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Introduction

Berarducci and Mantova [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF]Theorem B] have recently constructed a derivation (denoted by ∂ BM below) on Conway's ordered field No of surreal numbers that makes the latter a Liouville closed H-field with constant field R. The standard example of such an object is the ordered differential field T of transseries, and the question arises whether No with ∂ BM is elementarily equivalent to T. Below we give a positive answer in a stronger form: Theorem 1. Throughout this paper we consider No as a differential field with derivation ∂ BM .

Both No and T are also exponential fields; the exponential function exp on No is defined in Gonshor [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF]. We refer to [2, Appendix A] for the precise construction of T, but the "generating element" x of T there will be denoted by x T here, since we prefer to have x range here over arbitrary surreal numbers. It is folklore (but see Section 5 for a proof) that there is a unique embedding ι : T → No of ordered exponential fields with ι(x T ) = ω that is the identity on R and respects infinite sums. It follows easily from Wilkie's theorem [START_REF] Wilkie | Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions and the exponential function[END_REF] and other known facts that ι is an elementary embedding of ordered exponential fields; see Section 5 for details. The analogue for the derivation instead of the exponentiation requires more effort: Theorem 1. The mapping ι : T → No is an elementary embedding of ordered differential fields.

This answers a question posed in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF]. The main tools for proving this result come from [ This also uses a result of Esterle [START_REF] Esterle | Solution d'un problème d'Erdös, Gillman et Henriksen et application à l'étude des homomorphismes de C(K)[END_REF] and its consequence that for any countable ordinal α, any well-ordered set of surreals of length < α is countable: Lemma 4.3.

Finally, we establish an embedding result for H-fields:
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Theorem 3. Every H-field with small derivation and constant field R can be embedded over R as an ordered differential field into No.

Thus every Hardy field extending R embeds over R as an ordered differential field into No. Despite these excellent properties of ∂ BM , Schmeling's thesis [START_REF] Schmeling | Corps de Transséries[END_REF] gives us reason to believe that ∂ BM is not yet the "best" derivation on No. We expect to address this issue in later papers.

We thank Philip Ehrlich and Elliot Kaplan for giving us useful information about initial substructures of No of various kinds. We also thank the referee for pointing out places where more detail was needed and for debunking our initial attempt to prove Lemma 4.3.

Preliminaries

Here we fix notation and terminology and summarize the results from [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF][START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF][START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF] that we need as background material and as tools in our proofs.

Notations and terminology. Below, m, n range over N = {0, 1, 2, . . . }, and α, β and µ, ν range over ordinals. (The letter λ will serve another purpose, as in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF].)

As in [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF], a surreal number is by definition a function a : µ → {-, +} on an ordinal µ = {α : α < µ}. For such a we let l(a) := µ be the length of a. From now on we let a, b, x, y be surreal numbers. The class No of surreal numbers carries a canonical linear ordering <: a < b iff a is lexicographically less than b, where by convention we set a(µ) := 0 for µ ⩾ l(a) and linearly order {-, 0, +} by -< 0 < +. We also have the canonical partial ordering < s on No given by: a < s b ("a is simpler than b") iff a is a proper initial segment of b, that is, l(a) < l(b), and a| µ = b| µ for µ := l(a). For sets A, B ⊆ No with A < B (that is, a < b for all a ∈ A and b ∈ B) we let x = A|B mean that x is the simplest surreal with A < x < B, as in [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF] and [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF]. We also use the terms "canonical representation" and "monomial representation" (of a surreal number) as in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF].

The ordinal α is identified with the surreal a : α → {-, +} with a(β) = + for all β < α. A useful fact is the equivalence α < x ⇐⇒ α +1 ⩽ s x, where α +1 is the successor ordinal to α. The subclass of No consisting of the ordinals is denoted by On. A set S ⊆ No is said to be initial if x ∈ S whenever x < s y ∈ S. As in [START_REF] Van Den Dries | Fields of surreal numbers and exponentiation[END_REF] we set No(α) = x : l(x) < α , an initial subset of No.

We refer to [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF] or [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF] for the inductive definitions of the binary operations of addition and multiplication on No that make No into a real closed field, with the ordinal 0 as its zero element and the ordinal 1 as its multiplicative identity. The field ordering of this real closed field is the above lexicographic linear ordering <. This field No contains R as an initial subfield in the way specified in [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF]. The field sum α + n equals the ordinal sum α +n. Each initial set No(ω α ) underlies an additive subgroup of No; see [START_REF] Van Den Dries | Fields of surreal numbers and exponentiation[END_REF].

Let Γ be an (additively written) ordered abelian group. Then we set

Γ > := {γ ∈ Γ : γ > 0}.
We use this notation also for the underlying additive groups of No and R, so No > = {a : a > 0}, and

R > := {r ∈ R : r > 0}. For γ ∈ Γ we define [γ] := δ ∈ Γ : |δ| ⩽ n|γ| and |γ| ⩽ n|δ| for some n ⩾ 1 ,
the archimedean class of γ (in Γ). The archimedean classes of elements of Γ partition the set Γ, and we totally order this set of archimedean classes by

[γ 1 ] < [γ 2 ] :⇐⇒ n|γ 1 | < |γ 2 | for all n ⩾ 1.
Thus the least archimedean class is [0] = {0}, the trivial archimedean class.

The convex hull of R in No is a valuation ring V of the field No. We consider No accordingly as a valued field whose (Krull) valuation v has V as its valuation ring. For any (Krull) valued field K with valuation v and elements f, g

∈ K we let f ≼ g, f ≺ g, f ≍ g, f ∼ g abbreviate v(f ) ⩾ v(g), v(f ) > v(g), v(f ) = v(g), and v(f -g) > vf . (See [2, Section 3.1].
) We shall use these notations in particular for the valued field No.

The omega map, the Conway normal form, and summability. We assume familiarity with Conway's omega map x → ω x : No → No > . Recall that ω x is the simplest positive element in its archimedean class; so ω x ≺ ω y whenever x < y. See [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF] for details, including the proof that each a has a unique representation a = Let (a i ) i∈I be a family of surreals; this includes I being a set. We say that (a i ) is summable (or that i a i exists) if i E(a i ) is reverse well-ordered, and for each x there are only finitely many i ∈ I with x ∈ E(a i ); in that case we set i a i :=

x ( i a i,x ) ω x . If S is a subset of No, then for any summable family

(a i ) in R[[ω S ]] we have i a i ∈ R[[ω S ]].
As in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF], we let M denote the class of monomials ω x ; so M is a multiplicative subgroup of No × . The Conway normal form allows us to consider any surreal number a as a generalized series a = m∈M a m m with coefficients a m ∈ R, monomials m ∈ M, and reverse well-ordered support supp a := {m ∈ M : a m ̸ = 0} = ω E(a) . This makes the above notion of summability for surreal numbers coincide with the corresponding notion for generalized series from [START_REF] Schmeling | Corps de Transséries[END_REF]Section 1.5].

