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Abstract—In the ever-evolving landscape of cellular networks,
the pursuit of optimal network performance remains a constant
endeavor. This paper introduces CeDA-BatOp 2.0, an enhanced
framework designed to address the complexities of network
optimization. Building upon the foundations of its predecessor
CeDA-BatOp version 1.0, this upgraded version presents a Multi-
task learning (MTL) approach that leverages joint training of a
base station parameter predictor and clustering. By intertwining
these tasks, CeDA-BatOp 2.0 demonstrates its ability to pro-
vide a holistic and efficient solution for network optimization.
Furthermore, this framework introduces an innovative analysis
of controlled data drift using Gaussian Mixture Models. The
controlled drift analysis allows the framework to adapt to real-
world data variations effectively, enhancing network performance
and reliability. It also incorporates a pseudo-labeling strategy
using Multi-View Co-Training, streamlining the retraining pro-
cess. This feature is crucial in scenarios where manual labeling
is impractical, making the system adaptive and efficient in re-
sponding to changing network conditions. Through the simulated
data, the paper demonstrates the framework’s efficacy, achieving
significant improvements in network optimization. CeDA-BatOp
2.0 is a step forward in addressing the complexities of cellular
network optimization. By combining MTL, drift analysis, and
pseudo-labeling, it provides a comprehensive solution that adapts
to the dynamic nature of cellular networks, ultimately enhancing
network performance and the user experience.

Index Terms—Base station parameter, Network automation,
Joint Optimization, Drift Analysis, Pseudo Labeling

I. INTRODUCTION

Artificial intelligence (AI) has assumed an increasingly
prominent role within the domain of cellular networks, aimed
at enhancing efficiency, optimizing network performance, and
elevating the overall user experience. Notably, AI finds one
of its pivotal applications in the realm of cellular network
resource optimization, a concept substantiated by several com-
prehensive studies [1], [2]. Empowered by AI and machine
learning (ML) algorithms, the scrutiny of extensive datasets
originating from diverse network elements, including base
stations and user devices, enables the discernment of intricate
patterns and the accurate forecasting of network congestion.
This in turn equips network operators with the proactive ca-
pacity to fine-tune network resources, whether by augmenting

bandwidth allocation in high-traffic regions or strategically
expanding the number of base stations, as evidenced by
research [3], [4].

A remarkable manifestation of AI’s influence in cellular net-
works is observed in the domain of self-organizing networks
(SON). These networks, characterized by their remarkable au-
tonomy and minimal human intervention, owe their efficiency
to AI algorithms that diligently analyze network data. This
analysis enables dynamic adaptations to enhance coverage,
capacity, and overall network efficiency, promising significant
performance improvements and cost reductions for network
operators [5].

Furthermore, the integration of AI technology within cel-
lular networks is geared towards enhancing the quality of
the user experience. AI and ML algorithms, for instance,
enable the examination of user device data, thus facilitating
the personalization of user experiences. These personalized
features span from tailored content recommendations to the
optimization of network settings for enhanced battery life,
in accordance with recent research [6]. Additionally, AI is
harnessed to predict and preempt network service disruptions.
AI-driven algorithms adeptly scrutinize data from network
nodes, promptly identifying potential issues, whether rooted in
hardware or software anomalies, allowing network operators
to take preventive measures and maintain network reliability,
as highlighted by pertinent research [7], [8].

The efficient data transfer and seamless connectivity vital
to modern society hinge on the efficacy of these networks.
Meeting this challenge necessitates the continuous exploration
of innovative solutions that not only adapt to the dynamic
nature of cellular networks but also address the intricacies of
network optimization. In the contemporary global landscape,
marked by highly dynamic base station traffic patterns, the
optimization of base station parameters is a pressing necessity.
Manual collective optimization within limited regions is not
only time-consuming but also reliant on domain experts for
parameter adjustments. Overcoming the dearth of measure-
ment data required for accurate conclusions in ML-based
optimization problems presents another formidable challenge.



Given the aforementioned challenges, this paper proposes an
enhanced framework for base station parameter optimization
and automation with Joint Optimization, Controlled Drift
Analysis and Pseudo-Labeling that has the potential to signif-
icantly impact base station parameter optimization in modern
wireless networks. This automated framework can be extended
to address other challenges, such as outages, disruptions,
and personalized user experiences. Through the seamless
integration of this framework as xApps and in the Service
Management and Orchestration (SMO) within ORAN’s RIC
[9], our objective is to enhance the operational capabilities of
cellular networks.

