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Figure 1. Part-Aware Controllable 3D Shape Generation and Editing. We address the task of part-aware 3D shape generation and
editing without explicit 3D supervision. Prior part-aware generative models [37, 44] assume 3D supervision, at training, and only allow
changing the shape of the object. In this work, we introduce PartNeRF, a generative model capable of editing the shape and appearance of
generated shapes that are parametrized as a collection of locally defined NeRFs.

Abstract

Impressive progress in generative models and implicit
representations gave rise to methods that can generate 3D
shapes of high quality. However, being able to locally con-
trol and edit shapes is another essential property that can
unlock several content creation applications. Local control
can be achieved with part-aware models, but existing meth-
ods require 3D supervision and cannot produce textures. In
this work, we devise PartNeRF, a novel part-aware gener-
ative model for editable 3D shape synthesis that does not
require any explicit 3D supervision. Our model generates
objects as a set of locally defined NeRFs, augmented with

*Work done during internship at Stanford.

an affine transformation. This enables several editing op-
erations such as applying transformations on parts, mixing
parts from different objects etc. To ensure distinct, manip-
ulable parts we enforce a hard assignment of rays to parts
that makes sure that the color of each ray is only determined
by a single NeRF. As a result, altering one part does not af-
fect the appearance of the others. Evaluations on various
ShapeNet categories demonstrate the ability of our model to
generate editable 3D objects of improved fidelity, compared
to previous part-based generative approaches that require
3D supervision or models relying on NeRFs.

1

ar
X

iv
:2

30
3.

09
55

4v
3 

 [
cs

.C
V

] 
 2

1 
M

ar
 2

02
3



1. Introduction
Generating realistic and editable 3D content is a long-

standing problem in computer vision and graphics that has
recently gained more attention due to the increased demand
for 3D objects in AR/VR, robotics and gaming applications.
However, manual creation of 3D models is a laborious en-
deavor that requires technical skills from highly experi-
enced artists and product designers. On the other hand, edit-
ing 3D shapes, typically involves re-purposing existing 3D
models, by manually changing faces and vertices of a mesh
and modifying its respective UV-map [104]. To accommo-
date this process, several recent works introduced genera-
tive models that go beyond generation and allow editing the
generated instances [14,20,59,62,69,85,111,128,129,137].
Shape editing involves making local changes on the shape
and the appearance of different parts of an object. There-
fore, having a basic understanding of the decomposition of
the object into parts facilitates controlling what to edit.

While Generative Adversarial Networks (GANs) [33]
have emerged as a powerful tool for synthesizing photore-
alistic images [8, 16, 17, 52–54], scaling them to 3D data
is non-trivial as they ignore the physics of image forma-
tion process along a viewing direction. To address this, 3D-
aware GANs incorporate 3D representations such as voxel
grids [42, 80, 83] in generative settings or combine them
with differentiable renderers [64, 139]. While they faith-
fully recover the geometry and appearance, they do not al-
low changing specific parts of the object.

Inspired by the rapid evolution of neural implicit ren-
dering techniques [76], recent works [9, 35, 85, 105, 126]
proposed to combine them with GANs in order to allow
for multi-view-consistent generations of high quality. De-
spite their impressive performance on novel view synthe-
sis, their editing capabilities are limited. To this end,
editing operations in the latent space have been explored
[23, 47, 69, 127, 137] but these approaches lack intuitive
control over the shape. By decomposing shapes into parts,
other works facilitate structure-aware shape manipulations
[44,78,97,123]. However, they require 3D supervision dur-
ing training and can only operate on textureless shapes.

To address these limitations, we devise PartNeRF, a
novel part-aware generative model, implemented as an auto-
decoder [6]. Our model enables part-level control, which fa-
cilitates various editing operations on the shape and appear-
ance of the generated instance. These operations include
rigid and non-rigid transformations on the object parts, part
mixing from different objects, removing/adding parts and
editing the appearance of specific parts of the object.

Our key idea is to represent the objects using a set of
locally defined Neural Radiance Fields (NeRFs) that are ar-
ranged such that the object can be plausibly rendered from a
novel view. To enable part-level control, we enforce a hard
assignment between parts and rays that ensures that altering

one part does not affect the shape and appearance of other
parts. Our model does not require any explicit 3D supervi-
sion; we only assume supervision from images and object
masks captured from known cameras. We evaluate Part-
NeRF on various ShapeNet categories and demonstrate that
it can generate textured shapes of higher fidelity than meth-
ods that assume 3D supervision as well as approaches that
rely on NeRFs. Furthermore, we showcase various editing
operations that were not previously possible.

In summary, we make the following contributions:
We propose the first part-aware generative model that
parametrizes parts as NeRFs. Among the existing gener-
ative pipelines that consider the decomposition of objects
into parts, our work is the first that does not require explicit
3D supervision and enables editing operations both on the
shape and the texture of the generated object. Code and data
is available at https://ktertikas.github.io/part nerf.

2. Related Work
We now discuss the most relevant literature on 3D gen-

erative models in the context of generating editable shapes.

Neural Implicit Representations: Neural Implicit Rep-
resentations [13, 74, 91] have demonstrated impressive ca-
pabilities on various tasks ranging from 3D reconstruction
with [89, 90, 102, 103] and without texture [3, 4, 13, 15, 34,
48,74,75,91,96,101,125] to video encoding [12], 3D-aware
generative modelling [9, 10, 22, 35, 73, 85, 105], inverse
graphics [86, 132] and novel view synthesis [43, 76, 100,
120, 136]. In contrast to explicit representations i.e. point
clouds, meshes and voxels, implicit representations encode
the shape’s geometry and appearance in the weights of a
neural network. Among the most extensively used implicit-
based models are NeRFs [76], which combine an implicit
neural network with volumetric rendering [50] to perform
novel view synthesis. Due to their compelling results, nu-
merous works have been introduced to improve the train-
ing and rendering time [29,66,68,79,98,99,113,135,138],
the underlying geometry [90, 119], to better handle lighting
variations [5,7,72,109] and to encode shape priors for better
generalization [43, 115, 136] and generation [10, 105]. For
a thorough overview on NeRF-based approaches we refer
readers to [114, 124]. In our work, we introduce a genera-
tive model for editable 3D shapes with texture. Specifically,
we parametrize objects as a structured set of local NeRFs
that are trained from posed images and object masks.