Next, J := a : E(a) ⊆ No > is the class of purely infinite surreals, an additive subgroup of No that is moreover closed under multiplication. Thus M ∩ J = M ≻1 , and

No = J ⊕ R ⊕ No ≺1 .
Exponentiation, and the functions g and h. Gonshor [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF] gave an inductive definition of the exponential function exp : No → No > , and established its basic properties. These include exp being an order-preserving isomorphism from the additive group of No onto its multiplicative group of positive elements. The inverse of exp is of course denoted by log : No > → No. The nth iterate of the map exp : No → No is denoted by exp n , so exp 0 is the identity map on No, and exp 1 (x) = exp(x). Also e x := exp(x). The logarithmic map log maps No >N into itself; the nth iterate of the restriction of log to a map No >N → No >N is denoted by log n , so log 0 is the identity map on No >N and log 1 (x) = log(x) for x > N.

The exponential map exp and the omega-map x → ω x are related by the order preserving bijection g :

No > → No, which satisfies exp(ω x ) = ω ω g(x)
for all x > 0.

We have g(n) = n for all n. More generally, Theorem 10.14 in [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF] says that g(α) = α unless ε ⩽ α < ε + ω for some ε-number, in which case g(α) = α + 1. (An ε-number is an ordinal ε such that ω ε = ε.) We shall need g(x) mainly in the other extreme case where x has the form ω -α . Here Theorem 10.15 in [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF] gives g(ω -α ) = -α + 1.

We also use the inverse h : No → No > of g. Note that

ω ω y = exp(ω h(y)
) for all y.

The result above for g(ω -α ) yields h(-α + 1) = ω -α , from which we get log ω ω -α+1 = ω ω -α .

Applying this to the ordinal α + 1 instead of α we get α+1) .

log ω ω -α = ω ω -(
From [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF] we have exp(J) = M. Thus besides the Conway normal form and the series representation, any surreal number a also has a unique representation a = j∈J a j e j (exponential normal form of a)

with real coefficients a j and reverse well-ordered {j ∈ J : a j ̸ = 0}; this is also called the Ressayre form of a. For nonzero a with leading monomial e b , b ∈ J, we set ℓ(a) := b. Then -ℓ : No × → J is a (Krull) valuation on the field No, and a : -ℓ(a) ⩾ 0 = a : |a| ⩽ r for some r ∈ R ⩾0 = V, so we may consider -ℓ as the valuation of our valued field No. Important in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF] is also the class A of log-atomic surreals, consisting of the a > N all whose iterated logarithms log n a lie in M. We have A ⊆ M ≻1 and exp(A) = log(A) = A. It follows from A ⊆ M that if x, y ∈ A and x < y, then x ≺ y. (In [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF] the class of log-atomic surreals is denoted by L, but this notation conflicts with ours in other papers.)

Surreal derivations. We summarize here some results from [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF] as needed, and add a few remarks. A surreal derivation is a derivation ∂ on the field No such that (SD1) a :

∂(a) = 0 = R; (SD2) ∂(a) > 0 for all a > R; (SD3) ∂ exp(a) = ∂(a)
exp(a) for all a;

(SD4) for any summable family (a i ) of surreals, the family ∂(a i ) is also summable, and ∂ ( i a i ) = i ∂(a i ). The ordered field No equipped with any surreal derivation is an H-field; this doesn't need (SD3) or (SD4). The particular derivation ∂ BM is surreal, maps A into M, and is obtained in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF] as a special case of a rather general construction. Before we get to that, we mention Proposition 6.5 and Theorem 6.32 from that paper: (BM1) If ∂ is a surreal derivation, then for all x, y > N with x -y > N we have

log ∂(x) -log ∂(y) ≺ x -y. (BM2) Any map D : A → R > M such that for all x, y ∈ A, D(exp x) = D(x) exp x, log D(x) -log D(y) ≺ max(x, y),
extends to a surreal derivation. Thus (BM2) is a partial converse to (BM1), although the condition in (BM2) that D takes only values in R > M seems a rather severe restriction. We define a prederivation to be a map

D : A → R > M as in (BM2). Note that if D is a pre- derivation, then D(a) = m<n log m a • D(log n a)
for all a ∈ A and all n.

( * )

A pre-derivation D actually extends canonically to a surreal derivation ∂ D . To define ∂ D in terms of D we rely on the notion of path derivatives, introduced in [10], further developed in [START_REF] Schmeling | Corps de Transséries[END_REF], and adapted to the surreal setting in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF]. A path is a function P : N → R × M such that P (n + 1) is a term of ℓ(P (n)), for all n. Given x, the paths P such that P (0) is a term of x are the elements of a set P(x). For x ∈ A there is a unique path P ∈ P(x); it is given by P

(n) = log n x. Thus if P is a path and P (m) ∈ A, then P (n) = log n-m P (m) for all n ⩾ m, so P (n) ∈ A for all n ⩾ m.
Let D be a pre-derivation. The path derivative ∂ D (P ) ∈ RM for a path P is defined as follows, with ( * ) guaranteeing independence of n in ( 1):

(1

) if P (n) ∈ A, then ∂ D (P ) := m<n P (m) • D(P (n)); (2) if P (n) /
∈ A for all n, then ∂ D (P ) := 0. The rationale behind path derivatives is the following proposition: (BM3) For each a the family ∂ D (P ) P ∈P(a) is summable. This result is stated in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF]Proposition 6.20] only for one particular pre-derivation, but, as the authors mention, the proof extends to any pre-derivation. In view of (BM3) we can now define

∂ D : No → No by ∂ D (a) := P ∈P(a) ∂ D (P ).
It follows from ( * ) that ∂ D extends D, and the arguments in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF]Section 6] show that ∂ D is a surreal derivation.