Our main contributions include the development of CeDA-
BatOp version 2.0, which builds upon the established func-
tionalities of CeDA-BatOp version 1.0 [10]. This upgraded
version introduces the following:

1) Utilization of Multi-task learning (MTL) [11] for joint
training of base station parameter predictor and clustering
to attain the global optimum. By leveraging the interplay
between these tasks, our framework enhances its ability
to provide a holistic and efficient solution for network
optimization. For the predictor, we use Fully Connected
Neural Network (FCNN) - 5 layers and Agglomerative
clustering (AHC) as the clustering methodology.

2) Incorporating analysis of controlled drift generated using
Gaussian Mixture Models (GMM) [12]. It paves the path
to an in-depth exploration of the effects of drift intrinsic
to the domain of the respective features. By systemati-
cally managing and analyzing drift, our framework gains
the capability to address real-world data variations and
their implications on network optimization.

3) Pseudo-labeling strategy using Multi-View Co-Training
(MVCT) [13] to streamline the retraining process. This is
a crucial aspect of maintaining the accuracy and relevance
of ML models in a dynamic network environment. By
combining these strategies, our framework can effectively
generate labels for the retraining cycle. This is partic-
ularly valuable in scenarios where manual labeling is
time-consuming or impractical. It facilitates the retraining
process by reducing the reliance on large lookup tables
or extensive human intervention. As a result, the system
becomes more adaptive and efficient, as it can continu-
ously update its models to respond to changing network
conditions and data distributions. For MVCT, we leverage
Hyperoptimized Gradient Boosting (HGBoost) proposed
in [14] and FCNN – 5 layers.

The subsequent sections are structured as follows: Section II
presents an extensive overview of relevant literature. In Section
III, the complex components and their stages within the
framework are detailed. Section IV elucidates the simulation
setup and ML algorithm parameters. A comprehensive analysis
of the empirical outcomes demonstrates the framework’s au-
tomation efficacy. Finally, Section V summarizes the primary
findings and implications of the study. It also delves into
potential prospects for future research, aiming to deepen and

extend the current findings.

II. RELATED WORKS

In this section, we present the background for the concepts
pertinent to the framework:

Beginning with base station clustering, advancements in
this field, particularly in beamforming applications, have
demonstrated considerable efficacy, as highlighted in the work
by Hong et al. [15] concerning base station clustering and
beamforming for partial coordinated transmission in dense
urban environments. Similarly, notable contributions, such
as the utilization of zero-forcing techniques for intra-cluster
transmission, exemplified in [16], have significantly bolstered
the efficiency and capacity of base station clustering. Aligning
base station clusters with complementary usage profiles, as
demonstrated in the work by Chen et al. [17], has optimized
processing resources and improved network performance, al-
though its adaptability across diverse network settings remains
a challenge, thus highlighting the need for a versatile frame-
work that accommodates various parameter types and diverse
network scenarios.

According to Wang et al. [18], who introduced innovative
ML techniques for base station design optimization, ML has
a significant impact on optimizing base station parameters
within self-organizing networks. The integration of Bayesian
optimization and reinforcement learning for coverage and
capacity optimization by Dreifuerst et al. [19] showcases the
importance of multiple input parameters such as throughput,
SINR, RSRP, and RSRQ. Our proposed method CeDA-BatOp
1.0 extended this by incorporating a larger set of input
parameters, such as RSRQ, RSRP, RSSI, SINR, CQI, DL/UL
bitrate, download process status, and neighboring base station
parameters to optimize base station parameters effectively.
This comprehensive approach is pivotal for effective base sta-
tion parameter optimization, ultimately ensuring both optimal
network performance and an enhanced user experience.

In the domain of data drift within cellular networks, the
implications of both data and concept drift are of considerable
significance, especially in mission-critical applications. No-
tably, while the financial sector has extensively harnessed these
concepts, their potential in the context of cellular networks
has remained underexplored. Predominantly, prior research in
this area has concentrated on the detection of anomalies [20],
with more recent applications encompassing the identifica-
tion of shifts in user behavior patterns [21] and changes in
network traffic dynamics within the framework of federated
learning [22]. CeDA-BatOp v1.0 adopts a proactive approach,
continuously monitoring data drift and initiating retraining
procedures when necessary to preserve the accuracy of its
models. This proactive stance empowers network operators to
adapt to evolving network conditions, leading to the ultimate
enhancement of network performance and reliability. The inte-
gration of data drift detection into cellular networks serves as a
catalyst for the timely identification and resolution of potential
issues, thereby ensuring the efficiency and dependability of
network operation.



