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ABSTRACT19

We redetermine the time-variable shape of the outer edge of Saturn’s B ring us-20

ing the complete set of Cassini radio and stellar occultation data obtained between21

mid-2005 and the End-of-Mission in late 2017, considerably expanding the range and22

number of individual ring edge measurements used in our previous analysis (Nichol-23

son, P. D. et al. [2014] Icarus 227,152-175). During this 12-year interval, the dom-24

inant m = 2 pattern driven by the Mimas 2:1 inner Lindblad resonance completed25

just over two slow prograde circulations relative to Mimas, at an angular frequency26

of ΩL = 0.1838± 0.0006◦ d−1 (corresponding to a period of 5.362± 0.017 yr). At the27

same time, the radial amplitude of this pattern varied from a minimum of ∼ 4 km to a28

maximum of ∼ 71 km, due to beating between the forced and free m = 2 components29

originally identified by Spitale, J. and Porco, C. [2010] (Astron. J. 140, 1747-1757).30

This circulation pattern has remained essentially unchanged when compared with31

previous studies based on Cassini imaging and occultation data sets acquired prior32

to 2012 (Spitale and Porco 2010; Nicholson et al. 2014a). On the other hand, we find33

strong evidence for significant time variability in the four additional perturbations34

seen at the B ring edge with azimuthal wavenumbers m = 1, 3, 4 and 5. These non-35

resonant perturbations have previously been interpreted as normal (or edge) modes36
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that exist in relatively narrow cavities adjacent to the ring edge, perhaps triggered by37

viscous overstabilities (see reviews by Longaretti (2018) and Nicholson et al. (2018)).38

The m = 1 perturbation, which rotates at the local apsidal precession rate, decreased39

in radial amplitude from ∼25 km in 2005 to ∼20 km in 2008/09, but subsequently40

increased to ∼30 km in 2013, before falling back to ∼17 km in 2016/17. These41

variations can be modeled as a libration in the eccentricity of the ring’s streamlines42

involving two independent modes with periods of 8.6 and 5.9 yr and amplitudes of43

4.4 and 2.8 km, respectively. Similar variability in the amplitude of the m = 3 per-44

turbation from a minimum of ∼ 6 km to a minimum of ∼ 20 km can be modeled in45

terms of librations with periods of 19.7 and 7.3 yr and amplitudes of 7.4 and 2.2 km,46

respectively. Smaller but still significant variations are seen in the amplitudes of the47

m = 4 and m = 5 modes, with periods of 2.3 – 5.9 yr and amplitudes of 1.6 – 2.8 km.48

We present libration models for all four non-resonant perturbations, fitted to the Cas49

occultation data, but the physical interpretation of these models is uncertain. Theo-50

retical modeling by ? suggests that the observed amplitude variations could represent51

(1) interference between multiple normal modes with the same value of the azimuthal52

wavenumber m but different numbers of radial nodes nr, (2) a periodic oscillation in53

the amplitude of a single normal mode with nr = 0 (known as the ‘nodeless mode’),54

or (3) nonlinear coupling between normal modes with different values of m, leading55

to long-term aperiodic variatiuions in the mode amplitudes. On the assumption that56

model (1) is correct, we use the observed oscillation and libration frequencies of the57

modes to estimate the surface mass density in the outer ∼ 1200 km of the B ring,58

finding values ranging from 50 g cm−2 to ∼ 250 g cm−2. These numbers & text59

need to be revised!60

Keywords: occultations, planets: rings; dynamics61

1. INTRODUCTION62

The outer edge of Saturn’s B ring — which is also the inner edge of the Cassini63

Division — coincides with the strongest satellite resonance in the rings, the 2:1 inner64

Lindblad resonance with Mimas (?). Although the likely connection between satellite65

resonances and the location of the Cassini Division was recognized in the 19th cen-66

tury (Kirkwood 1866), if not earlier, the modern understanding of this phenomenon67

is due to Goldreich and Tremaine (1978), who pointed out that the torque exerted68

by Mimas on the ring at this resonance is probably large enough to counteract the69

outward transport of angular momentum through the B ring due to viscous inter-70

actions between the ring particles. As a result, the ring material is prevented from71

spreading radially beyond the resonance, and the edge of the B ring is effectively72
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held in balance. A consequence of this picture is that Mimas should force significant73

perturbations on the orbits of ring particles near the resonance, resulting in a 2-lobed74

radial pattern that is expected to rotate at the same angular velocity as the satellite,75

or approximately one-half of the local Keplerian rate. Such a perturbation was in fact76

observed in Voyager observations of the rings in 1980/81 (Porco et al. 1984), where it77

was found to agree fairly well with theoretical expectations: at that time, the observed78

radial amplitude of the ring edge was ∼75 km and one of the two radial minima was79

found to be aligned with Mimas to within a few degrees. The torque itself, like the80

tidal torque exerted on the Earth’s rotation by the Moon, arises from the interaction81

between this radial distortion of the ring streamlines and the gravitational potential82

of Mimas, and thus scales as the square of Mimas’s mass. It is also proportional to83

the small phase lag in the ring’s response relative to Mimas. For a recent discussion84

of the dynamics involved, as well as several as-yet-unanswered questions about this85

process, the reader is directed to the review by Longaretti (2018).86

A similar situation occurs in the A ring, where another strong resonance appears87

to confine the outer edge of the ring against a similar tendency to spread radially.88

Here, the basic pattern observed is a 7-lobed radial perturbation due to the 7:6 inner89

Lindblad resonance with Janus (Porco et al. 1984). In this case, however, the satel-90

lite involved is well-known to share a common mean orbit with its smaller sibling91

Epimetheus (Yoder et al. 1989). The 4-year coorbital libration significantly com-92

plicates the situation, leading to a time-dependent interaction between the satellite93

and the ring edge (Lissauer et al. 1985; El Moutamid et al. 2016; Nicholson et al.94

2022) A revised calculation of the overall torque balance for both the A and B rings,95

taking into account the effects of many additional satellite resonaces, was made by96

Tajeddine et al. (2017), leading to updated estimates of the radial viscosity profiles97

across both rings.98

With the advent of data from the Cassini spacecraft, it became possible to revisit99

the question of the shapes of the outer edges of the A and B rings, and to char-100

acterize them with much greater fidelity than was possible with the more limited101

Voyager observations. This problem was tackled using azimuthal mosaics of images102

acquired with Cassini’s Imaging Science Subsystem (ISS) during the initial years of103

the mission and by combining data from several dozen radio and stellar occultations104

observed by the Radio Science Subsystem (RSS) and the Visual and Infrared Imaging105

Spectrometer (VIMS). Spitale and Porco (2009) used ISS data to study the shape of106

the A ring’s outer edge, while that of the B ring was analyzed by Spitale and Porco107

(2010), based on data taken between 2005 and 2009. Hedman et al. (2010) investi-108

gated the kinematics of the B ring edge using VIMS occultations between 2005 and109

2008, while French et al. (2010) carried out a similar study using a smaller set of RSS110

occultations from 2005.111
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As a result of these investigations, it was established that the shape of the B ring’s112

edge, in particular, is remarkably complex. There are not one but two 2-lobed pat-113

terns, with similar radial amplitudes of approximately 35 km but rotating at slightly114

different angular rates. The slower of the two modes is that forced by Mimas, while115

the faster is a free, or ‘normal’ mode (see below). The result is that the two patterns116

beat against one another, alternately adding constructively and then almost cancelling117

each other out (Hedman et al. 2010). Fits to a somewhat longer span of Cassini occul-118

tation data showed that the beat period is 5.42 yrs, with the overall m = 2 amplitude119

reaching a maximum of 71 km and a minimum of 3 km (Nicholson et al. 2014a).120

During this cycle, the m = 2 pattern was actually found to rotate through 360◦ rela-121

tive to Mimas, instead of remaining aligned with the satellite as had been predicted122

(Spitale and Porco 2010). Radial minima are anti-aligned with Mimas at the times of123

minimum amplitude, which occurred during the Cassini mission in 2006.80, 2012.24124

and 2017.69. In addition to this circulating m = 2 pattern, there is a slowly-rotating125

m = 1 perturbation (equivalent to a precessing Keplerian ellipse) with an amplitude126

of ∼20 km and a rapidly-rotating m = 3 pattern with an amplitude of ∼10 km.127

Evidence was later found for smaller-amplitude patterns with m = 4 and m = 5128

(Nicholson et al. 2014a). These non-resonant perturbations with m = 1, 3, 4 and 5,129

as well as the free mode with m = 2, are thought to represent normal modes trapped130

in resonant cavities near the ring’s edge (Spitale and Porco 2010; Nicholson et al.131

2018).132

In the present paper we return to the question of the shape of the B ring’s outer133

edge, now armed with the complete set of Cassini radio and stellar occultation data134

obtained between mid-2005 and the End-of-Mission in late-2017. In addition to data135

from the RSS and VIMS experiments, we use stellar occultation data obtained by the136

Ultraviolet Imaging Spectrometer (UVIS), for a total of 294 measurements. Our goals137

are: (i) to characterize the forced m = 2 mode and its phase lag relative to Mimas,138

with the hope of testing the resonantconfinement model of Goldreich and Tremaine139

(1978), (ii) to better establish the parameters and character of the normal modes140

with m = 1, 2, 3, 4 and 5, and (iii) to search for additional, weaker perturbations141

that may shed further light on how this complex region works.142

In a separate paper (Nicholson et al. 2022) we have carried out a similar investiga-143

tion of the outer edge of the A ring, using the same occultation data set.144

The layout of the paper is as follows. In Section 2 we outline the dynamical model145

used to fit the occultation data, which are themselves summarized in Section 3. The146

numerical codes used for orbit fitting and frequency scanning are reviewed in Section147

4. In Section 5 we update the fits published by Nicholson et al. (2014a), using the148

expanded Cassini data set. Our new results are presented in Section 6, and we149

summarize our key findings and open questions in Section 7.150
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2. DYNAMICAL MODEL151

Underlying all of the orbital fits in this paper is a common kinematic model for anm-152

lobed radial perturbation, appropriate to both a Lindblad resonance due to an exter-153

nal satellite and to free normal modes of oscillation. Our notation follows closely that154

used in our previous papers, in particular Nicholson et al. (2014a), Nicholson et al.155

(2014b) and French et al. (2016), so that the fit parameters obtained here may be156

compared directly with the corresponding values given there. The radial perturba-157

tion in a ring streamline due to such a mode can be written as a function of inertial158

longitude λ and time t in the form159

∆r(m, λ, t) = −Am cos(m[λ− ΩP (t− t0)− δm]), (1)160

where Am and δm are the mode’s radial amplitude and phase, respectively, and ΩP is161

its angular rotation rate or pattern speed. Geometrically, the angle δm is the inertial162

longitude of one of the pattern’s m minima at the reference time t0. In the residual163

plots shown below we use the corotating longitude θ = λ − ΩP (t − t0) − δm, so the164

angular argument becomes simply mθ. For a freely-precessing normal mode, the165

pattern speed is expected to be very close to that of a first-order m : m− 1 Lindblad166

resonance located at the mean radius of the streamline (French et al. 1991), or167