Results from [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF]. To state the relevant facts, we recall from [START_REF] Aschenbrenner | H-fields and their Liouville extensions[END_REF] or [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF] that an Hfield is by definition an ordered differential field K with derivation ∂ and constant field

C = f ∈ K : ∂(f ) = 0 such that: (H1) ∂(f ) > 0 for all f ∈ K with f > C; (H2) O = C + O,
where O is the convex hull of C in K, and O is the maximal ideal of the valuation ring O. Let K be an H-field, and let O and O be as in (H2). Thus K is a valued field with valuation ring O. We consider K in the natural way as an L-structure, where

L := { 0, 1, +, -, ×, ∂, ⩽, ≼ }
is the language of ordered valued differential fields; in particular,

f ≼ g ⇐⇒ f ∈ Og ⇐⇒ |f | ⩽ c|g| for some c ⩾ 0 in C.
Given f ∈ K we also write f ′ instead of ∂(f ), and we set f

† := f ′ /f for f ̸ = 0, so (f g) † = f † + g † and (1/f ) † = -f † for f, g ∈ K × . A useful subset of the value group Γ := v(K × ) of the valued field K is Ψ := Ψ K := v(f † ) : f ∈ K × , f ̸ ≍ 1 = v(f † ) : f ∈ K, f > C .
As in [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF] we call K grounded if Ψ has a largest element. For the convenience of the reader we include a proof of the following wellknown fact.

Lemma 1.1. Assume K has constant field C = R. Then K is grounded iff Γ has a smallest nontrivial archimedean class. Proof. Let f, g ∈ K, f, g > C. Suppose the archimedean class v(f ) = v(1/f ) of v(f ) is greater than v(g) . This means: v(f ) < nv(g) = v(g n ) < 0 for all n ⩾ 1. Hence f † > (g n ) † = ng † > 0 for all n ⩾ 1, by [1, Lemma 1.4], so v(f † ) < v(g † ). A similar argument (which doesn't need C = R) shows that if v(f ) = v(g) , then v(f † ) = v(g † ). Thus we have an order-reversing bijection v(f ) → v(f † ) (f ∈ K, f > C) from the set of nontrivial archimedean classes of Γ onto Ψ. □ An H-subfield of K is by definition an ordered differential subfield of K that is an H-field.
In [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF] we axiomatized the elementary (= first-order) theory of the Hfield T of transseries. This (complete) theory is called T nl small there and its models are exactly the H-fields K satisfying the following (first-order) conditions:

(1) the derivation of K is small, that is, ∂O ⊆ O;

(2) K is Liouville closed;

(3) K is ω-free; (4) K is newtonian.

(An H-field K is said to be Liouville closed if it is real closed and for all f ∈ K there exists g ∈ K with g ′ = f and an h ∈ K × such that h † = f ; for the definition of "ωfree" and "newtonian" we refer to the Introduction of [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF].) Dropping the smallness axiom (1), we get the incomplete but model complete theory T nl ; see [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF]Chapter 16]. The H-field T satisfies (3) and ( 4) by [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF]Corollary 11.7.15 and Theorem 15.0.1], which for an arbitrary H-field K amount to the following:

If ∂K = K and K is a directed union of spherically complete grounded H-subfields, then K is ω-free and newtonian.

The condition ∂K = K is automatically satisfied if K is a directed union of spherically complete grounded H-subfields E such that for some ϕ ∈ E we have v(ϕ) = max Ψ E and ϕ ∈ ∂K, by [2, Corollary 15.2.4].

Infinite Products and Log-atomic Surreals

The pre-derivation D in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF] with ∂ D = ∂ BM is defined by a certain identity. Towards the end of this section we give this identity a more suggestive form, which we found useful. But we begin with some remarks on ε-numbers, which play an important role in the next sections.

Remarks on ε-numbers. Throughout this paper ε will denote an ε-number, that is, ε is an ordinal such that ω ε = ε. Lemma 2.1. For any α there is a least ε-number ε(α) ⩾ α. Moreover, if α is infinite, then card(ε(α)) = card(α).

Proof. The recursion defining ω α as a function of α easily yields that this function is strictly increasing, with ω α ⩾ α, card(ω α ) = max ℵ 0 , card(α) , and thus card(ω α ) = card(α) if α is infinite. Now define α n as a function of n by the recursion α 0 = α and α n+1 = ω αn . Then sup n α n is clearly the least ε-number ⩾ α, and it has the same cardinality as α if the latter is infinite. □

If κ is an uncountable cardinal, then by the remarks in the proof above we have ω α < κ for all α < κ. Thus uncountable cardinals are ε-numbers. The least εnumber is denoted by ε 0 , as usual, so ε 0 = sup n ω n where the ω n are defined by the recursion ω 0 = ω and ω n+1 = ω ωn .

Infinite products of monomials. Recall that M is the multiplicative group of monomials ω a . For a family (m i ) in M we say that i m i exists if i a i exists, with m i = ω ai for all i, and in that case, we set

i m i := ω i ai ∈ M.
The rules for manipulating these infinite products are easy consequences of those for infinite sums, and we shall freely use them below. Note in particular that if (m i ) is a family in M and i m i exists, then i m -1 i exists and equals ( i m i ) -1 . In our definition of infinite products we could have represented monomials as exponentials of elements in J instead of as powers of ω. Indeed, the equivalence between these options follows from the next two lemmas: Lemma 2.2. Let (a i ) be a summable family in J. Then i exp(a i ) exists, and

exp i a i = i exp(a i ).
Proof. We have a i = x>0 a i,x ω x , so by [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF]Theorem 10.13],

exp(a i ) = ω bi , b i := x>0 a i,x ω g(x) , so E(b i ) = g(E(a i ))
. Since i a i exists, so does i b i , and hence i exp(a i ) = i ω bi exists, and i exp(a i ) = ω i bi . Moreover, with i a i = x>0 a x ω x , we have i b i = x>0 a x ω g(x) . Hence again by [9, Theorem 10.13],

i exp(a i ) = ω x>0 axω g(x) = exp x>0 a x ω x = exp i a i , as claimed. □ Lemma 2.3.
Let (m i ) be a family in M such that i m i exists. Then i log m i exists, and log i m i = i log m i .

Proof. We have m i = exp(a i ) with a i ∈ J, so a i = x>0 a i,x ω x , hence

m i = ω bi , b i := x>0 a i,x ω g(x)
by [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF]Theorem 10.13]. Since the product i m i exists, so does i b i , and therefore i a i = i log m i exists. Moreover, and again by [9, Theorem 10.13],

i

m i = ω i bi = ω x>0 axω g(x) = exp x>0 a x ω x , a x := i a i,x ,
and so log i m i = x>0 a x ω x = i a i . □

Log-atomic surreals. Recall that A ⊆ M ≻1 is the class of log-atomic surreals.

