periments 54,55, demonstrating that, even when obtained under
non-equilibrium conditions, both icosahedron and decahedron
are thermodynamically more stable than truncated octahedron.
So far, such experimental results were only obtained with mono-
metallic systems including both silver and gold. Meanwhile, from
the simulation viewpoint, the literature regarding this competi-
tion in shape also focused solely on mono-metallic systems. In
this context, early works based on semi-empirical interactions po-
tentials obtained much smaller crossover sizes leading to trun-
cated octahedral particles being more preponderant even at sizes
in the 1 nm to 10 nm regimes62–64,99. However, most recent
results combining DFT accurate models with equilibrium ther-
modynamic approaches based on Helmholtz free energy demon-
strated instead the decahedral stability54,60 for nanoparticles up
to 15 nm. Similar to previous studies focusing on mono-metallic
systems, our study shows with alloyed AuAg nanoparticles that
icosahedron/decahedron shapes are stable even for diameters
up to 10.5 nm. Altogether, our results are therefore consistent
with the literature obtained in the mono-metallic regime. Finally,
we must note that stability of non-crystalline structures includ-
ing decahedra can be favored when mixing different metals in a
nanoparticle like in AgCu.100,101 Furthermore, it can not be ruled
out that the observed decahedra may also result from kinetic trap-
ping at the early stages of the growth processes.

3.2 Chemical ordering

By using EDS measurements, we were able to investigate the
chemical distribution inside a given nanoparticle. Fig. 2(a,b,c)
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Fig. 1 (Left) HRTEM images of 3 representative AuAg nanoparticles. (a) a decahedral NP observed along its �ve-fold symmetry axis, (b) an icosahedral

NP observed along its two-fold symmetry axis, (c) an icosahedral NP observed close to its 3 fold-symmetry axis. (Right) Typical nanoparticles obtained

after freezing using machine-learning-assisted MD simulations for three di�erent chemical compositions along with the corresponding crystal analysis

as obtained using common neighbor analysis. Non-crystalline atoms (including surface atoms) were removed for clarity.

displays the chemical maps of isolated nanoparticles with compo-
sition Au0.58Ag0.42, Au0.65Ag0.35 and Au0.74Ag0.26. Interestingly,
these different compositions were observed in the same sample.
Such composition variations can be attributed to a slight evolu-
tion of the synthesis conditions such as targets race track and
temperature during the deposition time, which was in our case as
long as 15 minutes, a duration necessary to collect a sufficiently
large number of nanoparticles on the TEM grid in our setting. We
were thus able to analyze nanoparticles with different composi-
tions although silver-rich nanoparticles were not observed exper-
imentally. A striking feature in all these maps is the occurrence
of a non-homogeneous distribution with gold atoms segregating
at the surface for all of synthesized chemical compositions. For
a more quantitative picture, density profiles recorded along the
nanoparticles diameter are presented in Fig. 2(d,e,f). These pro-
files confirm the gold surface segregation, the silver atoms being
mostly confined in the nanoparticle core. In greater details, for
nanoparticles with composition Au0.58Ag0.42, Au0.65Ag0.35 and
Au0.74Ag0.26, we obtained the following respective Au/Ag ratio
1.41, 1.29 and 1.10 by averaging the Au content over the 5 exter-
nal atomic layers (∼1.25 nm). Note that gold surface segregation
is also qualitatively confirmed by HAADF-STEM observations ow-
ing to the sensitivity of this technique to the atomic number of
the encountered elements (z-contrast) (see SI B).

In order to span a larger range of chemical composition, we
complement the experimental observations with numerical sim-
ulations. We separate surface atoms from the bulk based on
their lower coordination numbers (< 10). Fig. 2(g) shows the
ratio between the gold proportion at the surface and in the en-
tire nanoparticle denoted ξ Au

sur f . As seen in the figure, our results
confirm that gold segregates to the surface even in the regime of
silver-rich nanoparticles [see SI D for the density profile obtained
in simulations].

An additional finding is that the gold surface segregation is
larger for Au0.25Ag0.75 than for the less silver-rich nanoparticles.

In order to better understand the gold surface segregation ob-
tained at the end of the freezing simulation, we also measured
the temporal evolution of the mean square displacement in the
initial liquid regime[See Fig. SI F]. While all atoms located in
the center of the droplet exhibit similar behavior for the mean
square displacement, atoms located at the surface possess differ-
ent diffusion properties depending on their chemical nature or the
chemical composition of the droplet. In particular, the diffusion
at the surface is lowered when increasing the gold composition.
More importantly, silver atoms are always more diffusive than
gold atoms at the surface which is consistent with silver atoms
being less stable at the surface and showing the tendency to mi-
grate inside the core of the droplet.