ΩP = [(m− 1)n+ ˙̟ sec]/m, (2)168

where n is the local orbital angular velocity and ˙̟ sec is the local apsidal precession169

rate due to the planet’s zonal gravity harmonics.1 In general, the integer m can be170

either positive or negative, corresponding to ILR-type modes with ΩP < n or OLR-171

type modes with ΩP > n, respectively. (This terminology refers to an inner or outer172

Lindblad resonance, which the normal mode perturbations strongly resemble.) The173

former are expected to occur at the outer edges of rings, whereas the latter should174

be found at inner edges, as discussed in Nicholson et al. (2014b) and French et al.175

(2016) and reviewed by Nicholson et al. (2018). At the outer edge of the B ring, only176

ILR-type modes are expected (i.e., m > 0 ). A normal mode with m = 1 is equivalent177

to a freely-precessing Keplerian ellipse, with ΩP = ˙̟ sec, the apsidal precession rate178

and δ1 = ̟0, the longitude of pericenter at t = t0.179

In the case of perturbations by an external satellite, ΩP is determined by the relevant180

term in the satellite’s gravitational potential. For the B ring edge, the resonant181

perturbations are due to the Mimas 2:1 inner Lindblad resonance for which m = 2182

and ΩP = nMimas. Here, we expect that δ2 = λ0
Mimas, the mean longitude of Mimas at183

t = t0, although in our fits we allow for a small offset δλ to account for the anticipated184

phase lag between the radial minimum and the direction towards the satellite. (A185

positive value of δλ means that the radial minimum leads Mimas in longitude.)186

1 Expressions for n and ˙̟ sec accurate to order J6 are given by Nicholson et al. (2014b), Eqns. (3–8)
and Nicholson et al. (2018), Eqns. (26 & 27).
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In the current paper, we shall also be concerned with modes whose amplitude and187

phase oscillate, or librate about their average values. In this situation we generalize188

Eq. (1) to the form189

∆r(m, λ, t) = −Am cos(mθ − φL)

= −Am cos(m[λ− ΩP (t− t0)− δm]− φL),
(3)190

where both Am and φL are slowly-varying functions of time. Following the stan-191

dard model used to describe secular perturbations of asteroid or satellite or-192

bits (Murray & Dermott 1999), or that introduced by Hedman et al. (2010) and193

Spitale and Porco (2010) to describe resonant librations associated with the Mimas194

2:1 ILR, we write Am = ae and describe these periodically-varying parameters in195

terms of the Cartesian quantities h = e cos(φL) and k = e sin(φL) via the expressions196

h = e0+e1 cos[ΩL(t− t0)− δL]

k = e1 sin[ΩL(t− t0)− δL],
(4)197

where e0 and e1 are constants, ΩL is the libration frequency and δL is a constant198

specifying the phase of the libration.2 Geometrically, the vector (h, k) moves around199

a circle of radius e1 at an angular rate ΩL, with the center of the circle offset from200

the origin by an amount e0 along the +h-axis. In the context of secular or resonant201

perturbations, e0 is referred to as the forced eccentricity and e1 as the free or proper202

eccentricity. In the present situation, ae0 and ae1 simply represent the average and203

variable components of the mode’s amplitude Am. In terms of h(t) and k(t), the204

instantaneous values of e and φL are given by205

e =
√
h2 + k2

φL = tan−1(k/h).
(5)206

Similar expressions are given by Hedman et al. (2010) in Eqns. (35–40) and by207

Spitale and Porco (2010) in Eqns. (6 & 11); see also Fig. 4 in Spitale and Porco208

(2010) for a graphical representation of the motion. From Eq. (4) we see that the209

mode amplitude Am = ae is a maximum when the angle ΩL(t − t0) − δL is zero, or210

when211

t− t0 = δL/ΩL + 2πk/ΩL, (6)212

where k is any integer.213

As shown by Spitale and Porco (2010), such a model for a librating streamline is214

mathematically equivalent to a superposition of two independent normal modes with215

the same value of m, radial amplitudes ae0 and ae1 and slightly different pattern216

speeds Ω0 and Ω1. Geometrically, one may imagine two independent normal modes,217

2 For simplicity, we refer to this motion as libration, implying an oscillation in φL, but this can also
include the case where e1 > e0, when the angle φL actually circulates continuously through 360◦.
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one with amplitude ae0 rotating at a rate Ω0 and the other with amplitude ae1 and218

angular frequency Ω1, combining to produce a single, pulsating, rotating perturbation219

with a beat frequency equal to |m(Ω1 − Ω0)| and an amplitude that varies from a220

minimum of a|e0 − e1| to a maximum of a(e0 + e1). We then somewhat arbitrarily221

choose ΩP = Ω0 and the corresponding libration frequency is given by222

ΩL = m(Ω1 − Ω0). (7)223

(The factor of m arises because each mode has m radial minima and maxima.)224

There are thus two dynamically-distinct scenarios that can arise, one in which a225

single mode oscillates in amplitude and phase and the other in which two stable226

modes with the same value of m and similar pattern speeds interfere to produce a227

beating pattern. In the first case we might have a single mode whose amplitude and228

phase vary due to a viscous overstability as originally envisioned by Borderies et al.229

(1985), while in the second case we might have two independent edge modes with230

the same m but different numbers of radial nodes and thus slightly different pattern231

speeds (Longaretti 2018). These two scenarios are indistinguishable when only the232

shape of a single ring streamline — such as a ring edge — is analyzed. But if the233

radial distribution of eccentricity across the perturbed region of the ring could be234

assessed, and its temporal variation established, then these two situations would look235

quite different. We will return to this issue in the Discussion.236

For some values of m we have found it necessary to introduce additional librational237

terms, replacing Eq. (4) by the more general expression:238

h = e0+

n
∑

j=1

ej cos[ΩL,j(t− t0)− δL,j]

k =
n

∑

j=1

ej sin[ΩL,j(t− t0)− δL,j ]

(8)239

where each librational term has its own frequency ΩL,j and phase δL,j. Figure 1240

illustrates the overall eccentricity and phase for a mode with two libration terms,241

plotted in (h, k) space. The radial line from the origin to the center of the larger242

circle of length e0 is fixed, while the radius vectors of the two smaller circles (labeled243

e1 and e2) rotate at angular rates of ΩL,1 and ΩL,2, respectively. (Note that this244

diagram shows just the variation in amplitude e and phase φL of the mode, rather than245

the shape of the ring streamline itself, which is an m-lobed figure, or its orientation246

relative to inertial space as controlled by ΩP and δm.247

In general, a particular ring streamline may be perturbed simultaneously by several248

different normal modes, each with its own value of the azimuthal wavenumber m, and249

each of these modes can librate with one or more components, following Eq. (8). Such250
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e0

e1

e2

e

h

k

L, 1

L, 2

L

Figure 1. Illustration of the time-varying eccentricity vector {h, k} for a mode with two
libration terms and a mean amplitude ae0. The two smaller circles have radii of e1 and e2
and rotate at angular rates of ΩL,1 and ΩL,2, respectively. The instantaneous amplitude and
phase of the mode are indicated by the dashed line and specified by ae and φL. (Adapted
from Spitale and Porco (2010), Fig. 4.)

a model is specified by a set of free parameters given by the mean radius a, three251

parameters for the mean amplitude and phase for each mode (ae0, ΩP , δm) and an252

additional three parameters for each libration (aej , ΩL,j, δL,j). A particular mode has253

m lobes of radial amplitude Am(t) = ae(t) with radial minima located at longitudes254

of255

λmin(t) = ΩP (t− t0) + δm + φL(t)/m+ 2πk/m, (9)256

where 0 ≤ k ≤ m− 1. Physically, the pattern has a mean amplitude ae0 and rotates257

relative to inertial space at a mean rate ΩP , while oscillating in both amplitude and258

orientation at a frequency (or frequencies) ΩL.259

3. OBSERVATIONS260

The data used for this study come from a large set of Cassini ring occultations261

observed over the full course of the spacecraft’s 2004–2017 orbital tour of the Saturn262

system. Details of the relevant VIMS, UVIS, and pre-2012 RSS occultation observa-263

tions are provided in Nicholson et al. (2014a,b) and French et al. (2010, 2016, 2017),264

and are not repeated here. A total of 305 measurements of the B ring edge radius were265

included, with 58 from RSS, 115 from VIMS and 132 from UVIS. Fully calibrated266

versions of the occultation data are available from NASA’s Planetary Data System267

(PDS) Ring-Moon Systems Node.3268

3 https://pds-rings.seti.org/
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3.1. Post-2011 RSS ring occultations269

In addition to the above data sets, we have included post-2011 RSS occultation270

results that contributed significantly to the final tally of B ring measurements used271

for this work, and these deserve more detailed discussion.272

Unlike stellar occultation observations, which require only modest processing from273

their raw form to obtain useful science results, raw RSS ring occultation observations274

are strongly affected by diffraction effects that must by removed in order to determine275

the intrinsic optical depth profiles of the rings (Marouf et al. 1986). The diffraction276

reconstruction relies on a highly accurate measurement of the radio signal’s phase,277

which requires a very stable transmitted frequency from the spacecraft. In late 2011,278

the Cassini spacecraft’s ultrastable oscillator (USO) failed, and the auxiliary onboard279

oscillator had inadequate frequency stability to allow for accurate diffraction recon-280

struction of ring occultations. Instead, a novel mode of two-way RSS occultation281

experiments was implemented in 2012. Rather than depending on a stable onboard282

frequency source for the spacecraft’s transmitted signal, an uplink radio signal from283

an Earth-based Deep Space Network (DSN) antenna was transmitted to the space-284

craft, where it was phase-locked, amplified and then retransmitted to the ground,285

preserving the hydrogen maser-based frequency stability of the original signal from286

the DSN.287

A key complication is that the uplinked signal passed through the rings on the way288

to the spacecraft, resulting in a phase distortion preserved in the downlink signal.289

In effect, the observations retain a “double exposure” or “phase echo” associated290

with the diffraction pattern of the ring region traversed by the uplink signal, coad-291

ded to the diffraction phase of the downlink signal. This contamination of the final292

received phase during an RSS occultation experiment similarly affects atmospheric293

occultations, but in this case the use of multi-frequency observations can correct294

for the phase distortion and enable accurate retrieval of the vertical profile of the295

atmospheric structure (Schinder et al. 2015).296

For ring occultations, on the other hand, no general solution has yet been found to297

remediate the phase contamination that often results in badly distorted diffraction-298

corrected radial optical depth ring profiles. Under special circumstances, however,299

the observed diffraction pattern of specific ring features may be relatively unaffected300

by the uplink phase distortion. For example, it is possible to retrieve the intrinsic301

optical depth profile of an isolated narrow ringlet such as the F ring if the phase echo302

is sufficiently radially removed from the main diffraction signature of the downlink303

signal.304

It is also possible, under the right geometric circumstances, to reconstruct the in-305

trinsic sharp edge of a nearly opaque ring bounded by free space, such as the outer306
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edges of the A and B rings. Fortunately, a significant fraction of the post-2011 RSS307

occultations had such favorable geometry. In the end, we were able to apply standard308

diffraction-reconstruction techniques (Marouf et al. 1986) to process the X-band (3.6309

cm wavelength) observations at 1-km effective resolution and to obtain accurate mea-310

surements of the B ring outer edge from 24 of 41 post-USO-failure RSS occultations311

that intersected the B ring, expanding the available data for the post-2011 period of312

the Cassini orbital tour.313

3.2. Measuring the location of the B ring edge314

As in our previous studies, we have included only high-SNR events with spatial315

resolution of 1 km or better that could be mapped onto an absolute radius scale with316

sub-km accuracy. For each such occultation that included the outer edge of the B ring,317

we fitted a logistic model curve to the edge profile to determine the midtime of the318

sharp-edged event. Using a Saturn ring orbit model similar to Fit #1 in French et al.319