See [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF]Sections 1,[START_REF] Van Den Dries | Fields of surreal numbers and exponentiation[END_REF] for the order-preserving bijection x → λ x : No → A and for the fact that λ x ⩽ s λ y iff x ⩽ s y. It follows from exp(ω x ) = ω ω g(x) that A ⊆ ω M . Thus for any well-ordered index set I and strictly decreasing map i → λ i : I → A the product i λ i exists. We shall use Proposition 2.6 and Corollary 2.9 below to define the pre-derivation ∂ BM | A .

Lemma 2.4. Let m = A|B be a monomial representation with m ≻ 1. Then Then by [3, Definition 5.12], the defining representation of λ x is given by

exp(m) = m N ∪ exp(A) exp(B). Proof. For m ′ < m with m ′ < s m we have m ′ ⩽ a for some a ∈ A (since A < m ′ < m < B gives m ⩽ s m ′ ). Likewise, for m < m ′′ < s m,
λ x = k, exp j k log j (λ x ′ ) exp j 1 k log j (λ x ′′
) . Proposition 2.5. We have λ x+1 = exp(λ x ), and thus λ x-1 = log(λ x ).

Proof. Let x = {x ′ }|{x ′′ } be the canonical representation of x. Then 1 = 0|∅ gives x + 1 = {x, x ′ + 1}|{x ′′ + 1}. Assume inductively that λ x ′ +1 = exp(λ x ′ ) and λ x ′′ +1 = exp(λ x ′′ ) for all x ′ and x ′′ . With j, k ranging over N ⩾1 , [3, 5.15] gives

λ x+1 = k, exp j k log j (λ x ) , exp j k log j (λ x ′ +1 ) exp j 1 k log j (λ x ′′ +1 ) = k, exp j k log j (λ x ) , exp j k log j-1 (λ x ′ ) exp j 1 k log j-1 (λ x ′′
) . The defining representation λ x = A|B is monomial, and the above gives

λ x+1 = N ∪ S ∪ exp(A)| exp(B) where S includes λ N
x and all elements of S are ≍ L λ x . Since λ x ≺ L exp(λ x ), it follows easily from Lemma 2.4 that λ x+1 = exp(λ x ). □ Lemma 2.6. We have λ -α = ω ω -α .

Proof. By induction on α. The case α = 0 holds since λ 0 = ω. Assuming it holds for a certain α, we have

λ -(α+1) = log λ -α = log ω ω -α = ω ω -(α+1) .
Next, let µ be an infinite limit ordinal. Then -µ = ∅|{-α : α < µ}, and so by [3, 5.15] and with j, k ranging over N ⩾1 we have

λ -µ = N exp j 1 k log j λ -α . Now exp j 1 k log j λ -α ≍ L λ -α ≻ L λ -β
when α < β, so by cofinality and the inductive assumption we have

λ -µ = N ω ω -α : α < µ .
From N < ω ω -µ < ω ω -α for all α < µ, we get λ -µ ⩽ s ω ω -µ . Take a such that λ -µ = ω ω -a . Then λ -µ < ω ω -α for α < µ gives ω -a < ω -α for all α < µ, and thus a > α for all α < µ. This yields µ ⩽ s a, and thus

ω ω -µ ⩽ s λ -µ , hence a = µ. □ Lemma 2.7. For λ ∈ A we have: λ < λ -α ⇐⇒ λ -(α+1) ⩽ s λ.
Proof. For λ = λ x we have the equivalences

λ x < λ -α ⇐⇒ x < -α ⇐⇒ α < -x ⇐⇒ α + 1 ⩽ s -x ⇐⇒ -(α + 1) ⩽ s x ⇐⇒ λ -(α+1) ⩽ s λ x . □
Transfinitely iterating the logarithm function. In view of λ -n = log n ω and the proof of Lemma 2.6 it is suggestive to think of λ -α as the α times iterated function log evaluated at ω. Accordingly we set log α ω := λ -α . We note that for β < α we have -β < s -α, so ω -β < s ω -α , and thus log β ω < s log α ω.

Lemma 2.8. Suppose α is an infinite limit ordinal. Then log α ω is the simplest surreal x > N such that x < log β ω for all β < α.

Proof. First, N < log α ω < log β ω for all β < α. Let x be the simplest surreal > N such that x < log β ω for all β < α. Then x is the simplest positive element in its archimedean class, so x = ω y with y > 0. Then x = ω y < ω ω -β for β < α gives y < ω -β for all β < α. Then y is the simplest positive element in its archimedean class: if 0 < y 0 ⩽ s y and y 0 ⩽ ny, then ω y0 ⩽ s ω y = x and N < ω y0 ⩽ x n < log β ω for all β < α, so ω y0 = ω y , and thus y 0 = y. Hence y = ω z with z < -β for all β < α, and thus z ⩽ -α ⩽ s z. Therefore, ω -α ⩽ s ω z = y, so

log α ω = ω ω -α ⩽ s ω y = x,
and thus log α ω = x. □

The surreals log α ω occur in the definition of ∂ BM later in this section.

The κ-numbers. The definition of ∂ BM in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF] also involves the surreals κ x ∈ A defined by Kuhlmann and Matusinski [START_REF] Kuhlmann | The exponential-logarithmic equivalence classes of surreal numbers[END_REF]. This is only needed for x = -α, and it follows from the results in [START_REF] Kuhlmann | The exponential-logarithmic equivalence classes of surreal numbers[END_REF] that κ -α = ω ω -ωα , where ωα is the usual ordinal product. Thus in view of Lemma 2.6:

Corollary 2.9. We have κ -α = λ -ωα = ω ω -ωα = log ωα ω.

We also use the binary relations ≼ K , ≻ K , and ≍ K on No >N defined by

x ≼ K y ⇐⇒ x ⩽ exp n (y) for some n,

x ≻ K y ⇐⇒ x > exp n (y) for all n,

x ≍ K y ⇐⇒ x ≼ K y and y ≼ K x.

We refer to [3, 5.3] for proofs of some basic facts about these relations and the κ x such as: ≍ K is an equivalence relation on No >N with convex equivalence classes, every ≍ K -equivalence class has a unique element κ x in it, and this element is the simplest element of this equivalence class. Also, κ x ⩽ s κ y iff x ⩽ s y.