3D-Aware Image Generation: Incorporating 3D represen-
tations in generative settings [22, 25, 35, 38, 40–42, 71, 73,
81,82,84,140] has significantly improved the quality of the
generated images and increased control over various aspects
of the image formation process. Likewise, radiance fields
have been combined with GANs to allow for photorealistic
image synthesis of objects [10, 105] and scenes [85]. More
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Figure 2. Method Overview. Our generative model is implemented as an auto-decoder and it comprises three main components: The
Decomposition Network takes two object specific learnable embeddings {zs, zt} that represent its shape and texture and maps them to a
set of M latent codes that control the shape and texture of each part. First, we map zs and zt to M per-part embeddings {ẑsm}Mm=1 and
{ẑtm}Mm=1 using M linear projections, which are then fed to two transformer encoders: τsθ and τ tθ , that predict the final per-part shape and
texture embeddings, {zsm}Mm=1 and {ztm}Mm=1. Next, the Structure Network maps the per-part shape feature representation zsm to a rotation
matrix Rm, a translation vector tm and a scale vector sm that define the coordinate system of the m-th part and its spatial extent. The last
component of our model is the Neural Rendering module that takes the 3D points along each ray, transformed to the coordinate frame of
its associated part, and maps them to an occupancy and a color value. We use plate notation to denote repetition over the M parts.

recently, [9] introduced a triplane-based architecture that
leverages both implicit and explicit representations and can
generate high resolution images. Concurrently, [27] com-
bined differentiable surface modelling [26] with a differ-
entiable renderer to generate high-quality textured meshes.
Unlike [9,10,27,105] that are part agnostic, our model gen-
erates objects with part-level control, hence unlocking edit-
ing operations not previously possible. Our formulation is
closely related to the compositional representation of [85]
but has two important differences. First, we enforce a hard
assignment between rays and parts ensuring that the color
of each part is only determined by one NeRF, thus enabling
local editing. Moreover, we model the shape and texture of
each part separately, hence enabling even more control.

Shape Editing using NeRFs: Our work falls into the cat-
egory of implicit-based shape editing approaches that di-
rectly operate on the radiance field [69, 127, 137]. Recent
methods [127,137] extract meshes from a pre-trained NeRF
and rely on deformation techniques [24,49,67,108] to guide
the rendering process. Unlike our approach, these models
are scene specific and cannot capture shape and texture vari-
ations across an object class. An alternative line of research
explored using separate embeddings for capturing the shape
and texture variations of 3D shapes [47, 69]. They demon-
strated various editing operations such as color modifica-
tions or removal of certain parts of the shape. However,
as they do not consider parts, they rely on heuristics for
controlling what needs to be changed. Instead, by incor-
porating parts, our model provides more intuitive control,
when editing a 3D shape. Also similar to our work, [88]
uses multi-view videos and decomposes the object using a
set of ellipsoids. However, this model is scene-specific and
cannot generate novel shapes. In the context of face edit-
ing [51,110,112], different models require video sequences
and partial semantic masks [51], or posed images along with
full semantic masks [110, 112]. In contrast, our work only

requires posed images and 2D object masks at training.

Primitive-based Representations: Shape abstraction tech-
niques represent 3D shapes using semantically consistent
primitive arrangements across different instances in a class.
This most often requires 3D supervision [19, 21, 28, 32, 55,
60, 61, 63, 77, 87, 93, 94, 106, 116, 141], although [130, 131]
demonstrate that is possible to learn only from images. Un-
like our parts, geometric primitives are typically simple
shapes such as cuboids [116], spheres [37] or superquadrics
[93, 94]. Due to their simple shape parametrization these
primitives cannot capture complex geometries. To address
this, recent works propose to increase the number of primi-
tives [19, 55] or represent shapes using a family of homeo-
morphic mappings [92], or a structured set of implicit func-
tions [30]. Similar to [92] our parts can capture complex
geometries, but as we parametrize them with locally defined
NeRFs, we do not require explicit 3D supervision.

Part-based Shape Editing: Part-based generative mod-
els [37, 44, 62, 97, 123] can generate plausible 3D shapes
[77,78,129] and perform various editing operations such as
part mixing [65, 97, 134] and shape manipulation [37, 44].
Closely related to our work are [37,44] which employ prim-
itives, such as spheres [37] and 3D Gaussians [45], to enable
shape editing by explicitly [37] or implicitly [44] transform-
ing them. However, both require 3D supervision and can
only alter attributes related to the shape of the object.

3. Method
Our goal is to design a 3D part-aware generative model

that can be trained without explicit 3D supervision. More-
over, we want our generated shapes to be editable, namely
to be able to make local changes on the shape and texture of
specific parts of the object. To this end, we represent objects
using M locally defined parts that are parametrized with a
NeRF [76]. Defining NeRFs locally, i.e. in their own co-
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ordinate system, enables direct part-level control simply by
applying transformations on the per-part coordinate system.

However, to achieve distinct, manipulable parts, it is es-
sential that each object part is represented by a single NeRF.
To enforce this, we introduce a hard assignment between
rays and parts by associating a ray with the first part it in-
tersects (Fig. 3). Namely, the color of each ray is predicted
from a single NeRF, thus preventing combinations of parts
reasoning about the color of a ray. Note that our formula-
tion differs from [85], as we explicitly associate rays with
parts, instead of simply combining them. This ensures that
when editing one part, the shape and appearance of the oth-
ers does not change (Fig. 1).

3.1. Neural Radiance Fields

Given a set of posed images of objects in a semantic
class, each accompanied by an object mask, which is sim-
ply a binary image indicating whether each pixel is inside
the object or not, we defineR, the complete set of rays from
all views. For each ray r = {xr0 + tdr : t ≥ 0} with ori-
gin xr0 and viewing direction dr, we denote C(r) ∈ R3

and I(r) ∈ {0, 1} the color value of the RGB image
and the binary value of the mask, respectively, at the cor-
responding pixel. Finally, we sample a set of N points
Xr = {xr1, . . . ,xrN} along r, which are ordered by in-
creasing distance from the origin xr0, used for estimating
the color along this ray using numerical quadrature [118].

Neural Radiance Fields: NeRFs [76] represent a scene as a
continuous function, parametrized with an MLP, that maps
a 3D point x ∈ R3 and a viewing direction d ∈ S2 into
a color c ∈ R3 and a volume density σ ∈ R+. Before
passing the inputs x and d to the MLP, they are projected to
a higher dimensional space by applying a fixed positional
encoding [117] to each one of their elements. Given the
predicted color and densities {cri , σri }Ni=1 for theN sampled
pointsXr along ray r, its rendered color can be derived from

Ĉ(r) =

N∑
i=1

exp
(
−
∑
j<i

σrj δ
r
j

)
(1− exp(−σri δri ))cri , (1)

where δri is the distance between two adjacent samples
along r. At training, the MLP is optimized by minimizing
the error between observed and rendered images.

Alternatively, [90] propose predicting occupancies in-
stead of densities, hence their rendering equation becomes

Ĉ(r) =

N∑
i=1

ori
∏
j<i

(
1− orj

)
cri , (2)

where ori = 1−exp(−σri δri ) is the occupancy value at point
xri and cri its color. Similar to [90] we also predict occu-
pancy values, as this facilitates associating rays with parts,
hence enabling part-level control, as discussed in Sec. 3.2.

3.2. Parts as Neural Radiance Fields

We represent a 3D object usingM parts, where each part
is parametrized as a NeRF. Note that we assume a fixed
number of parts across all objects, namely the generated ob-
jects cannot have a variable number of parts. To learn the
latent space of each NeRF, we follow [69] and condition
it on two part-specific learnable latent codes: one for the
shape and one for the texture, zsm, z

t
m. These codes are ob-

tained from a per-object specific learnable embedding (see
Sec. 3.3). Disentangling the shape from the texture allows
modifying one property without affecting the other.