(2017) but augmented to include the full set of 2005–2017 Cassini occultation data,320

we determined the orbital radius, inertial longitude, and ring plane intercept time321

of each B ring edge measurement. These represent the fundamental observables for322

our B ring orbit fits. The typical uncertainty in an individual radius determination,323

including systematic effects, is well below 1 km. Post-fit RMS residuals of ∼ 5 km for324

our best B ring model fits greatly exceed this measurement uncertainty, and instead325

probably stem from complexities in the intrinsic shape of the B ring edge that are326

not captured by our kinematical models.327

From preliminary orbit fits that included normal modes for m = 1 through 5 and328

the m = 2 mode forced by Mimas, we identified 11 of the 305 individual data points329

as having unacceptably large (> 20 km) post-fit residuals, corresponding to ∼4 stan-330

dard deviations. Such outliers were a characteristic of our earlier B ring investigation331

(Nicholson et al. 2014a) and were also noted by Spitale and Porco (2010) in their332

analysis of imaging mosaics. They interpreted these large but localized radial distur-333

bances in the B ring edge as evidence for the presence of massive bodies embedded334

within the B ring itself. We excluded this small number of outliers from our final335

data set because they unduly inflated the formal errors of the final fit parameters.336

The total number of data points used in our current fits is thus 294, or more than337

twice the 133 B ring edge measurements used by Nicholson et al. (2014a) .338

4. ORBIT DETERMINATION339

As in Nicholson et al. (2014a), we determine the best-fitting orbit model for the B340

ring edge using a straightforward and well-tested non-linear least squares procedure341

that minimizes the sum of squared differences between the observed and model radii,342

robs(λ, t) and rmod(λ, t), where343
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Table 1. Omitted measurements of the B ring edge with large post-fit residuals.

Occultation UTC (observed) robs (km) rmodel (km) dr (km) λ (deg)

RSS 013E X14 2005 AUG 20 20:37:46.8732 117569.19 117548.78 20.40 79.57

UVIS EpsCen065I 2008 APR 19 11:32:19.8837 117551.54 117518.50 33.04 204.26

VIMS alpAur110E 2009 MAY 09 16:45:55.8991 117583.65 117614.00 -30.35 243.49

RSS 180I X14 65 2013 JAN 31 13:48:24.4050 117585.38 117557.22 28.16 299.28

VIMS 2Cen194E 2013 JUL 08 21:30:05.0270 117555.40 117585.98 -30.57 248.19

RSS 196I X65 65 2013 AUG 08 18:24:19.3052 117584.64 117545.15 39.49 228.88

UVIS AlpVir211I 2015 JAN 08 03:50:58.4312 117598.84 117627.00 -28.16 168.48

VIMS alpSco238I 2016 JUL 19 13:45:57.5389 117557.58 117584.09 -26.51 233.76

RSS 236E X43 14 2016 JUN 06 10:42:10.8061 117566.38 117594.51 -28.13 109.65

RSS 253E X14 63 2016 DEC 19 20:40:19.1470 117581.59 117554.33 27.26 188.80

VIMS alpOri277I 2017 JUN 04 22:40:28.7150 117598.39 117573.89 24.50 352.64

rmod(λ, t) = a +
M
∑

i=1

∆r(mi, λ, t). (10)344

Here, a is the semimajor axis of the B ring’s outer edge and the summation is per-345

formed over the radial perturbations ∆r(m, λ, t) given by Eq. (3) associated with the346

M separate modes (i.e., values of m) for a given ring model. The goodness of each347

fit is characterized by the reduced-χ2 parameter348

χ2 =
1

N −Np

N
∑

i=1

[robs(λ, t)− rmod(λ, t)]
2, (11)349

where N is the number of independent data points fitted and Np is the number of350

parameters in the fit. This is usually expressed more intuitively in terms of the351

root-mean-square residual per degree of freedom (PDF), σ =
√

χ2.352

We approach our search for possible normal modes by first fitting a circular model353

to the data, forming the residuals, and then scanning over a range of pattern speeds354

ΩP in the vicinity of the predicted value for the mean radius, based on Eq. (2) and355

candidate wavenumbers from m = 1 to m = 20 for ILR-type perturbations. For356

each assumed value of m and ΩP , we solve for the best-fitting amplitude Am and357

phase δm and record the value of the RMS residual σ. We then add the strongest of358

the detected modes to the kinematical model of the B ring edge, form a new set of359

residuals, and repeat the frequency scanning process to search for additional modes.360

With the addition of successive normal modes, the post-fit value of σ is reduced and361

the sensitivity to weaker modes and possible libration terms is increased.362

Once a preliminary set of global normal modes has been identified, we break the363

dataset into smaller segments and examine the observed variation in amplitude for364

each mode over the 13 yr time span of the observations. Based on these shorter-period365

fits, we solve for the characteristics of any necessary libration terms, as described by366
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Eq. (4) or (8), that can best account for the long-term trends seen in the mode367

amplitudes. In the next two sections, we turn to a description of the results of this368

process.369

5. REFERENCE MODEL370

Because the Cassini occultation data set has more than doubled in size from that371

used by Nicholson et al. (2014a) — 294 observations now vs 133 in the previous work372

— and also doubled in duration (over almost thirteen vs six years), our first step373

is to redo the best fit in Nicholson et al. (2014a) using all the currently-available374

Cassini occultation data. For this purpose, we compare our new results with those of375

Fit 11 in Nicholson et al. (2014a), as described in their Table 5. Note that both fits376

exclude the relatively small number of pre-Cassini observations, derived from Voyager377

and Earth-based occultations. Experiments show that while the longer time baseline378

provided by these earlier data improves the accuracy with which pattern speeds can be379

determined, the much sparser temporal coverage also leads to problems with aliasing380

and multiple solutions.381

This fit, which we refer to henceforth as our reference model, includes — in de-382

scending order of importance — a circulating m = 2 mode, a free eccentricity (i.e.,383

an m = 1 mode), and fixed-amplitude normal modes with m = 3, 4 and 5. The384

m = 2 mode has two components: a forced eccentricity (which we denote as e0) due385

to the Mimas 2:1 ILR and a free eccentricity (denoted as e1) that we interpret as386

a normal mode.Departing slightly from Fit 11 in Nicholson et al. (2014a), where we387

fixed ΩP for the forced m = 2 mode at the average value of Mimas’s mean motion in388

2005–2010 and fixed the corresponding phase δ2 to be Mimas’s mean longitude at our389

reference time, in the current fit we permit both parameters to float, with a priori390

values corresponding to the Mimas resonance. (Alternate fits in which ΩP and δ2391

were fixed at their expected values were almost indistinguishable.) Table 2 presents392

the results of this reference fit, which we will use below as a standard against which393

to compare our new fits that include additional librations.394

A comparison with the parameters of Fit 11 of Nicholson et al. (2014a) reveals the395

following:396

• The mean radius of the B ring edge is almost unchanged at a = 117, 570.32±397

0.42 km. This is ∼14.5 km exterior to the nominal location of the Mimas 2:1398

ILR at ares = 117, 555.8 km (Spitale and Porco 2010).399

• The minimum post-fit root-mean-square residual per degree of freedom is400

6.98 km, comparable to but slightly lower than the 7.81 km obtained for Fit 11.401

This remains much larger than the typical measurement errors, which are well402

under 1 km for this sharp, well-defined edge, and also much larger than post-fit403



Saturn’s B Ring, v2.3 13

Table 2. Reference model fit to Cassini data

Parameter Symbol Value

mean radius a(km) 117570.32 ± 0.42

Forced m = 2 mode ae0(km) 33.20 ± 0.63

ΩP (
◦ d−1) 381.9843 ± 0.0005

δ2(
◦) 346.83 ± 0.73

m = 2 libration ae1(km) 39.40 ± 0.64

ΩL(
◦ d−1) 0.1841 ± 0.0008

PL (yr) 5.354 ± 0.023

δL(
◦) 96.07 ± 1.86

Epoch t0 UTC 2008 Jan 1 12:00

RMS residual PDF σ(km) 6.98

# data N 294

Fit ID ringfit v1.8.Sa025S-CMF-V6980-RF-B95

m Am (km) ΩP (◦ d−1) δm (◦)

1 22.35 ± 0.59 5.0814 ± 0.0011 69.34 ± 2.14

3 9.54± 0.60 507.7185 ± 0.0008 24.48 ± 1.53

4 8.38± 0.58 570.5293 ± 0.0008 6.91 ± 1.43

5 5.87± 0.60 608.2073 ± 0.0008 67.98 ± 1.59

residuals obtained for most other sharp-edged features in the Cassini Division404

(French et al. 2016), suggesting that significant unmodeled radial perturbations405

remain.406

• The larger component of the m = 2 mode is again the free (or normal) mode,407

whose amplitude has increased from 37.1 km to ae1 = 39.40 ± 0.64 km, while408

the forced component due to the Mimas resonance is almost unchanged at409

ae0 = 33.20 ± 0.63 km. The libration frequency remains almost unchanged at410

ΩL = 0.1841±0.0008◦ d−1 with a corresponding period PL = 5.354±0.023 yr [I411

added this to the table -rgf] , while the fitted pattern speed for the forced412

component is ΩP = 381.9843 ± 0.0005◦ d−1, very close to the average mean413

motion of Mimas of 381.9835◦ d−1 during the period of the Cassini mission.414

[Update this if necessary.] Geometrically, this means that the angle φL415

circulates through 360◦ once every libration period (= 2π/ΩL) and that the416

minor axis of the m = 2 pattern rotates through 360◦ with respect to Mimas417

once every two libration periods, or ∼ 10.7 yr (cf. Eq. (9)). (See Section 7.2 for418

further discussion of the significance of this point and of the phase lag of the419

forced component.)420

• Next in importance is the m = 1 mode, or free eccentricity, which has increased421

somewhat in amplitude from 20.4 to 22.35±0.59 km, but which has maintained422

its pattern speed almost unchanged at 5.0814± 0.0011◦ d−1.423
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• The m = 3 mode, on the other hand, has decreased in amplitude from 12.5424

to 9.54 ± 0.60 km, while increasing its pattern speed by ∼ 6σ to 507.7185 ±425

0.0008◦ d−1.426

• Next is the m = 4 mode, which has increased significantly in amplitude from427

5.9 to 8.38± 0.58 km, while increasing its pattern speed by ∼ 4σ to 570.5293±428

0.0008◦ d−1.429

• Lastly we have the m = 5 mode, which is almost unchanged in amplitude at430

5.87± 0.60 km and in pattern speed at 608.2073± 0.0008◦ d−1.431

To illustrate the reference model, Figure 2 shows snapshots of the co-added modes432

over a period of two libration cycles, in the form of profiles of the radial displacement433

of the B ring edge as a function of longitude relative to Mimas. Note that the m = 2434

mode has a maximum amplitude of ∼ 72 km when its forced and free components435

are in phase but almost disappears when the two components are out of phase by π.436