FIG. 1: Base station Parameter Optimization and Automation Framework

In CeDA-BatOp 1.0, the approach involved training the
clustering and prediction systems independently, a method that
might not consistently lead to achieving the global optimum.
Moreover, the drift analysis conducted utilized a method
involving random value shifts, resulting in the generation of
data values that may not align with the native domain of the
respective features. To delve deeper into the effects of drift
inherent to the domain of the respective features, there is a
need to conduct a controlled drift study. In addition, version
1.0 lacks the incorporation of pseudo-labeling to generate
labels for the retraining process. Incorporating pseudo-labeling
has the potential to eliminate the need for a large lookup
table, thereby improving the system’s overall performance.
These invaluable insights play a crucial role in influencing the
ongoing development of CeDA-BatOp, directing our efforts
to improve its resilience and efficacy. They serve as the
foundation upon which we envision the emergence of CeDA-
BatOp 2.0, symbolizing the evolution of our framework. This
paper addresses these limitations, resulting in more impactful
and significant outcomes.
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FIG. 2: Joint Training of FCNN-5 and AHC along with the shared
encoder

III. FRAMEWORK

Figure 1 shows the proposed base station clustering and
parameter optimization framework. The procedure begins with
the creation of an offline dataset (D1) containing UEs and
base station parameters. This dataset is generated using an in-
house simulator and then stored in a dedicated data repository.
The UE and base station parameters serve as the ML model’s
input and output, respectively. The remainder of the framework
consists of four primary stages:

A. Stage 1: Joint training of parameter predictor and cluster-
ing

We have an encoder that is shared across the base sta-
tion parameter predictor (FCNN-5 layers) and clustering task
(AHC). Fig. 2 shows our shared representation of the encoder
in our pipeline. The encoder section comprises of four layers
with the following hidden unit configurations: [350, 150, 75,
25]. Our methodology of training and combining the losses is
inspired from Kendall et al. [23]. It is important to note that
the scale for losses of clustering and parameter prediction can
be different. To overcome this issue, we use the homoscedastic
uncertainty method of weighing the losses as proposed in [23].
This is done by learning a noise parameter which is fused into
the loss function for each of the individual tasks. As this brings
the losses to the same scale, the combined/shared loss which
is supposed to be minimized, would now be equivalent to the
sum of the individual losses.

For the predictor, we define the likelihood as:

p(y|fW (x), σ2) = N (y; fW (x), σ2)

where σ2 is the temperature of the model and σ is also
known as the scalar observation noise/uncertainty; x is the
input; fW (x) is the output of the neural network; W represents
the weights in the network; y represents the actual output.

For the agglomeration clustering, we define the likelihood
as:

p(θ|x, c) =
n∏

i=1

K∏
k=1

πkN (xi;µk,Σk)
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FIG. 3: Multi-View Co-training: FCNN-5 as view 1 and HGBoost as view 2

where θ is the set of parameters of the Gaussian mixture
model, including the cluster proportions πk, the cluster means
µk, and the cluster covariance matrices Σk; n is the number
of data points; xi is the ith data point; ci is the cluster label
of the ith data point; K is the number of clusters; N (x;µ,Σ)
is the probability density function of a Gaussian distribution
with mean µ and covariance matrix Σ.

The joint loss of the neural network and the agglomeration
clustering system is given by:

L = −log(p(y|fW (x), σ2))− log(p(θ|x, c))

=
1

2σ2
||yi − fW (xi)||2 − log(p(θ|x, c)) + log σ

The above loss is jointly minimized by updating the weight
W , θ and learning the noise parameter σ.