Moreover, as we are interested in editing specific parts
of the object, we want to be able to modify the pose, size,
and appearance of each part independently. This can be
enforced by making sure that each NeRF receives geomet-
ric inputs in its own local coordinate system. To this end,
we augment each part with: (i) an affine transformation
Tm(x) = Rm(x + tm) that maps a 3D point x to the lo-
cal coordinate system of the m-th part, where tm ∈ R3 is
the translation vector and Rm ∈ SO(3) is the rotation ma-
trix and (ii) a scale vector sm ∈ R3, representing its spatial
extent. All are obtained from the per-part shape code zsm.

Part Representation: Each part is represented as a con-
tinuous function that maps a 3D point x ∈ R3, a viewing
direction d ∈ S2, a shape code zs ∈ RLs and a texture
code zt ∈ RLt into a color c ∈ R3 and an occupancy value
o ∈ [0, 1]. Similar to [90], we employ two separate net-
works: a color network cθ and an occupancy network oθ
to predict the color and the occupancy value. Note that the
occupancy value o is constrained to [0, 1] with a sigmoid.
More formally, each NeRF maps a 3D point x along a view-
ing direction d to a color c and an occupancy o as:

cmθ (x,d) = cθ(Tm(x),Rmd, zsm, z
t
m) (3)

omθ (x) = oθ(Tm(x), zsm). (4)

Note that while we apply positional encoding on the inputs,
we omit it from (3)+(4) to avoid notation clutter.

To enforce that each part only captures continuous re-
gions of the object, we multiply its occupancy function
with the occupancy function of an axis-aligned 3D ellip-
soid centered at the origin of the coordinate system, with
axis lengths given by the scale vector sm. This results in
the following joint occupancy function for the m-th part

hmθ (x) = omθ (x)gmθ (x), (5)

where gmθ (x) = g(Tm(x), sm) denotes the occupancy func-
tion of the m-th ellipsoid that is simply

g(x, s) = σ
(
β
(
1−

∥∥diag(s)−1x∥∥2)) , (6)

where σ(·) is the sigmoid function and β controls the sharp-
ness of the transition. To estimate gmθ (x), we first transform
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Figure 3. Ray-Part Association. We illustrate the hard assign-
ment between rays and parts in a 2D example with 3 parts and two
rays r and r′. Since the association between rays and parts is de-
termined based on the first part that a ray interests, the associations
that emerge from (9) areR1 = {r},R2 = {∅} andR3 = {r′}.

x to the coordinate frame of them-th part. This ensures that
any transformation of the part, also transforms its ellipsoid.

Part Rendering: The rendering equation of the m-th part,
given a set of N sampled points along ray r now becomes

Ĉm(r) =

N∑
i=1

hmθ (xri )
∏
j<i

(1− hmθ (xri )) c
m
θ (xri ,d

r). (7)

Object Rendering: To ensure distinct, manipulable parts,
we introduce a hard assignment between rays and parts, by
associating a ray with the first part it intersects. Given the
ordered set of points Xr sampled along ray r, we define the
index of the first point inside the part that r intersects as

ψr(m) = min {i ∈ {1, . . . , N} : hmθ (xri ) ≥ τ} , (8)

where τ is a threshold used to determine whether a point is
inside the m-th part or not. This is illustrated in Fig. 3. We
can now define the set of raysRm associated with the m-th
part, as the set of rays that first intersect with it, namely:

Rm =
{
r ∈ R : m = argmin

k∈{0...M}
ψr(k)

}
. (9)

Using the assignment of rays to parts and the per-part ren-
dering equation (7), we can formulate the rendering equa-
tion for the entire object, using M NeRFs as follows

Ĉ(r) =

M∑
m=1

1r∈Rm
Ĉm(r). (10)

Namely, we use the m-th NeRF to render ray r if it is as-
signed to the m-th part. If a ray is not associated with any
part its color is black. The hard ray-part assignment is an
essential property that ensures that editing one part does not
alter the appearance of other parts (see Fig. 5).

No Editing Rotation Translation Scaling Color

Figure 4. Scene-Specific Editing. The top and bottom row show
the rendered images and the part-based geometries respectively.
The 1st column shows the tractor from a novel view, before edit-
ing. In the 2nd, we select the bucket and rotate it downwards,
whereas in the 3rd we translate the cockpit to the floor. In the
4th, we perform isotropic scaling of the cockpit and in the last we
change the color of the bucket to red.

3.3. Network Architecture

We implement PartNeRF using an auto-decoder [6, 91].
The input to our model is two learnable embeddings zs, zt,
per training sample, that represent its shape and texture. Our
network consists of three components: (i) the decomposi-
tion network that maps zs and zt to M latent codes that
control the per-part shape and texture, (ii) the structure net-
work that predicts the pose and the scale for each partm and
(iii) the neural rendering network that renders a 2D image
using the M locally defined NeRFs. The overall architec-
ture is illustrated in Fig. 2.

Decomposition Network: The decomposition network
takes the two object specific embeddings zs, zt ∈ RLd

and maps them to M per-part embeddings of the same di-
mensionality, Ld, using M linear projections fθ(·). Subse-
quently, these embeddings are mapped to part-specific la-
tent codes using two multi-head attention transformers, τsθ
and τ tθ without positional encoding [117] as follows

{zsm}Mm=1 = τsθ (fθ(z
s)) (11)

{ztm}Mm=1 = τ tθ(fθ(z
t)). (12)

{zsm}Mm=1 and {ztm}Mm=1 are the latent codes that control
the shape and texture of each part respectively.

Structure Network: The structure network sθ maps the
shape latent code zsm ∈ RLd to a translation vector tm ∈
R3, a rotation matrix Rm ∈ SO(3) and a scale vector sm ∈
R3, with

{tm,Rm, sm} = sθ(z
s
m) (13)

an MLP shared across parts. Similar to [93], we parametrize
Rm using quaternions [36]. As discussed in Sec. 3.2, we
determine the set of rays Rm that are assigned to each part
m from (9) and transform them to its coordinate system.

Neural Rendering: Given the transformed points to the
per-part coordinate system, we predict colors and occupan-
cies with (5)+(3). Next, we perform volumetric rendering
using (7) and render the object using M NeRFs with (10).
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No Editing Rotation Translation Scaling

Figure 5. Soft Ray-Part Assignment. We demonstrate that en-
forcing a soft ray-part assignment results in parts that do not pre-
serve their texture across transformations.

3.4. Training

Our optimization objective L is the sum over six terms
combined with two regularizers on the shape and texture
embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) +
Loverlap(R) + Lcontrol + ‖zs‖2 +

∥∥zt∥∥
2
. (14)

As supervision, we use the observed RGB color C(r) ∈ R3

and the object mask I(r) ∈ {0, 1} for each ray r ∈ R. We
also associate r with a binary label `r = I(r). Namely, we
label a ray r as inside, if `r = 1 and outside if `r = 0.