6. RESULTS437

Having updated the mode fits of Nicholson et al. (2014a) with the more complete438

Cassini data set, we turn to our major task, which is to characterize the decadal-439

scale variations in the identified normal modes, if any, and to search for additional440

perturbations that may have escaped detection in previous analyses of the B ring441

edge.442

For each mode, we scan a range of pattern speeds for the specified value of m in443

the neighborhood of the expected rate, as given by Eq. (2), in order to verify the444

reality of the mode and search for evidence of additional, nearby modes. Each scan445

is constructed in the same fashion: (i) the fit parameters for all m-values not being446

scanned are frozen at their best-fit values in Table 2; (ii) the fit parameters for the447

mode in question other than the pattern speed ΩP are allowed to float; (iii) the value448

of ΩP is varied across a range of ±1◦ d−1 centered on the predicted rate at the edge449

of the B ring, and (iv) for each assumed value of ΩP the remaining mode parameters450

Am and δm are adjusted to minimize the value of χ2. In this way, the significance of451

each mode can be assessed, with the parameters of all other modes kept constant at452

their optimal values.453

The rms residuals far away from the best-fitting value of ΩP reflect the quality of454

the fit without the mode in question; for the dominant m = 2 mode this is ∼ 34 km.455

For the weaker m = 3, 4 and 5 modes, the baseline rms residuals are always under456

10 km.457

We begin with the dominant m = 2 mode and then move on to the smaller-458

amplitude modes with m = 1, 3, 4 and 5.459
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Figure 2. Representative profiles of the B ring edge over two libration periods, plotted in
radius (on the left axis) and time (on the right axis) as a function of longitude relative to
Mimas, whose position is indicated by the large filled circles. The left panel shows them = 2
mode only, while the right panel includes all five modes. The bottom profiles correspond
to a time when the forced and free components of the m = 2 mode are in phase (i.e.,
φL = 0), so that the amplitude of the mode is at its maximum value. Successive profiles are
at intervals of 1/9 of the m = 2 libration period, and offset upwards by 100 km for clarity.
Horizontal dashed lines mark successive m = 2 libration periods of 5.354 yr.

6.1. Mimas and the dominant m=2 pattern460

For the m = 2 scan, both the forced and free amplitudes ae0 and ae1 were set to zero461

and the scanning program searched for a single, best-fitting mode. Figure 3 shows462

the resulting scan. The predicted pattern speed for a free normal mode at the edge463

of the B ring is 381.913◦ d−1, as indicated by the vertical solid line, while the pattern464

speed for the forced Mimas 2:1 perturbation is at nMimas = 381.9835◦ d−1, indicated465

by the dot-dashed line. As might be expected from the reference fit parameters in466

Table 2, the scan shows two distinct peaks in amplitude in the lower panel — and two467

corresponding minima in the post-fit residuals in the upper panel — at ∼ 381.984◦ d−1
468

and 382.075◦ d−1. The higher and faster peak corresponds to the free m = 2 mode469

while the lower and slower peak corresponds to the forced mode. The fitted libration470

frequency in Table 2 of ΩL = 0.1841◦ d−1 is twice the difference between the two mode471

peaks, as expected from Eq. (7). Note that, because the scanning procedure is only472
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able to fit one pattern speed at a time, the minimum rms residual seen in Fig. 3 is473

still quite large at ∼24 km. Finally, we note that the resonance radius4 corresponding474

to the free mode is located at ∼117,537 km, or 33 km interior to the mean radius of475

the B ring edge.476
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Figure 3. A scan in pattern speed for m = 2 normal modes, after removing the signatures
of all other modes listed in Table 2. The upper panel shows the root-mean-square residual
of the fit σ as the pattern speed is scanned across the expected value, while the lower panel
shows the fitted radial amplitude of the mode A2 for the same scan. Note the detection
of significant power at two different pattern speeds, 381.984◦ d−1 and 382.075◦ d−1, with
radial amplitudes of 31 and 36 km. The solid vertical line indicates the predicted value of
ΩP at the mean radius of the B ring’s outer edge, or 381.913◦ d−1, while the dashed line
highlights the value of ΩP for the strongest peak in the scan, with a minimum σ = 23.9 km.
The dot-dashed line indicates the average mean motion of Mimas of 381.9835◦ d−1.

4 That is, the semimajor axis at which Eq. (2) is satisfied.
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The existence of these two m = 2 components of comparable strength results in a477

strong beat signature that can also be modeled as a circulation in the amplitude and478

phase of a single m = 2 mode, with parameters as listed in Table 2. As a result, the479

amplitude of the m = 2 pattern varies significantly during the Cassini mission, as480

first noted by Hedman et al. (2010) and Spitale and Porco (2010). This amplitude481

variation is clearly revealed in Fig. 4, which shows fits to subsets of the occultation482

data in eight different time intervals, selected to match the most densely-sampled483

periods. For each period, the radius residuals are calculated relative to our adopted484

reference model — except that the amplitudes of the m = 2 terms, ae0 and ae1 are485

set to zero — and plotted vs the mode argument mθ = m[λ − ΩP (t − t0) − δm] in486

Eq. (1), where in this case m = 2. In this figure, and in the similar ones to follow for487

other values of m, the upper left panel shows the complete set of Cassini observations,488

while the eight successive panels reveal any systematic changes in both the amplitude489

and the phase of the m = 2 pattern over time.490

Because the argument mθ includes the best-fitting global pattern speed and average491

phase for the mode, as represented by the parameters ΩP and δm in Eq. (1), any492

shorter-term variations in the mode’s phase will show up here as shifts in the position493

of the minimum in radius away frommθ = 0 from one time period to another. Indeed,494

such variations are clearly seen in this figure, with the radial minimum varying from495

mθ = −86◦ in 2006/07 to +120◦ in 2017. Moreover, the amplitude varies from a496

minimum of ∼6 km in 2017 to a maximum of ∼70 km in 2009. In order to quantify497

these variations for the time period of the data shown in each panel, we fit a simple498

sinusoidal model to the distribution of radius residuals of the form:499

dr = −ae cos(mθ − φL), (12)500

following Eq. (3). The fitted values (and their formal uncertainties) for ae and φL are501

listed in each panel.502

These fitted variations in the amplitude of them = 2 mode are compared with those503

predicted by the circulating model in the reference fit in Fig. 5, where the colored504

symbols mark the times of the individual observations (blue for stellar occultations505

and red for RSS measurements). The eight large ‘+’ symbols mark the fitted values506

for ae from Fig. 4, with the vertical component showing the formal uncertainty in the507

amplitude fit and the horizontal length spanning the time interval of the data used for508

the fit. The second and eighth intervals span the minima in A2 in 2006 and 2017, while509

the fourth interval spans the maximum in 2009. The observations sample a little over510

2.5 libration cycles, or more than one rotation of the m = 2 pattern relative to Mimas,511

albeit with several gaps owing to the absence of ring occultation measurements when512

Cassini was orbiting Saturn in the equatorial plane. Note that the amplitude lingers513

near its maximum value of 72.6 km for about a year, while moving rapidly through its514

minimum of 6.2 km in only a few months, making it difficult to catch the system in515
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Figure 4. Radius residuals from our reference model when the free and forced m = 2
terms are set to zero, plotted as a function of mθ. The upper left panel shows the full set
of observations, with substantial scatter. The observations are divided into eight different
time intervals in the remaining panels, showing substantial systematic variations in the
amplitude and phase of the m = 2 pattern over time. See text for details of the model fit
results included in these panels.

this state. In general, the agreement between the reference model and these individual516

fits over the eight separate time ranges is excellent. (Very similar results are obtained517

when the m = 2 amplitude ae is computed using our adopted final fit.)518

Because ae1 > ae0 for the m = 2 mode, there is a substantial variation in the phase519

of this mode compared to that predicted by Eq. (1). In fact, our model implies that φL520

actually circulates through 360◦, as concluded originally by Spitale and Porco (2010),521

although the system spends relatively little time with |φL| > 90◦. This may be seen522

in Fig. 6, which shows the distribution of the B ring edge measurements used in this523

study along with the corresponding phases predicted by the reference model φL. We524

find that |φL| > 90◦ for about 9 months every 5.4 years, centered on the times of the525

amplitude minima in 2006.7, 2012.1 and 2017.5. (Amplitude maxima occur in 2009.4526

and 2014.8, when φL passes through zero.)527

Updated values for the m = 2 libration parameters are included in our final fit that528

includes all known modes and librations (see Table 3 below). Following a similar529
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Figure 5. The variation in the m = 2 amplitude ae, as computed from the reference model.
Blue dots mark the times of individual stellar occultation observations, and the red symbols
mark RSS observations. Fitted average values over the eight selected intervals in Fig. 4 are
shown as large ‘+’ symbols, with the vertical extent showing the formal uncertainty in the
amplitude and the horizontal extent representing the time span of data used in each fit.

process to that used for the other wavenumbers (described below), we also scanned530

the residuals to this final fit to search for any additional, previously-undetected con-531

tributions to the m = 2 pattern, but found none.532

6.2. The m=1 pattern533

Figure 7 shows the pattern speed scan for the m = 1 mode, whose predicted value534

at the edge of the B ring is ˙̟ sec = 5.059◦ d−1, as indicated by the vertical solid line.535

Here we see a single strong peak in amplitude at Ωp = 5.083◦ d−1, somewhat faster536

than the predicted value. The corresponding resonance radius is ∼117,419 km, or537

151 km interior to the mean radius of the ring edge.538539

The reference fit for the m = 1 mode assumes a constant amplitude over the entire540

set of observations, but Nicholson et al. (2014a) noted that A1 decreased slightly from541

∼25 km in 2005 to ∼20 km in 2008/09 (see their Fig. 4). By separating the observa-542

tions into the same eight time intervals as for them = 2 mode, we see a more complete543

picture of the time variability of them = 1 mode in Fig. 8. (In this and in subsequent544
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Figure 6. The variation in the m = 2 libration phase φL, as computed from the reference
model. Note the highly non-uniform rate dφL/dt as the time-varying eccentricity vector
sweeps rapidly through its minimum range. As in Fig. 5, blue symbols mark the times of
stellar occultation observations and red symbols mark RSS observations. The fitted average
phase values over the eight selected intervals in Fig. 4 are shown as large ‘+’ symbols, with
the vertical extent showing the formal uncertainty in the average phase over the interval
and the horizontal extent representing the time span of data used in each fit.

similar figures, we compute the residuals relative to our final adopted model for the B545

ring, rather than to the reference model, since this more realistically shows the radial546

variations that contribute to the final fit for each wavenumber.) With a doubling of547

the timespan of the observations, we confirm the results of Nicholson et al. (2014a)548

but find that A1 subsequently increased to ∼30 km in 2013, before falling back to549

∼17 km in 2016/17.550

Given this evidence for time variability in the m = 1 amplitude, we repeated our551

frequency scan of the B ring edge residuals after removal of the main m = 1 signal,552

as well as all other detected normal modes from our final fit (see Table 3 below),553

with the results shown in Fig. 9. We find a much weaker but statistically-significant554

signal with ΩP = 5.206◦ d−1 and an amplitude of 4.4 km. Combined with the original555

m = 1 mode with ΩP = 5.083◦ d−1, this suggests a libration with ΩL ≃ 0.123◦ d−1,556

corresponding to a period of ∼ 8.0 yr.557558
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Figure 7. A scan in pattern speed for m = 1 normal modes, after removing the signatures
of all other modes listed in Table 2. The format is the same as Fig. 3. Here significant
power is seen at only one frequency, at 5.083◦ d−1, with a radial amplitude of 23.6 km and
a minimum σ = 4.4 km.