Defining the pre-derivation for ∂ BM . The pre-derivation D with ∂ D = ∂ BM is denoted by ∂ L in [3, Definition 6.7], and by ∂ A in this paper. It is given by

∂ A (λ) := n log n λ α log α ω
with α in the denominator ranging over the ordinals such that log α ω ⩾ log n λ for some n; to facilitate comparison with [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF] we note that this condition on α is equivalent to λ ≼ K log α ω. (The products on the right exist, since log n λ and log α ω are strictly decreasing as functions of n and α, respectively.) The above defining identity for ∂ A simplifies the expression in [START_REF] Berarducci | Surreal numbers, derivations, and transseries[END_REF] 

(λ) = n log n λ. Another special case is ∂ A (log α ω) = 1 β<α log β ω, in particular, ∂ A (ω) = 1.
For ε-numbers we get the following (not needed later, but included as an example): Lemma 2.10. We have log n ε = ω ω ε-n . Hence ε ∈ A and

∂ A (ε) = ω ω ε +ω ε-1 +ω ε-2 +••• = ω ε/(1-ω -1 ) .
Proof. From [9, pp. 179, 180] we get that if b, as a sequence of pluses and minuses, equals ε followed by εωn minuses, with n ⩾ 1 and εωn being the ordinal product, then b = ω ε-n , and g(b) = ε -(n -1). In other words,

g ω ε-n = ε -(n -1) (n ⩾ 1).
Using this we prove the lemma by induction on n. The case n = 0 is clear. Assume inductively that log n ε = ω ω ε-n . Since g ω ε-(n+1) = ε -n, this gives

exp ω ω ε-(n+1) = ω ω ε-n ,
from which we get log n+1 ε = ω ω ε-(n+1) , as desired. □

Exhibiting No as a Suitable Directed Union

At the end of Section 1 we explained how proving T ≡ No (as differential fields) reduces to representing No as a directed union of spherically complete grounded Hsubfields. In this section we obtain such a representation. The reader should beware of considering No itself as spherically complete, even though the Conway normal form is sometimes summarized as "No = R((ω No ))". This is misleading, however, since it suggests that a series like α ω -α , where the sum is over all ordinals α, is a surreal number. It might perhaps be viewed as a surreal number in a strictly larger set-theoretic universe, but not in the one we are (tacitly) working in. A length bound for h. This very useful bound is as follows: Lemma 3.1. l h(y) ⩽ ω l(y)+1 .

Proof. By [9, p. 172] the canonical representation y = {y ′ }|{y ′′ } yields

h(y) = 0, h(y ′ ) h(y ′′ ), ω y /2 n .
We can assume inductively that the lemma holds for the y ′ and y ′′ instead of y, and thus l h(y ′ ) ⩽ ω l(y ′ )+1 < ω l(y)+1 for all y ′ , and likewise with y ′′ instead of y ′ . Also, l(ω y /2 n ) ⩽ l(ω y )l(1/2 n ) < ω l(y) ω = ω l(y)+1 , using [START_REF] Van Den Dries | Fields of surreal numbers and exponentiation[END_REF]Lemmas 3.6 and 4.1]. Now appeal to [START_REF] Gonshor | An Introduction to the Theory of Surreal Numbers[END_REF]Theorem 2.3]. □

Recall from Section 1 that h(-α) = ω -(α+1) , and so h(0) = ω -1 shows that for y = 0 the upper bound in Lemma 3.1 is attained.

Some spherically complete initial subfields of No. In this subsection we fix an initial subset I of No.

Then Γ := R[[ω I ]
] is an initial additive subgroup of No by the proof of Theorem 18 in [START_REF] Ehrlich | Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers[END_REF]. (That theorem considers Hahn fields rather than the Hahn group Γ, but the same ideas work; we stress that it is the proof of that theorem rather than its statement that matters here.) Moreover, as Philip Ehrlich mentioned to one of us:

Lemma 3.2. Suppose I has a least element a. Then a = -α for some α, and Γ has a least nontrivial archimedean class represented by ω a .

Proof. Taking the longest initial segment of a consisting of minus signs we get the largest ordinal α with -α ⩽ s a. Then -α ∈ I and -α ⩽ a, so -α = a. □ Since Γ is initial and an ordered additive group it leads to the initial subfield

K := R[[ω Γ ]] of No. Note that K is spherically complete, and if (a i ) is a family in K for which i a i exists, then i a i ∈ K. Now Γ = R[[ω I ]
] is also closed under infinite sums, so if (m i ) is a family in M ∩ K such that i m i exists, then i m i ∈ K. Thus K is closed under infinite sums, and also under infinite products of monomials. This is very useful in showing that for suitable choices of I the field K is closed under certain surreal derivations. Note however, that if I has a least element, then K >N is not closed under log: if -α is the least element of I, then log α ω = ω ω -α ∈ K, but log α+1 ω / ∈ K, as -(α + 1) / ∈ I. In order to discuss examples we set a r := exp(r log a) for a > 0 and r ∈ R, and note agreement with the previously defined ω r when a = ω. Moreover,

(log α ω) r = ω rω -α (r ∈ R),
by the definition of a r , using also g ω -(α+1) = -α and [9, Theorem 10.13].

Examples. The next lemma will also be crucial:

For I = {0} we get Γ = R and K = R[[ω R ]]; note that K is closed under ∂ BM , but ω ∈ K and log ω = ω 1/ω / ∈ K. For I = {0, -1} we have Γ = R + Rω -1 , so ω Γ = ω R (log ω) R , and thus K = R[[ω R (log ω) R ]], which is again closed under ∂ BM . Let I = {α : α ⩽ ε}. Then ε = ω ω ε ∈ K, but Lemma 2.10 gives log ε / ∈ K, since ε -1 / ∈ I and so ω ε-1 / ∈ Γ. Likewise we get ∂ BM (ε) / ∈ K.
Lemma 3.4. Suppose h(I) ⊆ Γ. Then log K > ⊆ K and for each a ∈ K and term t of a we have: t and all terms of ℓ(t) lie in K.

Proof. Let a ∈ K > have leading monomial m = ω b with b = y∈I b y ω y ; to get log a ∈ K, it is enough that log m ∈ K; the latter holds because log m = y b y ω h(y) . This proves log K > ⊆ K.

Next, let a ∈ K and let t be a term of a; we have to show that t and all terms of ℓ(t) lie in K. As K ⊇ R is initial, it does contain the term t of its element a. We have t = rω b with r ∈ R × and b ∈ Γ, so b = y∈I b y ω y , and thus y) and each of its terms b y ω h(y) lies obviously in K.