Reconstruction Loss: We measure the error between the
observed C(r) and the rendered Ĉ(r) color for the ray r as

Lrgb(R) =
∑
r∈R
‖Ĉ(r)− C(r)‖22. (15)

Mask Loss: Likewise, we measure the squared error be-
tween the observed I(r) and the rendered Î(r) pixel value
of the object mask for ray r as

Lmask(R) =
∑
r∈R
‖Î(r)− I(r)‖22. (16)

Note that Î(r) can be derived from (10)+(7) simply by
omitting the multiplication with the predicted color, namely

Î(r) =

M∑
m=1

1r∈Rm

N∑
i=1

hmθ (xri )
∏
j<i

(
1− hmθ (xrj)

)
. (17)

Occupancy Loss: This loss makes sure that the generated
parts do not occupy empty space. To this end, we employ
a binary cross-entropy classification loss Lce(·; ·) between
the predicted and the target labels for all rays

Locc(R) =
1

|R|
∑
r∈R

(
Lce(ˆ̀r, `r) + Lce(˜̀r, `r)

)
, (18)

where ˆ̀
r and ˜̀

r are the predicted labels along ray r based
on the predicted occupancies and ellipsoid occupancies re-
spectively. Intuitively, we consider a ray r to be inside the
object if it is inside at least one part. In turn, in order for r

Motorbike Car Chair

Pi
-G

A
N

G
R

A
F

E
G

3D
G

E
T

3D
O

ur
s

Figure 6. Shape Generation. We compare our model with 3D
generative models that are part agnostic but can generate textured
meshes. Here we show two randomly generated samples per cate-
gory.

Method Rendering MMD-CD (↓) COV-CD (%, ↑)
Motorbike Car Chair Motorbike Car Chair

GET3D Differentiable 1.72 0.71 3.72 67.12 58.39 69.91

Pi-GAN Volumetric 21.80 25.54 6.65 6.85 0.55 39.65
GRAF Volumetric 2.40 10.63 6.80 50.68 1.57 39.28
EG3D Volumetric 2.21 0.72 4.72 34.25 49.52 50.14

Ours Volumetric 1.68 1.74 4.42 56.06 21.10 67.20

Table 1. Comparison with 3D Generative Models. We measure
MMD-CD (↓) and COV-CD (↑). Note that none of these baselines
considers parts nor allows any part-level shape editing.

to be inside a part it suffices if at least one point along the
ray Xr is inside this part. This can be expressed as

ˆ̀
r = max

m∈{1...M}
max
xr
i∈Xr

hmθ (xri ) (19)

˜̀
r = max

m∈{1...M}
max
xr
i∈Xr

gmθ (xri ). (20)

Coverage Loss: This loss ensures that the parts cover the
object, thus preventing degenerate arrangements with small
parts or parts outside the object. To implement this, we en-
courage parts to contain at least k inside rays. This can be
expressed as a binary cross-entropy loss between the pre-
dicted per-part and target labels for all rays inRkm,

Lcov(R) =
1

M

M∑
m=1

∑
r∈Rk

m

Lce(ˆ̀mr , `r), (21)

where ˆ̀m
r = max

xr
i∈Xr

hmθ (xri ) the predicted label for ray r wrt.

part m andRkm the set of the k inside rays with the greatest
predicted occupancy values for this part.
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Tables Airplanes

SPAGHETTI [44]

Ours

Ours with Parts

Figure 7. Shape Generation. We compare our model with [44]
and show three randomly generated samples per category.

Method Supervision MMD-CD (↓) COV-CD (%, ↑)
Airplane Table Airplane Table

DualSDF 3D Shapes 4.20 12.30 25.00 36.30
SPAGHETTI 3D Shapes 2.40 5.90 35.00 47.80

Ours Multi-view 1.37 4.48 37.90 40.60

Table 2. Comparison with Part-based Generative Models. We
measure MMD-CD (↓) and the COV-CD (↑). Unlike our model,
both [37, 44] require 3D supervision during training.

Overlapping Loss: To encourage the generated parts to
capture different regions of the object, we penalize rays that
are inside of more than λ parts as follows

Loverlap(R) =
1

|R|
∑
r∈R

max
(
0,

M∑
m=1

ˆ̀m
r − λ

)
. (22)

Control Loss: To ensure uniform control across the shape,
we want parts with comparable volumes. We implement
this loss on the volumes V(·) of the ellipsoids, as follows:

Lcontrol =
1

M(M − 1)

M∑
i=1

i∑
j=1

|V(si)− V(sj)|. (23)

4. Experimental Evaluation
We provide an extensive evaluation of PartNeRF com-

paring it to relevant baselines in terms of the realism and
diversity of the generated shapes. We also showcase sev-
eral editing operations of our model on multiple object cat-
egories. Additional results, ablations and implementation
details are provided in the supplementary.

Datasets: We use five ShapeNet [11] categories: Motor-
bike, Chair, Table, Airplane and Car. To render our train-
ing data, we randomly sample camera poses from the upper
hemisphere of each shape and render images at 2562 reso-
lution as in [27]. For the Car, Table, Airplane and Chair,
we use 24 random views, while for Motorbike we use 100.
To ensure fair comparison with our baselines, we use the

Figure 8. Shape Interpolation. From left to right, we interpolate
between the geometry and texture latent codes of the two shapes.

train-test splits of [27] for the Motorbike, Car, Chair object
categories and the train-test splits of [44] for the Airplane,
Table category. In all our experiments, we perform category
specific training. Finally, we showcase the scene-specific
editing capabilities of our model on the Lego tractor [76].
In all our experiments, we set M = 16.

Baselines: We compare our model with several NeRF-
based models: GRAF [105], Pi-GAN [10], EG3D [9] and
the concurrent GET3D [27] that relies on differentiable ren-
dering. Unlike our model, none of the above considers
parts. We also compare with the part-based DualSDF [37]
and SPAGHETTI [44] that require 3D supervision.

Metrics: We report the Coverage (COV) and the Minimum
Matching Distance (MMD) [1] using Chamfer-L2 distance.
MMD measures how likely it is that a generated shape looks
like a test shape. COV measures how many shape variations
are covered by the generated shapes.

4.1. Scene-Specific Shape Editing

We train PartNeRF on the tractor scene [76], using all
200 training views. The results are shown in Fig. 4. Ini-
tially, we select the part that corresponds to the bucket of
the tractor and apply a rotation, such that the bucket is fac-
ing downwards. Similarly, we select the cockpit and move
it to a new location on the floor, by adding a displacement
to the part’s translation vector. During both transformations
the rest of the shape (geometry, parts and textures) does not
alter. We then apply a non-rigid transformation on the cock-
pit, scaling it uniformly across all axes, by multiplying the
part’s rotation with an isometric scale matrix. Again, while
we change the shape of one part its texture as well as the
texture and shape of the others does not change. Finally,
we alter the color of the bucket by explicitly setting the pre-
dicted color of its associated NeRF to red.

Soft Ray-Part Assignment: To investigate the impact of
our hard ray-part assignment, we train a variant of our
model without, namely the color of a ray can be determined
from multiple NeRFs. We note that when we apply a trans-
formation on a part of the object, also the color of other
parts changes, as illustrated in Fig. 5. Moreover, note that
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Shape 1 Shape 2 Shape Code Interpolation Texture Code Interpolation

Figure 9. Part-Level Interpolation. From left to right, we in-
terpolate between two parts (colored in green) from two shapes.
For the motorbikes, we select the saddle and for the airplanes the
right wing. In the 3rd and 4th columns, we interpolate between
the shape codes of the two parts, whereas in the 5th and 6th we
interpolate between the texture codes of the two parts.

with this variant of our model it is not possible to change the
color of specific parts of the generated object, as in Fig. 4.