Although including this libration term in the m = 1 mode does modestly improve559

the overall fit, it fails to capture well the amplitude variations seen in Fig. 8. A560

subsequent frequency scan, after inclusion of the above libration term, shows evidence561

for a third statistically-significant m = 1 component with ΩP = 5.250◦ d−1 and an562

amplitude of ∼ 2.8 km, as shown in Fig. 10. This suggests a second libration term563

with ΩL ≃ 0.167◦ d−1, corresponding to a period of ∼ 5.9 yr.564

Once this additional component is included in the orbit fit, the calculated amplitude565

and phase variations of the m = 1 mode provide a significantly better match to the566

observations, as shown in Fig. 11. We caution the reader, however, that while this567

multi-component model may match our observations over their 13 yr time interval,568
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Figure 8. Radius residuals from our final B ring model when the m = 1 terms are set to
zero, plotted as a function of mθ. The upper left panel shows the full set of observations,
with substantial scatter. The observations are divided into eight different time intervals
in the remaining panels, as in Fig. 4, showing substantial systematic variations in the
amplitude of the m = 1 pattern over time, particularly after 2010. See text for details of
the model fit results included in these panels.

we do not know if these librations will maintain their amplitudes, periods, and phases569

over timescales of centuries. Instead, it might be better to think of them simply as570

quantifying the variability of the m = 1 shape of the B ring edge over the limited571

period of Cassini observations.572

Table 3 includes the final values for all three m = 1 components in our adopted573

fit, with amplitudes of ae0 = 23.56 ± 0.51 km, ae1 = 4.42 ± 0.63 km, and ae2 =574

2.84 ± 0.53 km. The final libration frequencies are ΩL,1 = 0.1145± 0.0096◦ d−1 and575

ΩL,2 = 0.1671± 0.0150◦ d−1.576

6.3. The m=3 pattern577

Figure 12 shows the scan for the m = 3 mode, whose predicted pattern speed at578

the edge of the B ring is ΩP = 507.530◦ d−1. Here we see a single strong peak in579

amplitude at Ωp = 507.7189◦ d−1, again faster than the predicted value, but also two580

secondary peaks at slightly lower frequencies. The resonance radius corresponding to581
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Figure 9. The signature of a second m = 1 component with ΩP = 5.206◦ d−1 and an
amplitude of ∼ 4.4 km, as seen in a normal mode scan. The primary component is at
ΩP = 5.083◦ d−1, as shown in Fig. 7, while the predicted pattern speed at the edge of the
B ring is 5.059◦ d−1.

the strongest peak is ∼117,541 km, or 29 km interior to the mean radius of the ring582

edge.583584

As for the m = 1 mode, we again find substantial long-term variations in the585

amplitude and phase over time, as shown in Fig. 13, which follows the same format586

as Figs. 4 and 8. Beginning at ∼ 20 km in 2005, ae fell steadily to a minimum of587

∼ 7 km in 2009-2013, rose to 11 km in 2016, before falling slightly in 2017. The588

steady decline between 2005 and 2009 was also noted by Nicholson et al. (2014a).589

In our initial attempt to match this pattern, we included a single libration term590

for m = 3, treating the libration frequency ΩL, amplitude ae1, and phase δL as free591

parameters. The results matched the overall trend in the amplitude of the mode, but592
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Figure 10. The signature of a thirdm = 1 component with ΩP = 5.250◦ d−1 and amplitude
∼ 2.8 km. The primary and secondary components are at ΩP = 5.083◦ d−1 and 5.206◦ d−1,
as shown in Figs. 7 and 9.

with physically implausible values for ae0 and ae1 of hundreds of km and a libration593

period of hundreds of years, much longer than those found for the m = 1 and m = 2594

modes. The two components nearly cancel each other out during the comparatively595

short interval of the Cassini observations, but lead to much larger — and implausible596

— predicted variations at earlier and later times.597

As with the m = 1 case, we then fitted for a second libration component with much598

more satisfactory results, as shown in Fig. 14. The dominant component, however,599

has an uncomfortably long period of almost 20 yrs — longer than the 13 yr span of600

the Cassini observations — that is not well-determined by the fit. Table 3 includes601

the final values for all three m = 3 components in our adopted fit, with amplitudes602

of ae0 = 11.19 ± 0.53 km, ae1 = 7.41 ± 0.64 km, and ae2 = 2.15 ± 0.49 km. The603
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Figure 11. Variation in the amplitude A1 and phase φL of the m = 1 mode over time
incorporating two libration terms with periods of 8.0 and 5.9 yr and amplitudes of 4.4 and
2.8 km, respectively. The model curves matches the fitted values for the mode amplitude
and libration phase obtained from fits to selected time intervals shown in Fig. 8 over the
full span of the observations, although extending these periodic terms into the unobserved
past or future is probably unwarranted.

final libration frequencies are the poorly-constrained value of ΩL,1 = −0.050◦ d−1
604

and ΩL,2 = 0.1342 ± 0.0086◦ d−1. (Note that a negative value of ΩL implies that605

the eccentricity vector rotates in a clockwise direction in [h, k] space and that, if the606

libration is interpreted in terms of the beating of two modes with the same m, that607

Ω1 < Ω0 in Eq. (7)).608

6.4. The m=4 pattern609

Figure 15 shows the scan for the m = 4 mode, for which the predicted pattern610

speed at the edge of the B ring is ΩP = 570.339◦ d−1. Again we see a single strong611



26 French et al.

B ring OER

507.0 507.5 508.0 508.5
Pattern speed (deg/day)

0

2

4

6

8

10

R
M

S
 (

km
)

m = 3 ILR

Ω
p
 =  507.7189 deg/day

B ring OER

507.0 507.5 508.0 508.5
Pattern speed (deg/day)

0

2

4

6

8

10

A
m

pl
itu

de
 (

km
)

Figure 12. A scan in pattern speed for m = 3 normal modes, after removing the signatures
of all other modes listed in Table 2. The format is the same as Fig. 3. Here the maximum
power is seen at one frequency, at 507.7189◦ d−1, with a radial amplitude of 9.5 km and
a minimum σ = 5.6 km, but there are two substantial secondary peaks at slightly lower
frequencies.

peak in amplitude at a pattern speed slightly faster than the predicted value, or612

Ωp = 570.529◦ d−1. The corresponding resonance radius is ∼117,544 km, or 26 km613

interior to the mean radius of the ring edge.614615

The observed variations in the m = 4 contribution to the shape of the B ring edge616

over time are shown in Fig. 16, in the same format as Figs. 4, 8 and 13. As is the case617

for m = 1 and m = 3, we see substantial changes in amplitude over the course of the618

observations. Although the average amplitude is ∼8 km over the period 2005–2017619

(see Table 2), it reached a minimum of ∼ 2.9 km in 2009 and a maximum of ∼ 14 km620

in 2017, without any clear periodicity.621
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Figure 13. Radius residuals from our final B ring model when the m = 3 terms are set to
zero, plotted as a function of mθ. The upper left panel shows the full set of observations,
with their substantial scatter. The observations are divided into eight different time intervals
in the remaining panels, which show substantial systematic variations in the amplitude and
phase of the m = 3 pattern over time. The amplitude decreased sharply between 2005
and 2010, remained fairly constant through 2013 and rose again in 2016 and 2017, though
remaining well below the level of the earliest observations. See text for details of the model
fit results included in these panels.

A libration frequency scan suggested a dominant frequency ΩL ≃ 0.17◦ d−1, cor-622

responding to a period of ∼ 5.8 yr, with an amplitude of ∼ 3 km, but a fit with623

such a single term was again rather unsatisfactory. A subsequent frequency scan624

of the radius residuals after inclusion of the single libration revealed a statistically625

significant additional component. A greatly improved fit to the observed amplitudes626

and phases was obtained with the resulting two-term libration model, as shown in627

Fig. 17. Table 3 includes the final values for all three m = 4 components in our628

adopted fit, with amplitudes of ae0 = 7.32 ± 0.47 km, ae1 = 2.79 ± 0.47 km, and629

ae2 = 2.56±0.45 km. The final libration frequencies are ΩL,1 = −0.2032±0.0092◦ d−1
630

and ΩL,2 = 0.1676± 0.0095◦ d−1.631

6.5. The m=5 pattern632
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Figure 14. Variation in the amplitude A3 and phase φL of the m = 3 mode over time
incorporating two libration terms with periods of 19.7 and 7.3 yr and amplitudes of 7.4 and
2.2 km, respectively. The model curves match the fitted values for the mode amplitude
and libration phase obtained from fits to selected time intervals shown in Fig. 13 over the
full span of the observations, although the unusually long period of the first libration is not
tightly constrained by the observations.

Finally we have Fig. 18, which shows the scan for the m = 5 mode, whose predicted633

pattern speed at the edge of the B ring is ΩP = 608.025◦ d−1. Again we see a single634

strong peak in amplitude at Ωp = 608.206◦ d−1, slightly faster than the predicted635

value. The corresponding resonance radius is ∼117,547 km, or 23 km interior to636

the mean radius of the ring edge. This is a relatively weak mode, with an average637

amplitude of about 6 km, but varying between about 4 and 8 km, as shown in Fig. 19.638

There appear to be at least three amplitude minima within the period of Cassini639

observations, in 2005, 2008 and 2016/17, suggesting a fairly short libration period.640
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Figure 15. A scan in pattern speed for m = 4 normal modes, after removing the signatures
of all other modes listed in Table 2. The format is the same as Fig. 3. Here the maximum
power is seen at one frequency, at 570.529◦ d−1, with a radial amplitude of 7.7 km and a
minimum σ = 5.2 km.