Initial cycle: The joint loss function is used to train the
multi-task model. During training, the shared layers of the
neural network will learn features that are beneficial for all
tasks, whereas the task-specific layers will adapt to the specific
requirements of each task. In our case, we have the neural
network model M∗

1 which is trained on the initial offline
dataset D1. The training period, which spans E epochs, is set
by employing the early stopping mechanism to ensure that
the model achieves convergence to an optimal state without
suffering from overfitting. In conjunction with this training,
base stations are clustered using the pairwise constrained
clustering technique as mentioned in CeDA-BatOp v1.0 and
data clusters C1

1,... CN
1 are formed; here subscript 1 refers

to the iteration number, initial iteration in this case. This
coordinated effort allows the models to collectively achieve
the global optimum solution. The pre-trained model M∗

1 is
then cloned to make M1

1,... MN
1 for N clusters.

Retraining cycle: The retraining cycle follows a similar
strategy as CeDA-BatOp v1.0. The new models, denoted as M1

i

to MN
i , where i > 1 and i ∈ N, are generated by training the

pre-trained model M∗
i−1 on the updated comprehensive dataset

Di = Di-1 ∪ Oi-1, for a total of E epochs. These new models are
cloned following a similar procedure as previously described.
In this context, Di signifies the overall dataset available for
the ith retraining cycle, while Oi represents the newly acquired
data (includes the labels) at the ith iteration. Additionally, in
the course of joint training, we extract valuable clustered base
station information from the dataset Di.

B. Stage 2: Fine-tuning and Prediction

Utilizing the cluster information obtained through joint
training, C1

i to CN
i , where C1

1 ⊂ D1,... CN
1 ⊂ D1 for the initial

cycle, and C1
i ⊂ Di,... CN

i ⊂ Di in case of the retraining cycle,
we proceed to fine-tune the respective pre-trained models,
denoted as M1

i to MN
i . This fine-tuning process involves

training these models individually for a specified number of
epochs denoted as Y (where Y < E). The resulting fine-
tuned models Fi

N ,... Fi
N are subsequently stored in the model

repository and deployed to the xApp for the inference of base
station parameters.

C. Stage 3: Controlled Drift Analysis and Monitoring

The new data, denoted as oi (input parameters) ⊂ Oi (input
& output parameters) is obtained from the UEs via the base
stations and contains the inputs for the Fully Connected Neural
Network (FCNN) model. The acquisition occurs at predeter-
mined intervals and is subjected to continuous monitoring for
the presence of data drift. In the event of detecting such drift,
an automated retraining process is initiated. For this section,
we focus on exploring and analyzing the implications and
effects of controlled drift generated using GMMs.

D. Stage 4: Pseudo-label generation for retraining process

Once the drift monitoring system triggers the retraining
process, pseudo base station parameters (labels) for the cor-
responding new data are required. We leverage MVCT which
considers perspectives of data to improve model performance.
It enables the model to learn from diverse views of the



data, enhancing its robustness and accuracy. This approach
is particularly beneficial when working with heterogeneous or
complex datasets, as it allows the model to uncover patterns
and insights that may not be apparent when using a single
view. Here we apply MVCT to enhance the predictive power of
the retraining module, resulting in more effective and reliable
outcomes.

We have two views, FCNN-5 and HGBoost for the MVCT
task as shown in Fig. 3. With the Initial dataset Di available
at ith iteration, we train the FCNN-5 and HGBoost. For the
initial cycle of these views, we leverage the structure of the
FCNN-5 model M∗

1 from Stage 1, but with the altered input
layer to take into account the reduced input features as shown
in Table IV. With the trained model of FCNN-5 and HGBoost,
we now infer the labels for the new unlabelled data oi which
provides the intermediate pseudo-labels. With the intermediate
pseudo-labeled instances of HGBoost (O′

i), we now train the
FCNN-5, and similarly, with the intermediate pseudo-labeled
instances of FCNN-5 (O′′

i ), we train the HGBoost. The number
of training cycles for MVCT would depend on the availability
of computational time and the risk of overfitting if trained for
many cycles.

FIG. 4: Map of a simulated locality in Madrid

IV. SIMULATION SETUP, DISCUSSION AND RESULT

In this study, we use the same meticulously curated simu-
lated dataset that was used in CeDA-BatOp v1.0. This local
dataset, collected using a proprietary dynamic system-level
simulator, comprises 42 strategically placed base stations,
accurately reflecting the urban setting of a specific region

in Madrid. Within this dataset, a diverse range of base sta-
tion configurations is represented, encompassing 23 macro
cells equipped with directional antennas and 19 small cells
employing Omni-antennas. The mobility patterns of UEs are
modeled across varying speeds, including 200 UEs moving at
30 km/hr, 40 UEs at 3 km/hr, and 80 UEs at 3 km/hr. This
diversified representation of UE movement speeds introduces
realistic mobility patterns, thereby enabling the ML model
to adapt to a spectrum of user scenarios. The amalgamation
of diverse scenarios, movement velocities, and base station
configurations positions it as a highly valuable resource for
the development and validation of base station-specific ML
models. These models are aimed at the optimization of net-
work performance and the enhancement of the overall user
experience in urban environments like Madrid. Please see Fig.
4 for a visual representation of the simulated scenario.