4.2. Shape Generation

In Tab. 1, we compare the quality of our generations with
NeRF-based generative models and observe that it outper-
forms existing approaches in terms of MMD and COV on
Motorbikes and Chairs, while being better than [10, 105]
also for Cars. Furthermore, it performs on par with the con-
current work of [27] that relies on a highly optimized differ-
entiable graphics renderer [58] and requires training for ap-
proximately 16 GPU days (8 A100 for 2 days). Instead our
model employs a simpler volumetric renderer and training
takes approximately 5 GPU days (1 RTX 3090). Compared
to [10, 105], our generations are sharper with more crisp
colors (see Fig. 6). However, compared to [9, 27] that em-
ploy tri-plane representations and hence can generate high-
resolution textures, our textures are less detailed.

We also compare PartNeRF with state-of-the-art part-
based approaches that require 3D supervision. While our
model is trained from posed images and object masks, it
consistently generates plausible 3D geometries (see Fig. 7).
This is also valitated quantitatively in Tab. 2, where we ob-
serve that our model outperforms both [37,44] on Airplanes
while being better in terms of MMD for Tables.

Shape Interpolation: In Fig. 8, from left to right, we show
interpolations between the shape and texture codes of two
cars. We observe that our model smoothly interpolates be-
tween two shapes, while preserving the shape structure and
the the part-based structure.

Part-level Interpolation: Fig. 9 shows part-level interpola-
tion, where we pick two shapes and select a part from both.
For the motorbikes, we choose the saddle part and linearly
interpolate its shape and texture codes. We repeat for the
airplanes, where we select the right wing. When we inter-

Shape 1 Shape 2 Geometry Mixing Texture Mixing Combined

Figure 10. Shape Mixing. We mix parts from two shapes and
show geometry (3rd column), texture (4th column), and combined
geometry and texture mixing (5th column). The selected parts for
mixing are colored in green.

polate the shape codes, the geometry changes, while the tex-
ture remains the same. In contrast, when we interpolate the
texture codes, the geometry remains unchanged and only
the part texture changes smoothly. Across all interpolations
our model consistently generates realistic shapes.

4.3. Shape and Texture Editing

Shape Mixing: Starting from two shapes, the task is to se-
lect and combine parts in a meaningful way. As shown in
Fig. 10, we consider two types of mixing operations: ge-
ometry and texture mixing. In geometry mixing, we com-
bine parts from two objects and generate a new one, whose
texture is determined by the texture codes from one of the
two, while shape codes are taken from different parts of the
two objects (third column). In texture mixing, we mix the
shapes only in terms of texture, while the shape is deter-
mined by the shape codes of one object (fourth column). We
also combine both mixing modes. PartNeRF consistently
generates plausible shapes across all editing operations.

Shape Editing: Our method also allows several shape edit-
ing operations on the part level, such as applying rigid and
non-rigid transformations and inserting or removing parts.
Affine transformations are directly applied on the rotation
and translation vector that define the per-part coordinate
frame. To remove a part, it suffices to ignore its associ-
ated NeRF in the rendering process. Likewise, adding a
part amounts to incorporating its NeRF during rendering.
Examples of these operations are summarized in Fig. 1.

5. Conclusion
In this paper, we introduce PartNeRF, the first part-aware

generative model that parametrizes parts as NeRFs. As our
work considers the decomposition of objects into parts, it
enables intuitive part-level control and several editing op-
erations not previously possible. Furthermore, it is trained
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without explicit 3D supervision, using only posed images
and object masks. Our experiments showcase the ability
of our model to generate plausible 3D shapes with texture.
Moreover, we demonstrate several editing operations both
on the texture and the shape of the generated object. In fu-
ture work, we plan to investigate incorporating more com-
plex representations such as triplanes [9], or using differen-
tiable rendering techniques [27] in order to better represent
the object’s texture. Another exciting direction for future
research is extending our model to moving objects.
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[22] Terrance DeVries, Miguel Ángel Bautista, Nitish Srivas-
tava, Graham W. Taylor, and Joshua M. Susskind. Uncon-
strained scene generation with locally conditioned radiance
fields. In Proc. of the IEEE International Conf. on Com-
puter Vision (ICCV), 2021. 2

[23] Tim Elsner, Moritz Ibing, Victor Czech, Julius Nehring-
Wirxel, and Leif Kobbelt. Intuitive shape editing in latent
space. arXiv.org, 2021. 2

[24] Michael S Floater. Mean value coordinates. Computer
Aided Geometric Design, 2003. 3

[25] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d
shape induction from 2d views of multiple objects. In Proc.
of the International Conf. on 3D Vision (3DV), 2017. 2

[26] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Learning deformable
tetrahedral meshes for 3d reconstruction. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.
3, 22, 41

[27] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. GET3D: A generative model of high quality 3d tex-
tured shapes learned from images. In Advances in Neural
Information Processing Systems (NeurIPS), 2022. 3, 7, 8,
9, 21, 22, 23, 28

[28] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-
Kun Lai, and Hao Zhang. SDM-NET: deep generative net-
work for structured deformable mesh. In ACM SIGGRAPH
Conference and Exhibition on Computer Graphics and In-
teractive Techniques in Asia (SIGGRAPH Asia), 2019. 3

[29] Stephan J. Garbin, Marek Kowalski, Matthew Johnson,
Jamie Shotton, and Julien P. C. Valentin. Fastnerf: High-
fidelity neural rendering at 200fps. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2021. 2

[30] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas A. Funkhouser. Local deep implicit functions
for 3d shape. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020. 3

[31] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas A. Funkhouser. Local deep implicit functions
for 3d shape. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020. 41

[32] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learn-
ing shape templates with structured implicit functions. In
Proc. of the IEEE International Conf. on Computer Vision
(ICCV), 2019. 3

[33] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial nets. In Ad-
vances in Neural Information Processing Systems (NIPS),
2014. 2, 22

[34] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learn-
ing shapes. In Proc. of the International Conf. on Machine
learning (ICML), 2020. 2

[35] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d aware generator for high-
resolution image synthesis. In Proc. of the International
Conf. on Learning Representations (ICLR), 2022. 2

[36] William Rowan Hamilton. Xi. on quaternions; or on a new
system of imaginaries in algebra. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Sci-
ence, 33(219):58–60, 1848. 5, 16

[37] Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and
Serge J. Belongie. Dualsdf: Semantic shape manipulation
using a two-level representation. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.
1, 3, 7, 8, 22, 23, 38, 41

[38] Zekun Hao, Arun Mallya, Serge J. Belongie, and Ming-
Yu Liu. Gancraft: Unsupervised 3d neural rendering of
minecraft worlds. In Proc. of the IEEE International Conf.
on Computer Vision (ICCV), 2021. 2

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2016. 18

[40] Paul Henderson and Vittorio Ferrari. Learning single-image
3d reconstruction by generative modelling of shape, pose
and shading. International Journal of Computer Vision
(IJCV), 2019. 2

[41] Paul Henderson and Christoph H. Lampert. Unsupervised
object-centric video generation and decomposition in 3d.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020. 2

[42] Philipp Henzler, Niloy J Mitra, , and Tobias Ritschel. Es-
caping plato’s cave: 3d shape from adversarial rendering. In
Proc. of the IEEE International Conf. on Computer Vision
(ICCV), 2019. 2

[43] Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Ro-
man Shapovalov, Tobias Ritschel, Andrea Vedaldi, and
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Abstract

In this supplementary document, we first present a detailed overview of our network architecture, the training and gen-
eration procedure, in Sec. A. We then provide ablations on how different components of our pipeline impact the performance
of our model, in Sec. B. Subsequently, in Sec. C we provide additional results both on the shape generation task as well as on
the shape editing task. Next, we demonstrate various applications of our model such as shape and image inversion, in Sec. D
and Sec. E, respectively. Finally, in Sec. G, we analyse the limitations, future research directions and in Sec. H we discuss
potential negative impact of our method on society.