A libration frequency scan revealed a single best-fitting value of ΩL ≃ 0.44◦ d−1,641

corresponding to a period of 2.25 yr, a result that was borne out by a least-squares fit642

with a single libration term. Fig. 20 shows the resulting model amplitude and phase643

variations over time. Although the relatively rapid libration is less well-sampled by644

the eight snapshots in Fig. 19 than one would like, the model does fit the observations645

quite well. Our final model in Table 3 has m = 5 amplitudes of ae0 = 5.42± 0.44 km646

and ae1 = 1.55± 0.44 km, with a libration frequency ΩL = 0.4353± 0.0116◦ d−1.647

6.6. Summary of libration models648



30 French et al.

m=4

-180 -120 -60 0 60 120 180
mθ (deg)

-30

-20

-10

0

10

20

30

dr
 (

km
)

m=4

-180 -120 -60 0 60 120 180
mθ (deg)

-30

-20

-10

0

10

20

30

dr
 (

km
)

2005.20 − 2005.70
ae =  7.36 +/-  1.16 km

φ
L
 =    5.9 +/-  11.4°

N =           19

m=4

-180 -120 -60 0 60 120 180
mθ (deg)

-30

-20

-10

0

10

20

30

dr
 (

km
)

2006.50 − 2007.50
ae =  8.98 +/-  1.04 km

φ
L
 =   14.8 +/-   8.1°

N =           32

m=4

-180 -120 -60 0 60 120 180
mθ (deg)

-30

-20

-10

0

10

20

30

dr
 (

km
)

2007.90 − 2009.00
ae =  5.31 +/-  0.81 km

φ
L
 =  -26.9 +/-   7.9°

N =           68

m=4

-180 -120 -60 0 60 120 180
mθ (deg)

-30

-20

-10

0

10

20

30

dr
 (

km
)

2009.00 − 2009.75
ae =  2.89 +/-  1.00 km

φ
L
 =  -45.1 +/-  15.4°

N =           26

m=4

-180 -120 -60 0 60 120 180
mθ (deg)

-30

-20

-10

0

10

20

30

dr
 (

km
)

2012.40 − 2013.25
ae =  5.90 +/-  1.64 km

φ
L
 =   12.4 +/-  16.1°

N =           25

m=4

-180 -120 -60 0 60 120 180
mθ (deg)

-30

-20

-10

0

10

20

30

dr
 (

km
)

2013.25 − 2013.80
ae =  8.38 +/-  1.00 km

φ
L
 =    8.1 +/-   7.8°
N =           32

m=4

-180 -120 -60 0 60 120 180
mθ (deg)

-30

-20

-10

0

10

20

30

dr
 (

km
)

2016.00 − 2017.00
ae = 13.77 +/-  0.67 km

φ
L
 =    2.5 +/-   2.8°
N =           32

m=4

-180 -120 -60 0 60 120 180
mθ (deg)

-30

-20

-10

0

10

20

30

dr
 (

km
)

2017.00 − 2017.80
ae = 14.20 +/-  0.85 km

φ
L
 =  -16.7 +/-   3.4°

N =           43

Figure 16. Radius residuals from our final B ring model when the m = 4 terms are set to
zero, plotted as a function of mθ. The upper left panel shows the full set of observations,
with their scatter. The observations are divided into eight different time intervals in the
remaining panels, which show substantial variations in the amplitude and phase of the
m = 4 pattern over time, with the amplitude decreasing to below 3 km in 2009 and then
rising to above 14 km in 2017. See text for details of the model fit results included in these
panels.

Table 3 summarizes all the parameters for our final multi-mode fit to the B ring649

edge, including the libration terms. For each value of m we list the basic mode650

parameters ae0, ΩP and δm, and for each libration we list aej , ΩL,j and δL,j, as well651

as the libration period PL,j. (Recall that for librating modes the overall amplitude652

Am = ae is not constant, but given by Eqns. (5) and (4) or (8).)653

The rms residual per degree of freedom of the fit is 4.7 km, a significant improvement654

over the 7.0 km in the reference fit in Table 2 and the 7.8 km achieved by Fit 11 of655

Nicholson et al. (2014a). This improvement primarily reflects the addition of libration656

terms for the modes with m = 1, 3, 4 and 5. Fig. 21 shows a histogram of the post-fit657

residuals in radius, compared to a Gaussian distribution with a standard deviation of658

4.7 km. The 11 points with residuals > 20 km (i.e., > 4σ) are listed in Table 1 and659

were excluded from the fit.660
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Figure 17. Variation in the amplitude A4 and phase φL of the m = 4 mode over time
incorporating two libration terms with periods of 4.9 and 5.9 yr and amplitudes of 2.8 and
2.6 km, respectively. The model curves match the fitted values for the mode amplitude and
libration phase obtained from fits to selected time intervals shown in Fig. 16 reasonably
well.

Compared with the reference fit, which uses the same data set, the amplitude, phase661

and pattern speed of the forced mode due to the Mimas 2:1 ILR are all unchanged,662

within their stated uncertainties. Our final fit has slightly smaller primary amplitudes663

for the free m = 2, 4 and 5 modes, and slightly larger amplitudes for the m =664

1 and m = 3 modes. The pattern speeds of the free modes are also statistically665

unchanged, with the exception of the m = 3 mode for which ΩP has decreased by666

0.0052± 0.0008◦ d−1.667

Libration periods range from 2.25 yr for the m = 5 mode to ∼ 20 yr for the m = 3668

mode, but most are in the range of 5–9 yrs. Two of the fitted libration frequencies669
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Figure 18. A scan in pattern speed for m = 5 normal modes, after removing the signatures
of all other modes listed in Table 2. The format is the same as Fig. 3. Here the maximum
power is seen at one frequency, at 608.21◦ d−1, with a radial amplitude of 5.4 km and a
minimum σ = 4.5 km.

are negative, meaning that the corresponding eccentricity vectors rotate clockwise in670

the [h, k] plane, opposite to the direction of ΩP , and that Ω1 < Ω0.671

Figure 22 shows the mode amplitudes (ae0 and aej), grouped by the value of m.672

For m = 2, the free eccentricity is larger than the forced, implying that the overall673

m = 2 pattern circulates, rather than librates, with respect to the mean longitude of674

Mimas. With the exception of the m = 2 mode, the primary mode amplitudes range675

from 24 to 5 km while the libration amplitudes lie in the range 2–7 km. Although676

the primary mode amplitudes generally decrease with increasing m, the latter show677

no obvious pattern.678
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Figure 19. Radius residuals from our final B ring model when the m = 5 terms are set to
zero, plotted as a function of mθ. The upper left panel shows the full set of observations.
The observations are divided into eight different time intervals in the remaining panels,
which show modest variations in the amplitude and phase of the m = 5 pattern over time.
See text for details of the model fit results included in these panels.

Finally, we remind the reader that the relatively long libration periods — in some679

cases comparable to, or even longer than, the time span of the Cassini data — argue680

for caution in their interpretation. In particular, it is unclear whether the amplitude681

variations in the modes are truly periodic, or perhaps more irregular in nature.682

7. DISCUSSION683

7.1. Resonance cavity model and B ring surface mass densities684

As discussed briefly in Section 2, our model for a librating streamline admits of two685

distinct dynamical interpretations: one in which a single mode oscillates in amplitude686

and phase, and the other in which two stable modes with the same value of m and687

similar pattern speeds interfere to produce a beating pattern. An example of the first688

case is a mode whose amplitude and phase vary due to a viscous overstability, as orig-689

inally envisioned by Borderies et al. (1985). In the second case, a ring might support690

two independent edge modes with the same m but different numbers of radial nodes691
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Figure 20. The modeled variation in the m = 5 amplitude A5 and phase φL, along with
fitted values over selected intervals from Fig. 19. The single libration period is 2.26 yr and
the amplitude is 1.6 km.

nr and thus slightly different pattern speeds (Longaretti 2018). Unfortunately, these692

two situations are indistinguishable when only the shape of a single ring streamline693

— such as a ring edge — is known, without any information on the radial variation694

in ring eccentricity.695

In the spirit of hypothesis testing, we will assume first that the second interpretation696

is correct. [This assumes that we will add an alternative interpretation.]697

According to the edge-mode model, as outlined by Spitale and Porco (2010) and698

French et al. (2016) and reviewed by Nicholson et al. (2018), a normal mode at the699

edge of a ring with a specified pattern speed ΩP can be viewed as a pair of free density700

waves trapped in a resonant cavity between the radius of the corresponding Lindblad701

resonance ares (where Eq. (2) is satisfied) and the edge of the ring. For an outer ring702
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.

Figure 21. Histogram of residuals to the final fit, overplotted with a normal distribution
with σ = 4.7 km. The 11 outlier points with |dr| > 20 km were zero-weighted in the fit.

Table 3. Multi-mode fit to Cassini data

Parameter Symbol Value

mean radius a(km) 117570.48 ± 0.29

Epoch UTC 2008 Jan 1 12:00

RMS residual σ(km) 4.71

# data N 294

Fit ID Sa025S-Bring-final 20220111a

m

Symbol 1 2 3 4 5

ae (km) 23.56 ± 0.51 33.61± 0.45 11.19 ± 0.53 7.32 ± 0.47 5.42± 0.44

ΩP (◦ d−1) 5.0824± 0.0012 381.98441 ± 0.00031 507.71325 ± 0.00070 570.52829 ± 0.00084 608.20674 ± 0.00065

δ(◦) 64.21 ± 1.87 165.99 ± 0.51 31.00 ± 1.01 9.62 ± 1.34 68.20 ± 1.28

∆ares (km) −151.03 ± 7.74 −14.70 ± 0.06 −28.14± 0.11 −25.93 ± 0.11 −23.47± 0.08

ae1 (km) 4.42± 0.63 37.59± 0.46 7.41± 0.64 2.79 ± 0.47 1.55± 0.44

ΩL,1(
◦ d−1) 0.1145± 0.0096 0.1838 ± 0.0006 [ −0.05 ] −0.2032 ± 0.0092 0.4353 ± 0.0116

PL,1 (yr) 8.609± 0.718 5.362 ± 0.017 [ 19.713 ] 4.851±−0.219 2.264± 0.060

δL,1(
◦) 193.60 ± 22.47 96.11± 1.37 90.97 ± 3.66 57.75 ± 14.00 161.40 ± 23.41

∆a1res (km) −879.33± 12.54 −33.30 ± 0.12 −25.59± 0.11 −19.00 ± 0.11 −34.61± 0.08

ae2 (km) 2.84± 0.53 2.15± 0.49 2.56 ± 0.45

ΩL,2(
◦ d−1) 0.1671± 0.0150 0.1342 ± 0.0086 0.1676 ± 0.0095

PL,2 (yr) 5.900± 0.529 7.347± 0.470 5.881 ± 0.332

δL,2(
◦) 350.70 ± 34.50 247.25 ± 17.50 217.29 ± 13.08

∆a2res (km) −1207.61 ± 77.24 −34.97± 0.52 −31.64 ± 0.32
Note:

Values in square brackets [...] were held fixed.
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Figure 22. Histogram of fitted normal modes. Red bars represent the principal mode
amplitudes ae0, while blue bars show the amplitudes of the libration terms aej . Note that
for m = 2, ae1 is larger than ae0, indicating that the mode is circulating, rather than
librating, with respect to Mimas.

edge, an m-armed trailing spiral density wave is generated at the ILR, propagates703

outwards until it encounters the outer edge of the ring (or the inner edge of a gap),704

and then reflects as an inward-propagating leading wave. This wave then reflects at705

the ILR to produce an outward-propagating trailing wave, thus completing the cycle.706

The angular frequency of the wave ω = mΩP is determined indirectly via the density707

wave dispersion relation ω(k) and the requirement that the total change in phase708

around each cycle of the cavity is a multiple of 2π.709

Under the assumption that each of the libration terms we have identified above is in710

fact due to beating between the primary normal mode, with pattern speed ΩP , and711

a secondary mode with pattern speed ΩP,j, then from Eq. (7) above we have712

ΩP,j = ΩP + ΩL,j/m, (13)713

where ΩL,j is the fitted libration frequency. (The subscript j allows for the possibility714

of more than one libration term for a particular value of m, each of which represents715

a new pattern speed ΩP,j.) Note that if ΩL,j < 0, then ΩP,j < ΩP and the resonant716

radius of the secondary mode is external to that corresponding to ΩP . We then717

calculate the resonance radii ares of these secondary normal modes from their pattern718

speeds via Eq. (2), as usual, and their distances ∆ares from the edge of the B ring719

at 117,570.48 km. The results of this calculation are given in Table 3, based on the720

libration frequencies determined above, and the resonance locations are plotted in721

Fig. 23.722

Once we have ∆ares, Σ can be estimated using the WKB expression for the wave-723

length of density waves in the vicinity of a Lindblad resonance, leading to the expres-724

sion (see Section 6.3 of Nicholson et al. (2014a)):725
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Figure 23. The locations of the calculated resonance radii ares for the normal modes with
m = 2, 3, 4 and 5 relative to the mean radius of the outer edge of the B ring, 117,570.48 km
(see Table 3 for numerical values). Free modes are plotted as filled circles; the open circle
marks the m = 2 mode forced by Mimas. The solid lines show the predicted ∆ares as a
function of m for nodeless modes (nr = 0) and surface mass densities Σ =25, 50, 100, 150,
and 200 g cm−2 and Γ = 1/8 (see text). With the exception of m = 5, the lowest-frequency
mode for each value of m is more-or-less consistent with Σ ≃ 100 g cm−2. For the m = 1
mode, ∆ares = −151 km and is off scale, reflecting the much longer radial wavelength of
density waves with m = 1. For comparison, the estimates from Nicholson et al. (2014a) are
shown by the + symbols.