ω b = exp y∈I b y ω h(y) . Hence ℓ(t) = ℓ(rω b ) = y∈I b y ω h(
□ Corollary 3.5. If h(I) ⊆ Γ and D is a pre-derivation with D(K ∩ A) ⊆ K, then ∂ D (K) ⊆ K.
Proof. Use the definition of ∂ D from Section 1, the fact that K is closed under infinite sums, and Lemma 3.4. □ Corollary 3.6. Suppose h(I) ⊆ Γ. Then ∂ BM (K) ⊆ K.

Proof. Let λ ∈ K ∩ A; by Corollary 3.5 we just need to get ∂ A (λ) ∈ K. Since K is closed under infinite products, it is enough for this to get log n λ ∈ K for all n (which is the case by Lemma 3.4), and λ -α ∈ K for all α such that λ ≼ K λ -α . Given such α, take n with log n λ < λ -α . Then λ -α ⩽ s λ -(α+1) ⩽ s log n λ ∈ K by Lemma 2.7, and so λ -α ∈ K because K is initial. □ It can happen that h(I) ̸ ⊆ Γ and that K is nevertheless closed under ∂ BM . The next lemma gives a useful criterion for that. To see why that lemma holds, consider a surreal derivation ∂, and note that from ω ω y = exp(ω h(y) ) we get

∂ ω ω y = ω ω y • ∂(ω h(y) ),
so for any monomial m = ω b ∈ K we have b = y∈I b y ω y , and thus

m = exp   y∈I b y ω h(y)   , ∂(m) = m • y∈I b y ∂ ω h(y) .
This leads to:

Lemma 3.7. Given a surreal derivation ∂, the following are equivalent:

(1) K is closed under ∂;

(2) ∂(ω ω y ) ∈ K for all y ∈ I;

(3) ∂(ω h(y) ) ∈ K for all y ∈ I.

The surreal fields K ε . Given the ε-number ε, we have the initial set

I := No(ε), with the corresponding Γ := R[[ω I ]] and K := R[[ω Γ ]].
In view of Lemmas 3.1 and 3.3 we have h(I) ⊆ I ⊆ Γ, so ∂ BM (K) ⊆ K by Corollary 3.6. Thus K is a spherically complete initial H-subfield of No. However, I has no least element, so K is not grounded. We repair this by just augmenting I by -ε: set I ε := I ∪ {-ε}.

Then I ε is still initial, with least element -ε, and so we have the corresponding

Γ ε := R[[ω Iε ]] and K ε := R[[ω Γε ]]. To get ∂ BM (K ε ) ⊆ K ε we note that K ⊆ K ε ,
and so it suffices by Lemma 3.7 that ∂ A (ω ω -ε ) ∈ K ε . But ω ω -ε = log ε ω, and

∂ A (log ε ω) = 1 α<ε log α ω,
which lies in K, and hence in K ε . Thus K ε is a grounded H-subfield of No, and

No = ε K ε .
Note that Corollary 3.6 does not apply to I ε , since h(-ε) = ω -(ε+1) / ∈ Γ; this is why we did the less direct construction via I = No(ε).

Since ω -ε represents the smallest archimedean class of Γ ε , we have 

max Ψ Kε = v (ω ω -ε ) † = v (log ε ω) †

The Case of Restricted Length

A set S ⊆ No is said to be of countable type if l(a) is countable for all a ∈ S, and all well-ordered subsets of S as well as all reverse well-ordered subsets of S are countable. (Note that l(a) is countable for every a ∈ No(ω 1 ), but that No(ω 1 ) is not of countable type, since it has the set of countable ordinals as an uncountable well-ordered subset.) This may remind the reader of the well-known property of the ordered set R that every well-ordered subset of R is countable. Here is a quick proof using that R has a countable dense subset Q: given any embedding α → r α of an infinite cardinal κ into R, pick for each α < κ a rational q α such that r α < q α < r α+1 ; it follows that κ = ℵ 0 . However, such a countable density argument cannot be used for ordered sets No(µ) when µ is a countable limit ordinal > ω: 

(α) =      -1 if a(α) = -, 0 if a(α) = 0, 1 if a(α) = +,
For S = {α : α < µ} this yields an order-preserving injective map uniqueness holds because the smallest subfield of T that contains R(x T ) and is closed under exponentiation, taking logarithms of positive elements, and summation of summable families is T itself. □

a → α<µ a(α)ω -α : No(µ) → R[[ω S ]].
Next we apply the model completeness of the theory of the exponential ordered field of real numbers (Wilkie [START_REF] Wilkie | Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions and the exponential function[END_REF]). By [START_REF] Van Den Dries | Logarithmic-exponential power series[END_REF] and [START_REF] Van Den Dries | Fields of surreal numbers and exponentiation[END_REF], respectively, the ordered exponential fields T and No are models of this theory, and so ι : T → No is an elementary embedding of ordered exponential fields.

It is easy to check that ι : T → No is also an embedding of ordered differential fields. In view of T ≡ No (as differential fields), and the model completeness of T nl small mentioned at the end of Section 1 we conclude that ι is an elementary embedding of ordered differential fields: Theorem 1.

Is ι an elementary embedding of ordered differential exponential fields? We don't know; this is related to the open problem from [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF] to extend the model-theoretic results there about T as a differential field to T as a differential exponential field.

It follows easily from the construction of T and ι that all surreal derivations ∂ with ∂(ω) = 1 agree on ι(T). Proposition 5.2. Here are some further properties of the map ι:

(1) ι(G LE ) = M ∩ ι(T);

(2) ι(T) is truncation closed; The sets I(L), Λ(L), Ω(L) ⊆ L are convex; their role with respect to QE is like that of the set of squares in a real closed field. For more on this, see [START_REF] Aschenbrenner | Asymptotic Differential Algebra and Model Theory of Transseries[END_REF]Introduction].

A ΛΩ-field is a substructure K = (K, I, Λ, Ω) of such an expanded model (L, . . . ) of T nl for which K is an H-subfield of L. This notion of a ΛΩ-field is studied in detail in [2, Section 16.3], from which we take in particular the fact that any ω-free H-field K has a unique expansion to a ΛΩ-field K = (K, I, Λ, Ω). The proof below assumes familiarity with several other results from [2, Section 16.3].