The dataset encompasses a rich repository of UE param-
eters: Reference Signal Received Quality (RSRQ), Reference
Signal Received Power (RSRP), Reference Signal Strength In-
dicator (RSSI), Signal-to-interference-plus-noise ratio (SINR),
Channel quality indication (CQI), Download/upload bitrate
(DL/UL bitrate), State (indicating whether the UE is in
an idle or downloading state), Reference Signal Received
Quality of the neighboring cell (NRxRSRQ) and Reference
Signal Received Power of neighboring cell (NRxRSRP). This
comprehensive dataset also includes optimized base station
parameters: Antenna tilt (comprising both Mechanical tilt and
Electrical tilt), Antenna azimuth and Maximum Transmission
power. Each parameter within the dataset encompasses a rich
set of features. For instance, in the case of RSRQ, the dataset
encapsulates RSRQ values across various time steps for all 42
base stations. In total, the dataset consists of 736 input features
at the UE end and 4 output features at the base station end.
A preprocessed sample of this dataset is available here.

For stage 1 of the framework, we leverage FCNN-5
(12,25,12,10) and AHC. These were chosen based on the
results from CeDA-BatOp v1.0: On our dataset, FCNN-5 pro-
vided the best trade-off between training time and Root Mean
Square Error (RMSE), AHC obtained the highest Silhouette
score [24]. The hyperparameters search can be inferred from
[10].

The flow of training and prediction in the case of Multi-task
training is as follows: We first train the FCNN-5 independently
on the overall dataset and the resulting model is stored in the
model repository. We call this initial training. RMSE obtained
is 28.34. With AHC run independently, we clustered the base
stations and using the method of dendrograms [25], we found
the best cluster size to be 9 and obtained a Silhouette Score
of 0.779. These have been detailed in CeDA-BatOp v1.0. We
now train both these models using the MTL joint loss function.
The obtained results of AHC and FCNN-5 in comparison to
that of CeDA-BatOp v1.0 for cases with and without initial
training are tabulated in Table I and Table II respectively. It is
interesting to notice that for the same cluster size, AHC has an
avg. silhouette score of 0.853 and can now form better clusters
when trained jointly compared to training independently. In

https://github.com/pjsudharshan/CeDA-BatOp


addition, we obtain the best RMSE of 17.62 for the case
when initial training of FCNN is performed. Unless explicitly
mentioned, it is presumed that parameters not specified have
been set to their default configurations, as offered by the scikit-
learn library [26]. The experimental results were generated
using a Samsung 970 EVO for data storage and retrieval,
while the training was conducted on an Intel Core i7-10750H
processor.

TABLE I: AHC Comparison for CeDa-BatOp versions 1.0 and 2.0

Clustering Algorithm Version Avg. Silhouette Score
CeDA-BatOp 1.0 0.779AHC CeDA-BatOp 2.0 0.853

As outlined in CeDA-BatOp v1.0, during the fine-tuning
phase, we fine-tuned the 5-layer FCNN models, Mi

1,... Mi
N ,

using their corresponding cluster data, Ci
1,... Ci

N . The fine-
tuning process resulted in an RMSE of 16.98. For CeDA-
BatOp v2.0, we fine-tuned the final FCNN-5 model obtained
through MTL and the results are tabulated in Table III. FCNN-
5 with no initial training fetched an RMSE value of 12.75 and
12.34 for FCNN-5 with initial training. We notice a consid-
erable reduction in the RMSE value for FCNN-5 with initial
training as compared to CeDA-BatOp v1.0. This leads us to
conclude that fine-tuning the pre-trained model customizes the
prediction process for the respective clusters, thereby resulting
in improved predictions. The fine-tuned models obtained above
can subsequently be deployed as xApps for making inferences
on optimized base station parameters.