Σ =

[

3(m− 1) +
21

2
J2(R/ares)

2

]

MP∆a2res
8π2Γa4res

, (14)726

where MP , R and J2 are the mass, equatorial radius and second zonal gravity har-727

monic of the planet. The numerical factor Γ specifies the number of density wave-728

lengths between the resonant radius and the edge of the ring, where the wave is729

reflected. A reasonable approximation is to set Γ = (nr + 1/4)/2, where nr is the730

number of radial nodes of the mode between ares and the edge of the ring and the con-731

stant term accounts for a phase change in the density wave when it is reflected at the732

ILR (S. Tremaine, personal communication). Numerical solutions of the non-linear733

wave equation by Longaretti (2023) show that the constant term may be closer to734

1/16 for an isolated mode, but that inter-mode interactions may lead to an effective735

value closer to 1/8. For a nodeless mode, then, we have Γ = 1/8, while for nr = 1,736

Γ = 5/8 and for nr = 2 Γ = 9/8, etc.. Note that, for a given value of nr and the737
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Table 4. Normal mode cavities and B ring surface densities

Mode nr
a j Am ΩL,j ΩP,j

b ares
c ∆ares

d Σe

m (km) (◦ d−1) (◦ d−1) (km) (km) (g cm−2)

1 0 0 23.56 5.0824 117419.9 −150.6 30.9

1 1 4.42 0.1145 5.1969 116691.6 −878.9 216.1

2 2 2.84 0.1671 5.2495 116364.0 −1206.5 228.8

2 0 1 37.59 0.1838 382.0763 117537.2 −33.3 101.9

3 0 1 7.41 −0.0500 507.6966 117544.9 −25.6 119.5

1 0 11.19 507.7133 117542.3 −28.1 28.9

2 2 2.15 0.1342 507.7580 117535.5 −35.0 24.8

4 0 1 2.79 −0.2032 570.4775 117551.5 −19.0 98.7

1 0 7.32 570.5283 117544.5 −25.9 36.7

2 2 2.56 0.1676 570.5702 117538.8 −31.7 30.4

5 0 0 5.42 608.2067 117547.0 −23.5 200.3

1 1 1.55 0.4353 608.2938 117535.9 −34.6 87.1

Notes:
a) Number of radial nodes.
b) Fitted pattern speed: ΩP for nr = 0 mode and Ωm = ΩP + ΩL,j/m for libration
components (see Table 3).
c) Calculated resonance radius.
d) Cavity width, based on a mean edge radius of aB = 117570.48 km.
e) Ring surface density (see text).

surface density Σ, the depth of the resonant cavity ∆ares is greatest for m = 1 and738

decreases as (m− 1)−1/2 for larger values of the azimuthal wavenumber m. For fixed739

values of m and Σ, the depth should increase by a factor of ∼ 51/2 = 2.24 in going740

from the nodeless mode to nr = 1, and by another factor of ∼ (9/5)1/2 = 1.34 in741

going from nr = 1 to nr = 2.742

To identify the appropriate value of nr and thus Γ for each mode, we follow743

Longaretti (2023) and make the simple assumption that, for each value of m, the744

mode with the smallest value of ∆ares (i.e., the one whose resonant radius is nearest745

to the outer edge of the B ring) corresponds to nr = 0, with larger values of ∆ares746

being assigned values of nr = 1, 2, etc. Equation (14) is then used to estimate the av-747

erage surface mass density within the corresponding resonant cavity, with the results748

listed in Table 4. We list here the m-values, the assumed number of radial nodes nr,749

amplitudes, pattern speeds, resonance radii and implied surface mass densities Σ for750

all the normal modes identified in this way.751

Several features of these results, however, suggest that our assumption that the752

observed librations are due multiple normal modes with the same value of m but753
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varying numbers of radial nodes nr may be seriously wrong. First is the large scatter in754

the derived surface mass densities over a relatively small radial range near the B ring’s755

outer edge, ranging from ∼ 25 to 230 g cm−2. (These estimates may be compared756

with the surface mass density in the outer B ring obtained by Hedman and Nicholson757

(2016) of ∼ 120 − 140 g cm−2, from the Janus 3:2 resonance near 116,100 km, and758

the Lissauer et al. (1985) result of 54 g cm−2 from the Mimas 4:2 bending wave near759

116,500 km, although we note that both results apply to regions 1000 – 1500 km760

interior to the ring edge.) This scatter might be explained, at least in part, by a761

rapid increase in surface density within 20-30 km of the ring edge, where most of the762

very large values of Σ occur, but upon closer inspection this does not seem entirely763

satisfactory, with very different values being found between ∆ares = 25 and 35 km 5
764

A more serious problem is the apparent spacing between modes with different num-765

bers of radial nodes, which is much less than would be expected given the resonance766

location of the nodeless mode. This mismatch results in the calculated surface densi-767

ties (except those for m = 1) being dramatically lower for nr = 1 or 2 than they are768

for nr = 0. Choosing larger values of nr for the secondary modes would just make769

this problem worse. We have found no plausible solution to this quandary, unless all770

of the modes we have identified have values of nr ≫ 1. But in this case, we would771

need to account for the apparent lack of modes with smaller numbers of radial nodes,772

which numerical simulations (Longaretti 2023) predict should have larger amplitudes.773

This brings us to our third concern: numerical models (Longaretti 2018, 2023)774

indicate that mode amplitudes should decrease with increasing numbers of radial775

nodes, or resonance distance from the ring edge, assuming they have similar values776

of qmax, the maximum dimensionless eccentricity gradient. This is also inconsistent777

with our results in Fig. 23, although it is possible that inter-mode coupling through778

the ring’s self-gravity could induce oscillations in their amplitude, resulting in some779

modes being unusually weak at certain times (Longaretti 2023).780

For a theoretical analysis of the dynamics of normal modes in this region of the B781

ring, including a discussion of the possibility that the observed librations arise instead782

from viscous overstability and/or mutual interactions between modes with differing783

values of m, we refer the interested reader to the companion (?) paper by Longaretti784

(2023). This work includes a sequence of nonlinear simulations of edge modes with785

1 ≤ m ≤ 5 and 0 ≤ nr ≤ 2, for an assumed value for the ring surface mass density786

Σ, that is adjusted in an attempt to fit the observed mode amplitudes and resonant787

cavity widths presented in Table 3. In addition to the conclusion that there is no788

self-consistent multi-mode model that fits the observations, one outcome of these789

models is the realization that the mode amplitudes Am are coupled to the surface790

5 In the case of the m = 1 modes, for which the secondary modes associated with the libration
frequencies ΩL,1 and ΩL,2 yield much larger values of Σ, the problem might be due to our assumption
that nr = 1 and 2 as Σ ∼ ∆a2res/nr if nr ≫ 1.
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mass density of the ring through the maximum allowed value for the dimensionless791

eccentricity gradient within the rings, q ≃ ade/da being ≤ 0.8. Amplitudes for the792

primary (i.e., nodeless) m = 2 and m = 3 modes can only be as large as the observed793

values in Table 4 if Σ is of order 200 g cm−2, at least in the outer 20-30 km of the794

B ring. Smaller mass densities in this region lead to shorter radial wavelengths and795

unacceptably large values of q, for the same value of Am. The primary m = 1 mode,796

on the other hand, with its much wider resonant cavity, can be fit fairly well with an797

average value of Σ ≃ 60 g cm−2, more compatible with published estimates based on798

density and bending waves (see above)..799

[Should we say more here, such as mentioning PYL’s predicted mode800

amplitudes and cavity widths, or defer this whole discussion to his paper801

and simply reference it here?]802

7.2. Phase offset relative to Mimas803

In our reference fit to the Cassini data set in Table 2, the first m = 2 component804

represents the forced perturbation due to the Mimas 2:1 ILR. This part of the overall805

model thus contains the primary information on the response of the streamlines at806

the edge of the B ring to the forcing by the resonance, including any offset in the807

phase of the response relative to the forcing function. The latter is a predicted808

consequence of collisional dissipation within the ring, and the size of the phase lag is809

related to the effective viscosity of the rings (Borderies et al. 1982). Moreover, the810

amplitude of the torque exerted by Mimas on the rings due to the 2:1 resonance is811

also dependent on this phase lag (Tajeddine et al. 2017; Longaretti 2018). Previous812

investigations have yielded somewhat inconsistent results on the phase lag at the813

edge of the B ring, ranging from 2.9 ± 0.3◦ (Spitale and Porco 2010) to 0.7 ± 1.1◦814

in longitude (Nicholson et al. 2014a). In both cases, one of the two minima in ring815

radius was found to lag behind the mean longitude of Mimas at the epoch of the fit.816

In this section we compare both the pattern speed and phase of the m = 2 forced817

perturbation to previous results and to that expected from dynamical theory.818

We first compare the measured pattern speed of the forced component of the m = 2819

mode with the mean angular velocity of Mimas, as these are expected to be equal820

(Goldreich and Tremaine 1978; Porco et al. 1984). The upper panel of Fig. 24 com-821

pares the best-fitting pattern speed ΩP = 381.98430 ± 0.00045◦ d−1 of this mode822

from our reference fit in Table 2 with the actual mean motion of Mimas during the823

period of the Cassini mission, obtained by evaluating the epicyclic orbital elements824

6 for the numerical ephemeris, SAT441 (Acton, C. H. 1996). Complicating this com-825

6 The epicyclic elements are analogous to the usual osculating Keplerian orbital elements, but take
into account the zonal gravity coefficients of the planet (J2, J4, etc.) that have the effect of modifying
Kepler’s third law and introducing precession of both the apsidal line and the nodes of eccentric
or inclined orbits. See Renner and Sicardy (2006) for further details and conversion formulae from
osculating to epicyclic elements.