A. Implementation Details
In this section, we provide a detailed description of the several components of our network architecture (Sec. A.1). Next,

we describe our training procedure (Sec. A.2) and the generation protocol (Sec. A.3). Then, we provide details regarding
the various editing operations demonstrated in the main submission (Sec. A.4). Finally, we detail our metrics computation
(Sec. A.5) and discuss our baselines (Sec. A.6).

A.1. Network Architecture

Here, we describe the architecture of each individual component of our model, as illustrated in Fig. 2 in the main sub-
mission. As already discussed in Sec 3.3 of our main submission, we implement our generative model using an auto-
decoder [6, 91]. In particular, the input to our model is a set of embedding vectors Z = {zi}ni=1, uniquely identifying each
one from the n training samples. Each zi = {zs, zt}, comprises two learnable embeddings that capture the shape and ap-
pearance properties of each sample. Note that both the shape zs and texture zt codes are initialized by sampling from the
normal distribution zs, zt ∼ N(0, I). To avoid notation clutter, we omit the object index i in the rest of this section.

Our network consists of three main components: (i) the decomposition network that maps the instance-specific latent codes
{zs, zt} to M per-part shape {zsm}Mi=1 and texture {ztm}Mi=1 embeddings, (ii) the structure network that takes the per-part
shape code zsm and predicts an affine transformation {Rm, tm} and scale sm that controls the pose and the area of influence
of this part, and (iii) the neural rendering module that renders a 2D image using M NeRFs. As supervision, we use the
observed RGB color C(r) ∈ R3 and the object mask I(r) ∈ {0, 1} for each ray r ∈ R. We also associate r with a binary
label `r = I(r), as shown in Fig. 15. Namely, we label a ray r as inside, if `r = 1 and outside if `r = 0.

Decomposition Network: The decomposition network maps the instance-specific shape and texture {zs, zt} latent codes
into a set of M latent codes that control the shape and appearance of each part. We implement the decomposition network
using two multi-head attention transformers without positional encoding [117], τsθ and τ tθ , that predict M shape {zsm}Mm=1

and texture {ztm}Mm=1 codes, as follows:

τsθ : RLd → RLd×M {zsm}Mm=1 = τsθ (fθ(z
s))

τ tθ : RLd → RLd×M {ztm}Mm=1 = τ tθ(fθ(z
t))

(24)

where Ld is the dimensionality of the instance-specific embeddings and is set to 128. The input to transformer τsθ is the
set of M per-part shape codes {ẑs}Mm=1, where ẑsm ∈ R128. Likewise, the input to transformer τ tθ is the set of M per-part
texture codes {ẑt}Mm=1, where ẑtm ∈ R128. Note that the M shape {ẑs}Mm=1 and texture {ẑt}Mm=1 codes are produced from
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zs and zt respectively using M linear projections fθ(·). The output of each transformer is the set of per-part shape {zsm}Mi=1

and texture {ztm}Mi=1, where zsm ∈ R128 and ztm ∈ R128. Both transformers consist of 2 layers with 4 attention heads. The
queries, keys and values have 128 dimensions and the intermediate representations for the MLPs have 1024 dimensions. To
implement the transformer architecture we use the transformer library provided by Wightman [122]1.

(a) τsθ (·) predicts the M per-part shape codes {zsm}Mi=1. (b) τ tθ(·) predicts the M per-part shape codes {ztm}Mi=1.

Figure 11. Decomposition Network. The decomposition network consists of two two multi-head attention transformers, τsθ and τ tθ , without
positional encoding, that map the object-specific shape and texture embeddings zs, zt to M learnable codes {zsm}Mm=1 and {ztm}Mm=1 that
control the shape and texture of each part respectively.

Structure Network: The structure network learns a function sθ : RLd → R4 × R3 × R3 that maps the per-part shape code
zsm to an affine transformation, defined through a rotation matrix Rm ∈ SO(3) and a translation vector tm ∈ R3, and a
scale vector sm ∈ R3. We follow [92] and parametrize the rotation matrices using quaternions [36], whereas the translation
and the scale vectors are represented using 3 scalars along the axes. Specifically the per-part Rm, tm and sm are predicted
from an MLP with shared weights across parts. A pictorial representation for the structure network is provided in Fig. 12.
Starting from the shape latent code for part m, we feed it to a linear layer with 128 hidden dimensions that predicts 4 values

Figure 12. Structure Network. The structure network sθ maps the shape latent code zsm ∈ RLd to a translation vector tm, a rotation
matrix Rm and a scale vector sm, using an MLP with shared weights across parts.

that define the rotation matrix Rm as a quaternion. Similarly, we feed zsm to another another linear layer with 128 hidden
dimensions that predicts the 3 values that define the translation vector tm of the m-th part. Finally, to predict the scale vector
sm, we use a linear layer with 128 hidden dimensions, followed by a sigmoid activation function. As discussed in Sec. 3.2 of
our main submission, we associate every ray with a specific part and transform it to its coordinate system using the predicted
rotation and translation matrices. To transform a 3D point x to the local coordinate system of the m-th part, we simply apply
Tm(x) = Rm(x + tm), whereas to transform the ray direction d it simply suffices to multiply it with the rotation matrix

1https://github.com/rwightman/pytorch-image-models
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Rm. The scale vector sm represents the spatial extent of each part. To ensure that each part captures continuous regions of
the object, we multiply its occupancy function with the occupancy function of an axis-aligned 3D ellipsoid centered at the
origin of the coordinate system, with axis lengths given by the scale vector sm. Specifically the parametric function of the
m-th ellipsoid is fmθ (x) = f(Tm(x), sm), where

f(x, s) =
∥∥diag(s)−1x∥∥2 , (25)

is less than 1 when a 3D point x is inside the ellipsoid, greater than 1 when x is outside and equal to one when x is on
the surface. We convert the parametric function of each ellipsoid to an occupancy function g : R3 → [0, 1] with a sigmoid
function σ(·), as follows:

g(x, s) = σ (β (1− f(x, s))) , (26)

where β = 100 controls the sharpness of the transition of the occupancy function. As already discussed in Sec. 3.2 of our
main submission, note that before estimating the occupancy function of the m-the ellipsoid gmθ (x) = g(Tm(x), sm), we first
transform x to the coordinate frame of the m-th part. This ensures that any transformation of the part, also transforms its
ellipsoid.