Because these first numerical results were obtained from fully
freezing liquid droplets, we could only consider systems not larger
than 750 atoms which correspond to diameters of 2.4 nm. There-
fore, we also performed simulations with an alternative proto-
col to study larger nanoparticles of diameters up to 6.3 nm. The
systems are initialized in the icosahedral structures that circum-
vent the necessity of having to simulate the whole freezing mech-
anisms while enabling for directly reaching the previously ob-
served morphology. The atomic chemical species between gold
and silver are then randomly assigned to correspond to the three
studied stoichiometries of Ag-Au alloys. MD simulations are com-
bined with MC moves and atomic species swapping at 600 K,
which is large enough for atomic swap to operate while main-
taining the crystal ordering and overall morphology. By starting
with ordered structures yet with chemical disorder, we can focus
on the temporal evolution of the surface composition while simu-
lating the larger nanoparticles. In particular, we studied nanopar-
ticles made of 923, 5083 and 14993 atoms, which correspond
respectively to 2.5 nm, 4.4, nm and 6.3 nm. Fig.3 shows that con-
vergence is already obtained after 10 ps for the smallest studied
systems while the others would require unreasonably higher com-
putational times. Yet, it remains that in all cases, while starting
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Fig. 2 (Left) (a-c) Experimental EDS measurements for three nanoparticles with di�erent chemical compositions. Au and Ag elements are respectively

colored in red and green. (d-f) Distribution of atomic species for the corresponding nanoparticles. (Right) (g) Surface chemical composition obtained

in machine-learning assisted MD simulations. Results are shown for di�erent chemical compositions and nanoparticle sizes. Error bars are obtained

from averaging over three independent initial conditions.

at a value of 1, ξ Au
sur f monotonically increases with time indicat-

ing that similar to the smaller nananparticles gold segregation at
the surface exists at the larger sizes, which are consistent with
the experimental results. Moreover, similar to previous results
obtained after the freezing simulations for the smaller nanoparti-
cles, the gold surface segregation remains higher in the silver-rich
stoichiometries.

Altogether, both our experimental and our numerical results
demonstrate that gold surface segregation can be obtained in
Au/Ag nanoparticles regardless of the size and the composition.
In experiments, we show that it happens for gold-rich systems
while in simulations, we confirm the experimental results and
predict that it remains true even for silver-rich systems.

3.3 Study of the crystallization dynamics

A key advantage of our DNP simulations over experiments, and
also DFT calculations that usually employ 0 K minimization to ex-
plore the structural landscape, is that we can retrieve the crys-
tallization dynamics at the atomistic scale. To this end, we fol-
low the evolution of the crystal ordering by measuring the size
of the biggest ordered cluster [Ncrys in Fig. 4(a)] and observe
that crystallization starts at different temperatures depending on
the chemical composition. In particular, silver-rich nanoparti-
cles crystallize first and also reach a higher final value for Ncrys.
Fig. 4(b) shows the temporal evolution of ξ Au

sur f . While oscillations
are observed, ξ Au

sur f consistently remains greater than one, indi-
cating that gold segregation already occurs in the liquid regime
at the early stages of freezing. A plateau in ξ Au

sur f is also reached
after 1 ns and bellow 550 K. In the same intermediate times, ac-
cording to Fig. 4(a), the plateau for Ncrys is not yet fully achieved,
suggesting that chemical ordering happens beforehand. We fur-
ther define ξ Au

crys as the relative chemical composition that was

ps

Fig. 3 Temporal evolution of the surface chemical composition obtained

in machine-learning assisted MD simulations combined with Monte-Carlo

and atomic species swap initialized with icosahedron nanoparticles for

three di�erent nanoparticles sizes 923, 5083 and 14993 atoms which

correspond respectively to 2.5 nm (a), 4.4, nm (b) and 6.3 nm (c).

previously measured, but within the largest crystalline cluster as
opposed to the surface. Fig. 4(c) shows that ξ Au

crys also quickly
converges when compared to Ncrys thus confirming that chemical
ordering occurs first. The value of the observed plateaus are all
below or close to 1, which is consistent with ξ Au

sur f being above 1.
Indeed, the more gold atoms are present at the surface, the more
silver atoms are within the crystalline core of the nanoparticles.
For this analysis, while we only showed the temporal evolution of
one nanoparticle per chemical composition, SI G shows two addi-
tional cases that exhibit similar behavior. Finally, the associated
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(c)