Saturn’s B Ring, v2.3 41

parison is the fact that Mimas itself is in a 4:2 inclination resonance with the satellite826

Tethys, which leads to long-term periodic variations in the former’s longitude, and827

thus in its mean motion. The libration period of the Mimas-Tethys resonance is828

PL = 70.8 yr and the corresponding variations in Mimas’s mean longitude have an829

amplitude of ΘL = 43.7◦ (Harper and Taylor 1993). As a result, the satellite’s mean830

motion varies periodically by up to 2πΘL/PL = 0.0106◦ d−1. The long-term average831

value of nMimas is 381.994509
◦ d−1, but in the early part of the Cassini mission it was832

∼ 381.9835◦ d−1, near its minimum value (Nicholson et al. 2014a). The long-term833

trend in Mimas’s mean motion seen in Fig. 24 is a consequence of this slow variation.834

In addition to the long-term trend, there is a shorter-term variation in the epicyclic835

mean motion with a period of 0.62 yr and an amplitude of ±0.005◦ d−1 that is associ-836

ated with the nearby 2:1 Lindblad resonance with Tethys (Vienne and Duriez 1995).837

These variations in the mean motion of Mimas make an instantaneous comparison838

with the fitted pattern speed of the forced m = 2 perturbation rather tricky, but839

Fig. 24 shows that the best-fitting pattern speed is indeed very close to the average840

mean motion of Mimas during the period of our observations.841

Having established that the forced m = 2 mode closely tracks the average mean842

motion of Mimas, the next step is to measure the offset in phase between the radial843

minimum of the mode and the average longitude of Mimas. This is also complicated844

by the effects of the Mimas-Tethys resonance. We make the working assumption845

that the ring is able to follow the slow librational motion of Mimas’s longitude, but846

not the short-period variations in its true or instantaneous longitude. Our approach847

therefore is to remove the short-period variations by subtracting from the epicyclic848

mean longitude a linear term with a rate of 381.9842959◦ d−1, as determined from849

our reference fit in Table 2. The lower panel in Fig. 24 compares the fitted phase of850

the forced m = 2 mode, which uses this same pattern speed, with Mimas’s detrended851

orbital longitude from the numerical ephemeris. In addition, a constant offset equal to852

Mimas’s epicyclic mean longitude at our reference time of 2008 Jan 1 12:00 UTC, or853

347.21996◦, has been subtracted from both the Mimas longitudes and the fittedm = 2854

phase. (The short vertical line marks this epoch. By construction, the detrended855

Mimas mean longitude is exactly zero at our reference time, although the long-period856

resonant variations are still apparent, especially after 2015. ) The best-fitting value of857

the phase lag from the reference fit in Table 2 is −0.39±0.73◦ relative to the epicyclic858

longitude of Mimas at the reference time, as shown by the horizontal blue line in859

Fig. 24. If instead we use our final fit from Table 3, for which δ = 346.10 ± 0.59◦,860

we find an offset of −1.12 ± 0.59◦ relative to Mimas. These results are consistent861

with the less-precise phase lag of −0.7 ± 1.1◦ found by Nicholson et al. (2014a), but862

somewhat smaller in magnitude than that obtained by Spitale and Porco (2010), viz.863

−2.3± 0.3◦.864
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Given the departures of Mimas’s epicyclic longitude from any constant-rate model,865

one might ask if there is a better way to measure the true phase offset. One al-866

ternative is to use the actual epicyclic mean longitude of Mimas in the orbit fitting867

program, instead of the linear term in Eq. (1), and then solve for a constant offset868

with respect to this, which we refer to as δλ. (This was the approach followed by869

Nicholson et al. (2014a).). We have repeated both our reference fit in Table 2 and870

our final fit (Table 3) with this modification. We find that δλ = −0.51 ± 0.56◦ and871

−1.28±0.38◦, respectively. Within their uncertainties, all four estimates of the phase872

lag are reasonably consistent and imply a small negative offset in the longitude of873

one minimum of the forced m = 2 mode relative to the mean epicyclic longitude874

of Mimas. As discussed in Nicholson et al. (2022), such a phase lag in the radial875

minimum is consistent with a gravitational torque between Mimas and the rings that876

acts to remove excess angular momentum from the B ring and transfers it to the877

satellite. But we must caution the reader that the measured phase lag is only barely878

statistically significant, and might also be subject to significant temporal variations879

associated with the observed mode librations (Longaretti 2018).880

Should we discuss the theoretical situation here? Longaretti (2023) esti-881

mate the ring viscosity, far from the edge, that is implied by our measured882

lag, and compare this with estimates of the viscosity due to self-gravity883

wakes.884

7.3. Resonant confinement of the B ring885

How much should we add here? Longaretti (2023) shows that the dis-886

tance of the Mimas 2:1 ILR from the B ring edge controls the torque887

Mimas exerts on the ring, and can be combined with the measured phase888

lag to obtain an independent estimate of the ring viscosity. Also, what889

about the forced amplitude ae = 33.6 km at the edge, which is also pre-890

dicted by Longaretti (2023) and involved in the calculated torque balance?891

I am uneasy about saying too much about this, when it would just amount892

to paraphrasing what is in PYL’s paper and is a pretty complicated ar-893

gument that depends on his prior theoretical development. Perhaps PYL894

can suggest a few sentences here, summarizing his results and referring to895

his paper? – PDN896

8. CONCLUSIONS AND OPEN QUESTIONS897

This section has yet to be revised as of Jan 15, 2023 and was mostly898

written in Jan 2022. – pdn I have restored the Questions we had posed899

for PYL to consider, and his answers.900
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Figure 24. (Upper panel) A comparison of the fitted pattern speed of the forced m = 2
mode with the actual mean motion of Mimas obtained by evaluating the epicyclic orbital
elements from the numerical ephemeris SAT441. The horizontal lines show the fitted pattern
speed and error bars for the forced mode, ΩP from our reference fit in Table 2, while the
oscillatory curve is from the satellite ephemeris. (Lower panel) A comparison of the fitted
phase δ of the forced m = 2 mode from the reference fit with the mean longitude of Mimas
at t = t0 derived from the ephemeris. The horizontal line with error bars shows the mode
phase relative to Mimas’s mean longitude at our reference epoch, while the oscillatory
curve is again from the satellite ephemeris. The latter has had a linear trend removed with
a slope equal to the best-fitting mode pattern speed shown in the upper panel, and both the
mode phase and detrended Mimas longitudes are calculated relative to the mean epicyclic
longitude of Mimas at t = t0. The short vertical line marks the epoch of the fitted orbital
elements, when the measured phase lag was −0.39 ± 0.73◦. In both panels, the curves
computed from the satellite ephemeris are plotted as heavier lines during the actual period
of Cassini observations used in the fits.
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• The dominant m = 2 mode is observed to circulate with a period of 5.36 yr and901

an amplitude that varies from a minimum of 4 km to a maximum of 71 km.902

Under the assumption that this is due to a combination of a resonantly-forced903

perturbation by Mimas plus an m = 2 normal mode (Spitale and Porco 2010;904

Nicholson et al. 2014a), we find ∆ares = −14.7 km and Am = 33.6 km for the905

forced mode, while ∆ares = −33.3 km and Am = 37.6 km for the free mode.906

Question: Why are the two modes of almost equal amplitude? Perhaps some907

sort of limit on q = ade/da? PY: See my comments in relation to figure908

23. This is coincidental in the interpretation of your results given909

there. Note that this coincidence is bound to happen, as amplitudes910

vary. The problem is that we just happen to look at the right moment911

(somewhat like a stopped clock being right twice a day). This may912

happen. This is obviously falsifiable. I may derive a typical time-scale913

of amplitude variation if I find the time, so that we can estimate how914

long such a coincidence may last... The problem is that we will not915

be looking again at the Saturnian system at the right time to check916

this...917

• Additional modes are seen with m = 1, 3, 4 and 5 and amplitudes of ∼ 24, 11, 7918

and 5 km, respectively. We interpret these as normal modes trapped in resonant919

cavities at the edge of the B ring. From their observed pattern speeds, we920

calculate resonant locations with respect to the mean edge ranging from ∆ares =921

−151 km (m = 1) to −23 km (m = 5). Question: Why are these particular922

modes excited? Are they connected to the dominant m = 2 mode? PY:923

Ok. Best guess (always the same): ALL modes should be overstably924

excited. Now, as I said earlier, they undergo phases of growth and925

phases of decay. This being said, there might be two reasons why we926

see some and not others: (1) the ones we do not see may happen to927

have too small amplitudes at the moment of observation, due to their928

varying amplitudes due not only to phases of growth an decay, but929

also to mode coupling. (2) mode coupling and initial conditions may930

have resulted in some modes never being able to reach a detectable931

amplitude.932

• It appears all of the modes with m = 1, 3, 4 and 5 librate in amplitude and933

phase, and — except for m = 5 — there appear to be at least two libration934

terms for each value of m. Libration amplitudes range from 1.6 to 7.4 km,935

and periods 2π/PL range from 2.3 to ∼ 20 yr. From the shape of the ring936

edge alone, we cannot discriminate between three possible dynamical scenarios:937

(1) they represent true physical librations of nodeless normal modes, with the938

same radial structure; (2) they are ‘apparent’ librations due to the beating of939

independent normal modes with the same m but different numbers of radial940
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nodes; or (3) their changing amplitude and phase on decadal timescales is a941

consequence of non-linear coupling between excited modes of different m.942

• Given the large amplitude of the m = 2 mode(s), and the resulting value of943

q in the outer B ring, one might expect the existence of overtone modes, with944

perturbations varying as an n-tuple of m[λ− ΩP (t− t0)− δ]. Such distortions945

should look like normal modes with m′ = nm but the same pattern speed ΩP .946

A search has not revealed any evidence for such modes with m = 4 or m = 6947

and ΩP = Ω2.948

• The overall RMS residual of our best fit is 4.7 km, which is still at least 10949

times larger than the uncertainties in the measured radii, and much greater950

than the RMS for fits to other sharp-edged features in the nearby Cassini Divi-951

sion (French et al. 2016). Is this due to unmodeled modes of oscillation, to more952

localized distortions such as those seen in some ISS images (Spitale and Porco953

2010; Hedman and Nicholson 2019), or to something else? PY: On this point,954

I have asked myself if a mess of smaller amplitude stuff, either other955

free modes modes or remaining small amplitude but decaying libra-956

tions (as per the picture described earlier) could not result, for each957

m, in a very complex time-dependent pattern, making it impossible958

to analyze simply, each contribution being individually too small to959

produce a convincing identification in your scanning procedure. Not960

sure what this idea is worth though.961

• Our analysis of the forced component of the m = 2 mode, and that of962

Spitale and Porco (2010), indicate that one minimum of the radial pattern lags963

behind the mean longitude of Mimas by 1 − 2◦. A more accurate estimate is964

made difficult by the various long-term perturbations in the orbit of Mimas965

due to the 4:2 vertical resonance with Tethys (PL = 70 yr) and the nearby966

2:1 Lindblad resonance (PL = 0.62 yr), but the sign of the lag is consistent967

with the expectation that Mimas is removing angular momentum from the B968

ring at the 2:1 resonance, and thus preventing it from spreading due to viscous969

interactions.970
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10. DATA AVAILABILITY978

Most of the occultation data from which our results were obtained are979

publicly available from NASA’s Planetary Data System Ring-Moon Sys-980

tems Node at https://pds-rings.seti.org/ringocc/. Raw observations of981

all other observations are available from the PDS Atmospheres Node at982

https://pds-atmospheres.nmsu.edu/. Specially-processed data used for this work983

are available upon request from the lead author.984
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