Neural Rendering: The last component of our pipeline performs volumetric rendering usingM NeRFs using the assignment
of rays to parts from Eq. 9 in our main submission and the per-part rendering equation

Ĉm(r) =

N∑
i=1

hmθ (xri )
∏
j<i

(1− hmθ (xri )) c
m
θ (xri ,d

r), (27)

as follows:

Ĉ(r) =

M∑
m=1

1r∈Rm
Ĉm(r), (28)

where Ĉ(r) is the predicted color value for ray r and hmθ (x) = omθ (x)gmθ (x) is the joint occupancy function of the m-th part.
Namely, we use the m-th NeRF to render ray r if it is assigned to the m-th part. Whereas, if a ray is not associated with any
part its color is simply black, namely Ĉ(r) = 0.

We follow [90] and employ two separate networks: an occupancy network oθ(·) and a color network cθ(·) to predict the
color and occupancy values. The occupancy network oθ maps a 3D point x and the shape code zsm to an occupancy value o.
For the m-th part, the predicted occupancy value of a 3D point x is defined as:

oθ : R3 × R128 → [0, 1] o = σ(τomθ (Tm(x), zsm)), (29)

where σ(·) is the sigmoid function and τ is a hyperparameter that controls the sharpness of the transition of the occupancy
function and is set to 100. Likewise, the color network cθ maps the 3D point x and the viewing direction d after applying
positional encoding on its components, as well as the shape code zsm and the texture code ztm into a color value c ∈ R3. For
the m-th part the predicted color value for a 3D point x along a ray with direction d can be defined as:

cθ : RLx × RLd × R128 × R128 → R+ c = cmθ (γ(Tm(x)), γ(Rmd), zsm, z
t
m). (30)

Here, γ(·) is the positional encoding of [76] that is applied element-wise as follows

γ(p) = [p; sin(20πp), cos(20πp), . . . , sin(2L−1πp), cos(2L−1πp)], (31)

where p ∈ R can be any dimension of the input point x and the corresponding ray direction d and [·; ·] denotes concatenation.
In our experiments, we set L = 10, hence Lx = Ld = 3(2L+ 1) = 63.

Occupancy Network: The occupancy network is implemented using 2 residual blocks as shown in Fig. 13 and is similar
to [74]. The input to our occupancy network is the per-part shape latent code zsm ∈ R128 and a batch of 3D points sampled
along rays that are transformed to the local coordinate system of them-th part. Note that we do not apply positional encoding
on the input as we empirically observed that projecting the 3D points into a higher dimensional space using (31) does
not improve our model’s performance. The input points are passed through a fully-connected layer that produce a 128-
dimensional feature vector for each point. This feature vector, together with the per-part shape code zsm, is then passed to 2
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residual blocks. Each residual block first applies Conditional Scaling and Translation (CST) to the input features followed by
a ReLU. The output is then fed into a fully-connected layer, a second CST, a ReLU activation and another fully-connected
layer. The output of this operation is then added to the input of the residual block. The Conditional Scaling and Translation
layer (CST) is the same as Conditional Batch-Normalization (CBN) [18], using in [74], but we replace the normalization
layer with the identity function. The output of the two residual blocks is fed to a fully-connected layer that produces a
257-dimensional output. This is then split into a 1-dimensional feature vector that we use to compute the occupancy value,
simply by passing it to a sigmoid function, as defined in (29), and a 256-dimensional feature vector, which we pass to the
color network that produces the corresponding color.

Figure 13. Occupancy Network. The occupancy network oθ(·) maps a 3D point x transformed in the local coordinate system of the m-th
part and its shape code zsm to an occupancy value o ∈ [0, 1] and an intermediate feature vector qm ∈ R256 which is passed to the color
network cθ(·).

Color Network: The color network is implemented using 3 residual blocks, as shown in Fig. 14. Each residual block [39]
is implemented as a 3-layer MLP with ReLU non-linearities. The hidden dimensions of the 3 linear layers of each block are:
510, 256, 256 for the first, 256, 256, 256 for the second and 256, 128, 64 for the third. The inputs to the color network are:
the per-part texture code ztm ∈ R128, the 3D point γ(Tm(x)) ∈ R63 and the ray direction γ(Rmd) ∈ R63 transformed in
the coordinate system of the m-th part and projected in a higher dimensional space using (31), and the intermediate feature
representation qm ∈ R256 that is predicted from the occupancy network oθ(·). We concatenate all inputs and produce a
510-dimensional feature vector. Each residual block first applies a linear projection to the current feature vector, followed by
a ReLU activation. The output is then fed into a fully-connected layer, a ReLU activation and another fully-connected layer
followed by a ReLU non linearity. The output of this operation is then added to the input of the residual block after feeding
it to a fully connected layer. To predict the color, we use one linear layer with hidden size 64 and output size 3, followed by
a sigmoid activation.

A.2. Training Protocol

In all our experiments, we use the Adam optimizer [57] with batch size of 32 and a learning rate that begins at η = 5×10−4
and decays to η = 5×10−6 over the course of optimization. We employ a cosine annealing learning rate schedule with warm
up that is set to 500 steps. For the other hyperparameters of Adam, we use the PyTorch [95] defaults (β1 = 0.9, β2 = 0.999
and ε = 107) and we have no weight decay. Furthermore, our input images and object masks are rendered at 2562 resolution
and we approximate each image with 512 rays. Specifically, we adopt a similar strategy as [136] and sample an equal number
of rays inside and outside the object mask, as shown in Fig. 15, during training. We observe that this sampling strategy results
in faster convergence and prevents several local minima. In addition, during training, we sample 64 random points along each
ray, whereas during inference, we sample 128 points. Note that unlike [76], we do not consider a coarse and fine volume of
point coordinates along rays. While, we anticipate that this would improve the quality of our renderings, we were not able to
adopt this sampling strategy due to our limited computational resources, as it would significantly increase the computational
requirements of our model. Finally, we train our model with 16 parts, for each object category, for approximately 125k
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Figure 14. Color Network. The color network cθ(·) maps a 3D point x and a viewing direction d after applying element-wise positional
encoding on their components, the texture code ztm and the feature vector qm into a color value c ∈ R3. Note that qm is predicted from
the occupancy network oθ(·) from zsm.

Figure 15. Inside-Outside Rays. Inside rays correspond to pixels within the object mask (i.e. white pixel), whereas outside rays correspond
pixels outside the object mask (i.e. black pixel).

iterations. All our experiments were conducted on a single NVIDIA RTX 3090, with 24GB and training per category takes
approximately 1 week.