Fig. 4 (a-c) Temporal evolution obtained in MD freezing with nanoparticles of 750 atoms. Ncrys is the number of atoms within the biggest crystalline

cluster. ξ Au
sur f (resp. ξ Au

crys) denotes the ratio between the gold proportion at the surface (resp. in the biggest crystalline cluster) and in the entire

nanoparticle. We note that for ξ Au
crys results are only shown when the crystalline cluster is big enough ie. Ncrys > 50. (d) Corresponding images obtained

during the crystallization. Non-crystalline atoms are rendered in transparency and grey (resp. yellow) spheres correspond to silver (resp. gold) atoms.
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snapshots for different sizes of the largest crystalline cluster can
be retrieved from those temporal evolutions [see Fig. 4(d)]. From
these images, one can observe that crystallization emerges first at
the periphery of the droplet instead of its core and slowly grows
towards the core [See SI H for a more quantitative confirmation].

Altogether, our findings show that the gold surface segrega-
tion occurs already in the liquid regime which has consequences
on the subsequent crystallization process. First, we note that
gold possesses a larger melting temperature both in bulk and at
nanoscale thus indicating that gold crystals are more stable than
silver ones. However, in the silver-rich system, the atoms avail-
able to trigger crystallization are mostly silver since the majority
of gold atoms are at the surface. On the contrary, in the gold rich
system, there is a mixture of the remaining gold atoms with all
the silver atoms. In one case, a nearly pure metal crystallizes,
but in the other, nucleation occurs in an alloying regime which is
less favorable. As such, the fact that silver-rich nanoparticles are
more crystalline in our simulations is a consequence of the initial
chemical ordering that is established already in the liquid regime.

4 Discussion

The surface segregation in gold/silver nanoparticles has been the
subject of numerous studies with experimental65–69 and numer-
ical70–80,102 approaches. Experimentally, chemically-synthesized
nanoparticles are found to exhibit silver surface segregation,65–67

which was explained in part by the presence of the oxidized sur-
faces 77. To the best of our knowledge, only two experimental
studies observed surface segregation in Ag-Au nanoalloys made
with physical routes of synthesis which is crucial for comparison
with our results since they allow for the effects of the ligands
and the liquid solvent to be ruled out 57,69. The first study shows
surface segregation occurring for the most preponderant chemi-
cal species and explained these observations by kinetic trapping
at the early stages during growth57. On the one hand, in the
gold-rich system, their result is similar to ours although we will
show later that kinetic trapping is not the only possible stabiliz-
ing effect and that charge transfer can also stabilize the gold seg-
regated structures. On the other hand, in the silver-rich system,
difficulty in interpreting the experimental results can be raised be-
cause oxidation seems to be present and to provoke the apparent
silver segregation. Similarly to our work, the second study also
used EDS to characterize the chemical ordering69 and reported
Au surface segregation. However, the results were obtained only
with one nanoparticle that exhibited equal amounts of gold and
silver (Ag0.51Au0.49).

In the present study, while we consistently observed gold seg-
regation, we did not manage to generate silver-rich nanoparticles
using our experimental approach and it is therefore difficult to be
assertive that gold segregation remains in the whole composition
range of the alloy. However, our machine-learning assisted simu-
lations predict that Au would segregate even for Ag rich composi-
tions. While further experimental studies are required to confirm
these trends, we posit that these predictions can be rationalized
by combining a literature review of the numerical simulations
along with additional calculations, as discussed below. Indeed,
the gold segregation at the surface, even for silver-rich nanopar-

ticles, might appear counterintuitive at first sight because it is not
found in all experiments, and because it is in contradiction with
the surface energy hierarchy (γ(Ag) is slightly lower than γ(Au))
and with the atomic size (Ag is slightly bigger than Au). Further-
more, silver surface segregation was consistently found in simula-
tions when using empirical force fields 70,71,73,74,102. However, in
this context, the simplicity of the employed empirical force fields
when compared to our MLIP may lead to inaccurate modeling. In
particular, in the work of Paz-Borbon et al.73, the Gupta potential
seemed at first to demonstrate silver segregation but when fur-
ther optimization was made at the DFT level, the authors found
that gold segregation is favored instead. Similarly, we tested an
embedded-atom model (EAM) which was used in the recent pa-
per of Moreira et al.102 and demonstrated that it leads to much
more energetic nanoparticles when exhibiting silver surface seg-
regation [See SI J].