Proof of Theorem 3. Let No ΛΩ be the expansion of No to a ΛΩ-field, and let K be any H-field with small derivation and constant field R. In order to embed K over R into No, we first expand K to a ΛΩ-field K = (K, I, Λ, Ω) with 1 / ∈ I; this can be done in at least one way, and at most two ways, and 1 / ∈ I guarantees that all ΛΩ-field extensions of K have small derivation. We claim that K can be embedded into No ΛΩ . The ordered field R with the trivial derivation is an H-field and expands to the ΛΩ-field R := R, {0}, (-∞, 0], (-∞, 0] . The inclusion of R into K and into No are embeddings of R into K and No ΛΩ , respectively. By taking E := R, our claim reduces therefore to proving the following more general statement:

Claim. Let E ⊆ K be an extension of ΛΩ-fields with R as their common constant field, and let i : E → No ΛΩ be an embedding of ΛΩ-fields that is the identity on R. Then i extends to an embedding K → No ΛΩ of ΛΩ-fields.

To prove this we first extend K to make it ω-free, newtonian, and Liouville closed; by [2, 16.4.1 and 14.5.10] this can be done without changing its constant field. Next we apply [2, 16.4.1] again, but this time to E, to arrange that E is ω-free. Take a regular uncountable cardinal κ > card(K) such that i(E) ⊆ No(κ), where E is the underlying set of E. By Corollary 4.6 we have No(κ) ≺ No. In view of Lemma 5.3 and [2,16.2.3] we can then extend i to an embedding K → No(κ). □ Final remarks. Suppose the H-field K has small derivation and constant field R.

Then Theorem 3 yields an embedding i : K → No over R. Under some reasonable further conditions, like K being ω-free and newtonian, can we take i such that i(K) is truncation closed, or even initial? The interest of such a result would depend on how canonical the derivation ∂ BM is deemed to be. As already mentioned at the end of the introduction, we doubt that ∂ BM is optimal: the condition on pre-derivations to take values in R > M seems too narrow. But even with this restriction one can construct pre-derivations D ̸ = ∂ A such that Theorems 1 and 3 go through for No equipped with ∂ D instead of with ∂ BM , with only minor changes in the proofs.

2 ,Theorem 2 .

 22 Theorems 15.0.1 and 16.0.1]. These tools enable us to reduce the proof of Theorem 1 to exhibiting No as a directed union of subfields R[[ω Γ ]] that are closed under ∂ BM and where Γ is an ordered additive subgroup of No having a smallest nontrivial archimedean class; exhibiting No as such a directed union makes up an important part of our paper. (As a byproduct we get a new proof that ∂ BM (No) = No.) We use the same kind of reduction to obtain: The surreals of countable length form a subfield of No closed under ∂ BM . As a differential subfield of No it is an elementary submodel of No.

  x a x ω x (the Conway normal form of a) with real coefficients a x such that E(a) := {x : a x ̸ = 0} is a subset of No (not just a subclass) and is reverse well-ordered. This will be the meaning of E(a) and a x throughout. The leading monomial of a is ω x with x = max E(a), for a ̸ = 0. The terms of a are the a x ω x with a x ̸ = 0. The omega map extends the usual ordinal exponentiation α → ω α . Given any set S ⊆ No we let R[[ω S ]] denote the additive subgroup of No consisting of the surreals a with E(a) ⊆ S.

  we have b ⩽ m ′′ for some b ∈ B. It follows that for m ′ as above and k ∈ N ⩾1 we have exp(m ′ ) k ⩽ exp(a) for some a ∈ A, and that for m ′′ as above and k ∈ N ⩾1 we have exp(b) ⩽ exp(m ′′ ) 1/k for some b ∈ B. This yields the desired result in view of [3, Theorem 3.8 (1)]. □ The monomial representation ω = N|∅ shows that in the conclusion of Lemma 2.4 we cannot drop m N . Below we use the binary relations ≍ L and ≺ L from [3]. Let x = {x ′ }|{x ′′ } be the canonical representation of x, and let j, k range over N ⩾1 .

  A better way of understanding No as a valued field is as the directed union Γ R[[ω Γ ]] with Γ ranging over the subsets of No that underly an additive subgroup of No; for example, any α gives No(ω α ) as such a Γ. For any such Γ the corresponding R[[ω Γ ]] is indeed a spherically complete valued subfield of No, but in general R[[ω Γ ]] is not closed under ∂ BM , and even if it is, it might not be grounded. In this section we show that for S = No(ε) ∪ {-ε}, with ε any ε-number, the Hahn subgroup Γ = R[[ω S ]] of No gives rise to a spherically complete valued subfield R[[ω Γ ]] that is closed under ∂ BM and grounded as an H-subfield of No.

Lemma 3 . 3 .

 33 If I = a : l(a) < α or I = a : l(a) ⩽ α , then I ⊆ Γ ⊆ K. Proof. Suppose I = a : l(a) < α . (The case I = a : l(a) ⩽ α is handled in the same way.) Let a ∈ I. Then a = x a x ω x , and if x ∈ E(a), then l(x) ⩽ l(ω x ) ⩽ l(a) < α by [5, Lemmas 3.4, 4.1, and 4.2], so x ∈ I. Thus a ∈ Γ. This proves I ⊆ Γ. Next, if b ∈ Γ, then b = x∈I b x ω x , and so b ∈ K in view of I ⊆ Γ. □

by the proof of Lemma 1 . 1 .

 11 In view of (log ε ω) † = (log ε+1 ω) ′ and the remarks at the end of Section 1, the representation of No as an increasing union ε K ε of spherically complete grounded H-subfields now gives∂ BM (No) = No. (The proof of ∂ BM (No) = No in [3,Section 7] is different.) Thus by the results stated at the end of Section 1 we conclude that No ≡ T, as differential fields.

Proposition 4 . 1 .

 41 Suppose the subset S of No is of countable type. Then the additive subgroup R[[ω S ]] of No is also of countable type. Proof. The case α = 1 of Esterle [8, Lemme 2.2] and the remarks following it yield that every well-ordered subset of R[[ω S ]] is countable. Hence every reverse well-ordered subset of R[[ω S ]] is countable as well. Let a ∈ R[[ω S ]]. Then a = s∈E(a) a s ω s . Now E(a) ⊆ S is countable, so the well-ordered set -E(a) has order type µ < ω 1 . Since ω 1 is regular, we have a countable ordinal ν such that l(s) ⩽ ν for all s ∈ E(a). Then l(ω s ) ⩽ ω ν for all s ∈ E(a) by [5, Lemma 4.1], hence l(a s ω s ) ⩽ ω ν+1 for all s ∈ E(a) by [5, Proposition 3.6]. Thus l(a) ⩽ µ • ω ν+1 < ω 1 , by [9, Theorem 5.12], or [5, Lemma 4.2, (3)]. □ As an example, consider S := No(ω), the set of of dyadic numbers. Then

Lemma 4 . 4 .