TABLE II: Performance of FCNN-5 (12,25,12,10) when trained on
the overall dataset with initial training (without cluster fine-tuning)

Model Version Initial
Training RMSE

CeDA-BatOp 1.0 Not
Applicable 28.34

No 19.89FCNN-5 (12,25,12,10)
CeDA-BatOp 2.0 Yes 17.62

TABLE III: Performance of FCNN-5 (12,25,12,10) when trained on
the overall dataset with initial training and cluster fine-tuning

Model Version Initial
Training RMSE

CeDA-BatOp 1.0 Not
Applicable 16.98

No 12.75FCNN-5 (12,25,12,10)
CeDA-BatOp 2.0 Yes 12.34

To investigate the impact of drift within the realm of UE
parameters’ domain, we conducted a controlled drift experi-
ment utilizing Gaussian Mixture Models (GMMs). Note that
we drift only 50% of the overall dataset to study the drift
system. Initially, we scaled down the raw data by a factor
of two, ensuring that the standard deviation of the newly
derived data equated to 50% of the original data’s standard
deviation. We then employed classical GMMs to estimate an
unimodal distribution for this scaled data by setting the number
of Gaussian mixtures to 1. The noisy data is then sampled
from the respective unimodal distribution and then added to

the corresponding data in such a way that the signal-to-noise
ratio (SNR) ≈166%. In other terms, this means that for every
100 units of signal, there were 60 units of noise introduced.
This process was repeated for a range of Gaussian mixtures,
from 1 (representing an unimodal distribution) to 10 (repre-
senting a multimodal distribution). We then use similarity tests
- Kolmogorov-Smirnov (KS) test [27], Population Stability
Index (PSI) [28] and Jensen-Shannon divergence (JS) [29] to
identify and quantify the presence of drift within this new
dataset as detailed in CeDA-BatOp v1.0 and also use the same
thresholds. From v1.0, we noticed that Consensus Average
Accuracy (CAA), a majority voting approach provided the best
accuracy on our dataset. For example, if the KS test confirms
the presence of drift, PSI suggests no drift, and JS indicates
drift, we conclude that drift has occurred. This decision is
based on a voting system, where two algorithms support drift,
and one opposes it.
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FIG. 5: Drift detection accuracy across GMMs for SNR = 166%
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FIG. 6: Drift detection accuracy across GMMs for SNR = 125%

Fig. 5 shows the results obtained for the drift detection
system for SNR ≈ 166% with different Gaussian mixtures.
We obtain a maximum drift accuracy of 94.7% for the case
when noise is sampled from unimodal distribution. It is also
evident that an increase in the number of Gaussian mixtures
leads to a decline in the accuracy of the drift detection system.
With an elevated number of Gaussian mixtures, the distribution
closely approximates the actual data, and the noise sampled



from this distribution can resemble the true data, making it
less distinguishable as a drift from the original distribution.
This trend is also noticeable in the rising false negative rate,
which escalates as the number of mixtures increases.

Furthermore, we extended our investigation to SNR ≈ 125%
(indicating 80 parts of noise for every 100 parts of signal).
Similar to the previous case, we explored various numbers
of Gaussian mixtures, ranging from 1 to 10. The outcomes
are visualized in Figure 6. The highest accuracy achieved is
98.3%, which corresponds to the case when noise is sampled
from an unimodal distribution, similar to the previous scenario.
We can also observe a steady drop in the accuracy as we
increase the number of mixtures in GMM. It is worth high-
lighting that in the case of SNR ≈ 166%, the accuracy exhibits
a linear decrease, whereas in the case of SNR ≈ 125%, it
approaches a saturation point as the number of mixtures in-
creases. This exploratory analysis illuminates the performance
of the drift detection system in scenarios where the detected
drift closely mirrors the inherent variability within the overall
data distribution. In cases where the introduced noise from
data drift aligns subtly with the natural data variance, it can
diminish the sensitivity and accuracy of the drift detection
system. This observation underscores the challenges faced by
the system in identifying minor drift instances or when such
variations seamlessly blend with the underlying natural data
distribution. Whether this performance aligns with specific
KPI requirements is contingent upon the particular needs and
objectives.