Meanwhile, all of the DFT studies also show the gold segre-
gation both for extended surfaces or for nanoparticles up to few
hundreds of atoms.73,75–80 As an explanation, it has been shown
from electronic structure investigations that the segregation of
the Au atoms at the surface, regardless of composition, is caused
by electrostatic forces rather than surface energy. In order to con-
firm this hypothesis, we performed single-point DFT calculations
initialized with the 250-atom nanoparticles found with our freez-
ing simulations and computed the Bader charges. In Figure 5(a),
the total charge on the different layers from the center of the NP
(index 1) to the surface of the NP (index 4) are shown for the
three compositions. It is interesting to note that the surface is al-
ways negatively charged and the subsurface is positively charged,
by the same magnitude in all the studied chemical compositions.
The charge distribution on the different atom types is depicted
in Fig. 5(b,c,d) as color maps and in Fig. 5(e,f,g) as histograms of
averaged values taken over atoms in the different layers. A signif-
icant charge transfer from Ag atoms to Au atoms is thus observed
with Au and Ag atoms being always respectively negatively and
positively charged. A striking observation is that the charge trans-
fer is more observed for the silver rich nanoparticles. Indeed, in
the Au0.25Ag0.75 nanoparticles (Fig. 5(b) and (e)), a small number
of surface Au atoms bear a negative charge of ≈ -0.3 e whereas
the Au atoms at the Au0.75Ag0.25 nanoparticles surface carry a
much lower average charge of ≈ -0.1 e (Fig. 5(d) and (g)). Over-
all, the total charge of the surface layer remains the same for all
of the studied compositions but it is carried by a few but highly
charged Au atoms in Au0.25Ag0.75 nanoparticles and by many but
less charged Au atoms in Au0.75Ag0.25 nanoparticles. These re-
sults show that the same effects observed in previous DFT studies
on small clusters are also present in larger nanoparticles obtained
in our own machine-learning based simulations. They also show
that charge transfer between Ag and Au always yields the same
surface charge irrespective of the alloy composition. We therefore
hypothesize that, as Au atoms become negatively charged when
alloyed with silver, they will tend to move towards the surface
due to Coulomb repulsion. Further, because the nanoparticle’s
surfaces then become negatively charged, positively charged Ag
atoms are attracted to the subsurface. As the charge transfer from
Ag atoms to Au atoms is more pronounced for Ag-rich composi-
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tions, the segregation of gold at the surface will be favored even
for such compositions, over that of the majority species, as could
be intuitively expected. We note that, even if it did not explic-
itly taking into account the atomic charges, the DNP model as it
was fitted to DFT calculations was still able to remarkably trans-
late such complex charge transfer mechanisms into corresponding
changes in forces.

Layer index Layer indexLayer index
1 2 3 4 1 2 3 4 1 2 3 4

Layer index
1 2 3 4

Fig. 5 (a) Total Bader charge distribution averaged over the three

nanoparticles per chemical composition. (b-d) Slices of typical nanopar-

ticles where atoms are colored following the Bader charges. (e-g) Abso-

lute value of the Bader charge distribution per atomic species averaged

over three nanoparticles per chemical composition. We note that the

charges are always negative for gold and positive for silver and that only

the nanoparticles made of 250 atoms were studied because of the large

computational costs associated with DFT calculations.

5 Conclusion

The main goal of this work was to study the formation of
gold/silver nanoalloys. Our results in terms of experimental syn-
thesis in the gas phase produced two remarkable observations.
First, we found five-fold symmetric particles, including both icosa-
hedron and decahedron with nanoparticles of diameters up to
10 nm. Second, while surface oxidation can induce silver segrega-
tion, only gold segregation was observed in our synthesis results
that were obtained in vacuum conditions. These experimental
findings were first confirmed by machine-learning assisted sim-
ulations. Then, we further explored the chemical phase space
by reaching different chemical compositions and confirming the
gold segregation and the stability of the five-fold symmetric mor-
phology, even in silver-rich systems. We emphasize that contrary
to previous works using classical interaction potentials, the use
of MLIP to provide quantum accurate modeling was key to repro-
duce the gold surface segregation. An additional advantage of our
simulation approach was that we managed to explore the crys-
tallization dynamics that required large-scale simulations with

unprecedented chemical accuracy and found that the gold sur-
face segregation occurs before crystal ordering and leads to better
crystallization in silver-rich composition.

By showing that gold surface segregation can be observed in
vacuum while silver surface segregation is usually found in more
reactive conditions, our study highlights the importance of en-
vironmental effects on the chemical distribution of species in a
bi-metallic nanoparticle. It also demonstrates the need to study
nanoparticles using advanced experimental observations to be
able to harness these effects. Further, our results show the impor-
tance of taking into account electronic structure effects in nanoal-
loys, which are impossible to reproduce with conventional em-
pirical potentials. To this end, we demonstrate the tremendous
power of MLIP-type potentials for studies of this kind, making
it possible to combine the modeling of nucleation processes in
realistically-sized systems with DFT precision calculations.
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