 44 Let µ be an infinite limit ordinal. Then the ordered set No(µ) is dense without endpoints. If µ > ω, then there exists a collection of 2 ℵ0 pairwise disjoint open intervals in No(µ), which has therefore no countable dense subset. Proof. The ordinals α < µ are cofinal in this ordered set, and there is no largest such α. For a < b in this ordered set, take α ⩽ l(a), l(b) such that a| α = b| α and a(α) < b(α). If l(b) > α, then b(α) = +, so a < b-< b. If l(a) > α, then a(α) = -, so a < a+ < b. Note that b-, a+ ∈ No(µ), as µ is a limit ordinal, Next, assume µ > ω. For each nondyadic r ∈ R ⊆ No, we have the surreals rand r+ of length ω+1, and so we obtain the pairwise disjoint open intervals (r-, r+) in No(µ). □ Proof of Lemma 4.3. For a ∈ No(µ) we define a : µ → R by a

Corollary 4 . 5 .

 45 It remains to appeal to Proposition 4.1. □Essentially the same argument yields the following generalization: If κ is an infinite cardinal and µ is an ordinal of cardinality ⩽ κ, then each well-ordered subset of No(µ) has cardinality ⩽ κ.

Lemma 5 . 3 .

 53 ι(T) is of countable type; in particular, ι(T) ⊆ No(ω 1 ).Proof. Induction on m gives ι(G m ) ⊆ M, where we use at the inductive step that G m+1 = exp(A m )G m and ι(A m ) ⊆ J, the latter being a consequence of ι(G m ) ⊆ M. Likewise, ι(G m ↓ n ) ⊆ M for all m, n, and thus ι(G LE ) ⊆ M. Since ι respects infinite sums of monomials, this yields (1), and (2) is then an immediate consequence using also that T is truncation closed in R[[G LE ]]. As to (3), using the results in Section 4 one shows by induction on m that ι(G m ), and likewise each ι(G m ↓ n ), has countable type. Hence ι(G LE ) has countable type, and so does ι(T). □ Question (Elliot Kaplan): can (2) be improved to ι(T) being initial?Embedding H-fields into No. Let ε be an ε-number; for example, ε could be any uncountable cardinal. We recall from[START_REF] Van Den Dries | Fields of surreal numbers and exponentiation[END_REF] that No(ε) is a real closed subfield of No containing R. We consider No(ε) as a valued subfield of No with (divisible) ordered value group v No(ε) × . We shall need an easy auxiliary result: Let κ be a regular uncountable cardinal. Then the underlying ordered sets of No(κ) and v No(κ) × are κ-saturated. Proof. Let A, B ⊆ No(κ) have cardinality < κ, with A < B. The regularity of κ yields an ordinal α < κ such that l(A ∪ B) < α. By [9, Theorem 2.3] this gives a surreal a with l(a) ⩽ α such that A < a < B, and then a ∈ No(κ). Thus No(κ) is κ-saturated as an ordered set. Next, let P, Q ⊆ No(κ) > have cardinality < κ, with v(P ) > v(Q). Set A := {np : n ⩾ 1, p ∈ P } and B := {q/n : n ⩾ 1, q ∈ Q}. Then A < B, and so the above gives a ∈ No(κ) with A < a < B. Then v(P ) > v(a) > v(Q), showing that v No(κ) × is κ-saturated as an ordered set. □ For Theorem 3 we need a sharpening of the model completeness of the theory T nl of ω-free newtonian Liouville closed H-fields, namely, the quantifier elimination (QE) explained in [2, Introduction to Chapter 16]. The relevant first-order language for QE has in addition to L extra unary predicate symbols I, Λ, Ω, to be interpreted in a model L of T nl as sets I(L), Λ(L), Ω(L) ⊆ L according to their defining axioms: I(a) ⇐⇒ a = y ′ for some y ≺ 1 in L, Λ(a) ⇐⇒ a = -y † † for some y ≻ 1 in L, Ω(a) ⇐⇒ 4y ′′ + ay = 0 for some y ∈ L × .

  S is of countable type, and so R[[ω S ]] is of countable type. Nevertheless, l R[[ω S ]] is cofinal in ω 1 : given any countable ordinal µ, take an order reversing injective map α → s α : µ → S; then a := α ω sα ∈ R[[ω S ]] has l(a) ⩾ µ, by[9, p. 63].Let κ be any infinite cardinal. Esterle [8, Lemme 2.2] actually tells us for any set S ⊆ No: if all well-ordered subsets and all reverse well-ordered subsets of S have size ⩽ κ, then this remains true for the set R[[ω S ]] ⊆ No. The next cardinal κ + is regular, so the arguments in the proof of Proposition 4.1 go through to give the following, where we call S ⊆ No of type κ if l(a) ⩽ κ for all a ∈ S and all wellordered subsets of S and all reverse well-ordered subsets of S have size ⩽ κ.Corollary 4.2. If S ⊆ No is of type κ, then so is R[[ω S ]].Next we show that for countable µ the set No(µ) is of countable type. Every element of No(µ) has clearly countable length, for countable µ, and No(µ) is closed under x → -x, so the assertion above reduces to: Lemma 4.3. Suppose the ordinal µ is countable. Then every well-ordered subset of No(µ) is countable.

Note that for a countable ε-number ε the initial set I ε = No(ε) ∪ {-ε} is of countable type by Lemma 4.3, and hence Γ ε and K ε are as well by Proposition 4.1. Taking the union over all such countable ε we obtain the set No(ω 1 ) of all surreals of countable length as an increasing union of spherically complete grounded Hsubfields K ε of No. As in Section 3 and using also the model completeness of T nl small = Th(T) this yields Theorem 2. The results above lead moreover to the following generalization: 

Appendix A] for the construction of T as an exponential ordered field. In this construction

] is strongly additive.

Proposition 5.1. There is a unique strongly additive embedding ι : T → No of exponential ordered fields that is the identity on R and such that ι(x T ) = ω.

Proof. We use the notations from [2, Appendix A] except that the x there is x T here. The construction of T there begins with the Hahn field

and there is clearly a (unique) strongly additive ordered field embedding i 0 : E 0 → No such that i 0 (r) = r and i 0 (x r T ) = ω r for all r ∈ R. Moreover, i 0 (e b ) = exp(i 0 (b)) for all b ∈ B 0 , and exp(i 0 (a)) > i 0 (E 0 ) for all a ∈ A > 0 . Assume inductively that we have an extension of i 0 to a strongly additive ordered field embedding