TABLE IV: Ranked based on Permutation Importance score (for
initial cycle of the framework)

Rank FNN-5 HGBoost
1 RSRP RSRQ
2 RSSI NRxRSRQ
3 CQI NRxRSRP
4 NRxRSRQ RSRP
5 SNR SNR
6 NRxRSRP DL bitrate
7 RSRQ State (I/D)
8 UL bitrate CQI
9 DL bitrate UL bitrate

10 State (I/D) RSSI

Once the drift is detected, we trigger the retraining process.
We considered two views, implying we use two algorithms to
capture two different perspectives which will later complement
each other. We have two regressors - FCNN-5 (12,25,12,10)
and HGBoost. The MVCT algorithm is based on the belief
that the input features of these two regressors are disjoint. In
order to split the features, we need to obtain the rank of the
features for both regressors. This is obtained using Permutation
Importance score [30] and is represented in Table IV. The
overall dataset Di is now split into two feature sets - Feature
Set Y (Di

Y) containing the top 5 ranks of FCNN-5 and Feature
Set Z (Di

Z) containing the top 5 ranks of HGBoost. Di
Y is then

fed into the FCNN-5 thereby obtaining a trained model. The
new unlabelled instances oi are then inferred on this FCNN-
5 to obtain the labels for the unlabelled instances. Likewise,

this procedure is applied to HGBoost using Di
Z. Following

this, the pseudo-labels provided by FCNN-5 are used to train
HGBoost and vice-versa. Through this approach, the models
acquire distinct knowledge from features that can sometimes
be contradictory but collaboratively contribute. This synergy
between models streamlines the retraining process for subse-
quent cycles.

TABLE V: Model performance for pseudo-labeling with MVCT

Model RMSE
FCNN-5 (12,25,12,10) 21.43
HGBoost 27.64
Prediction mean from
FCNN-5 and HGBoost 19.77

To assess the effectiveness of the pseudo-label generation
system, we calculated the RMSE values by comparing the
pseudo base station parameters with the withheld simulated
data, which contains the true BS parameters corresponding
to the UE features. In our experimental setting, it was ob-
served that after conducting 4 cycles of MVCT training,
the FCNN-5 model began to exhibit signs of overfitting. In
real-world scenarios where actual labels are unavailable to
monitor overfitting, it is advisable to consider a lower number
of MVCT cycles as a precautionary measure to ensure the
model’s generalization and reliability. After the training cycles
of MVCT, the resulting models of FCNN-5 and HGBoost are
then used to infer the pseudo base station parameters for the
next retraining cycle. The results obtained are tabulated in
Table V. We can decipher that FCNN-5 has a lower RMSE of
21.43 compared to that of HGBoost. It is intriguing to note that
the lowest RMSE of 19.77 is achieved by utilizing the mean
of the predictions from the FCNN-5 and HGBoost models.
This finding highlights the potential efficacy of a combined
approach in improving predictive accuracy.

V. CONCLUSION

CeDA-BatOp 2.0 is a new framework for base station
clustering and parameter optimization that introduces three key
improvements over CeDA-BatOp 1.0: multi-task learning for
joint training of base station parameter predictor and clus-
tering, analysis of controlled drift generated using Gaussian
Mixture Models, and pseudo-labeling strategy using Multi-
View Co-Training. Evaluation of joint training in CeDA-BatOp
2.0 on a simulated dataset showed that it outperforms CeDA-
BatOp 1.0 in terms of both clustering and prediction perfor-
mance, with the best results being a Silhouette score of 0.853
and an RMSE of 12.34. The controlled data drift analysis is
a crucial component of our in-depth drift analysis, providing
valuable insights into the performance of drift detection when
drift occurs within the domain of the initial dataset. This
exploration enables CeDA-BatOp 2.0 to seamlessly adjust to
the ever-changing and unpredictable variations in real-world
network data, all while streamlining the retraining process.
The integration of a pseudo-labeling strategy using MVCT
enhances the retraining process by efficiently generating la-
bels for unlabeled data, thus reducing the need for manual



intervention and extensive lookup tables. This makes the
system more adaptive and efficient, continuously updating its
models to respond to changing network conditions and data
distributions. In summary, CeDA-BatOp 2.0 outlines a clear
path toward establishing a more autonomously functioning
network infrastructure

Our future work will focus on the investigation of rein-
forcement learning techniques to enhance dynamic network
management within this framework. Additionally, we will
delve into the development of an intelligent weighting system
to refine the final prediction derived from the dual perspectives
in the MVCT pseudo-labeling system.
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