We weigh the loss terms of Eq. 14 in our main submission with 1.0, 1.0, 1.0, 0.01, 0.01, 1.0, 0.0001, 0.0001. Note that we
use smaller weights for Loverlap(R) and Lcov(R), as they act as regularizers on the recovered parts and we want our model
to focus primarily on generating part arrangements that can render plausible objects from any novel camera. For Locc(R),
we weight the two terms of Eq. 18 in our main submission, by 0.1, 0.01. We empirically observe that having both terms
when computing the occupancy loss significantly helps performance. Finally, we weigh the control loss Lcontrol with 1 as it
takes relatively smaller values and weighting it with a smaller number would make its contribution insignificant. The impact
of each term is discussed in detail in Sec. B.1. In addition, the k term of Lcov(R) is set to 16, since we have 256 rays and 16
parts. This encourages that each part will “cover” approximately the same number of rays, hence parts would uniformly cover
the generated shape. Having uniformly distributed parts across the generated shape is essential for our application, as we
want to enable uniform control over the generated shape. Finally, we set parameter λ of Loverlap(R) to 3 as we empirically
observe that it leads to good performance. Note that setting λ = 1 would enforce that each ray can intersect, i.e. be predicted
as internal, only with one part, thus yielding completely disjoint parts. However, this is quite limiting when trying to generate
complex geometries. Therefore, we instead set λ = 3 in order to enable more flexibility when capturing complex geometries.
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We anticipate that setting λ = 2 would lead to similar performance, however in our experiments we use λ = 3 as it seemed
to consistently yield plausible generations.

A.3. Generation Protocol

In this section, we describe the sampling process used for the generation of new shapes. In particular, we follow [44] and
draw a set of shape and texture latent codes {zs, zt} from a multivariate normal distribution. Namely,

zs ∼ N (µstrain,Σ
s
train)

zt ∼ N (µttrain,Σ
t
train).

(32)

Here, the mean (µstrain,µ
t
train) and covariance (Σs

train,Σ
t
train) values are calculated from the shape and texture embed-

dings learnt during training. At inference/generation, we randomly sample zs and zt and for a given camera we cast rays
and sample points along these rays. For each point we predict the corresponding color and opacity value. Note that during
generation, our model does not need to condition on the object mask to be generated. To generate a novel shape from a
novel camera, our model associates the casted rays with the learned parts as described in Eq. 9 of our main submission and
performs rendering. Note that while for training we sample 64 points along each ray, for generation we increase this number
to 128 in order to improve the generation quality.

A.4. Editing

In this section, we provide additional information regarding the editing capabilities of our model and analyze how the
editing operations are performed. As we are interested in editing specific parts of the object, we want to be able to modify
the pose, size and appearance of each part independently. This can be enforced by making sure that each NeRF/part receives
geometric inputs in its own local coordinate system, which is enforced by augmenting each part with:

1. an affine transformation Tm(x) = Rm(x+tm) that maps a 3D point x to the local coordinate system of the part, where
tm ∈ R3 is the translation vector and Rm ∈ SO(3) is the rotation matrix;

2. a scale vector sm ∈ R3, representing spatial extent;

3. latent codes: shape zsm ∈ R128 and texture ztm ∈ R128.

To select and edit a specific part of a 3D shape, it suffices to select its corresponding latent vectors zsm and ztm and manipulate
them based on the type of the editing operation. Below, we provide more details regarding the editing operations presented
in the main paper.

Rigid Transformations: To apply a rigid transformation on a specific part of a shape, it suffices to alter the per-part trans-
lation vector tm and rotation matrix Rm. For example, to translate a part we add an appropriate displacement vector to the
tm. Similarly, to rotate a part, we can multiply Rm with the desired rotation matrix.

Non-Rigid Transformations: Similarly, a non-rigid transformation that changes the size of a specific part can be imple-
mented by multiplying the part’s rotation matrix with an appropriate scale matrix.

Geometry Mixing: To perform geometry mixing, we select part shape latent codes zsm from an arbitrary number of initial
shapes, forming a set of part shape latent codes that describe the new mixed shape. To generate a shape with a desired
texture, we allow selecting the part texture latent codes either from a single shape or from an arbitrary number of shapes. For
example, to generate the results of the shape mixing experiment presented in Section 4.3 of our main submission and Fig. 10,
we select texture codes only from Shape 1 for the chair and the airplane in the third column, whereas we select texture codes
from both shapes to generate the mixed shapes for the chair and the airplane in the last column. As soon as the selection
process is done, we feed the new part latent codes to the Neural Rendering module and render the new mixed shape. Note
that the resulting number of parts in the generated shape can be arbitrary, as our model’s occupancy and color networks can
produce meaningful results for any given number of parts.

Texture Mixing: For texture mixing, we follow the same process as in the geometry mixing procedure, and select part shape
and texture latent codes either from a single shape, or from multiple shapes and feed them to the Neural Rendering module
to generate the new shape. To generate the results for the experiment presented in Section 4.3 and Fig. 10 of our main
submission, we select the shape codes from Shape 1 and for the legs of the chair, we select the texture codes of the legs of
Shape 2.
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Part Addition: Part addition can be seen as the equivalent operation of our shape mixing strategy, where we select all the
part latent codes from an entire shape, and append extra part geometry and texture codes from other shapes. Similarly to the
previously discussed editing operations, the per-part shape and texture codes of the new shape after the addition are fed to
the Neural Rendering module that renders the new shape.

Part Removal: To remove parts from a shape, it suffices to remove the corresponding part shape and texture embeddings,
and feed only the remaining part embeddings to the Neural Rendering module.

Color Change: Our hard ray-part assignment enables changing the colors of selected parts, by directly replacing the predicted
colors of the associated part rays with a color of our preference.

Part-Level Interpolation: For the part-level interpolation operation, we select corresponding parts from two different shape
instances, and linearly interpolate the part shape and texture embeddings, producing new part shape and texture latent codes.
The interpolated vectors are then passed to the Neural Rendering module to generate a new shape.

A.5. Metrics

As mentioned in the main submission, we evaluate our model and our baselines using two metrics that measure the
plausibility and the diversity of set of generated shapes G in comparison to a set of reference shapes R. In particular, we
report the Coverage score (COV) and the Minimum Matching Distance (MMD) [1] using Chamfer Distance (CD). MMD
measures the quality of the generated shapes by computing how likely it is that a generated shape looks like a shape from the
reference set of shapes. On the other hand, COV measures how many shape variations are covered by the generated shapes,
by computing the percentage of reference shapes that are closest to at least one generated shape.

To ensure fair comparison with our baselines, when we compare with NeRF-based generative models (i.e. Table 1 in
our main submission), we follow [27], using the test set as the set of reference shapes and synthesizing five times as many
generated shapes. In contrary, when comparing to part-based generative models (i.e. Table 2 in our main submission), we
follow [44] and randomly generate 1000 shapes which are compared to 500 shapes from the training set and 500 shapes from
the test set.

To estimate the similarity between two shapes from the two sets, we use the Chamfer Distance (CD), which is simply the
distance between a set of points sampled on the surface of the reference and the generated mesh. Namely, given a set of N
sampled points on the surface of the reference X = {xi}Ni=1 and the generated shape Y = {yi}Ni=1 the Chamfer Distance
(CD) becomes

CD(X ,Y) = 1

N

∑
x∈X

min
y∈Y
‖x− y‖22 +

1

M

∑
y∈Y

min
x∈X
‖y − x‖22 . (33)

For both our NeRF-based and part-based baselines, we set N = 2048.
The Minimum Matching Distance (MMD) is the average distance between each shape from the generated set G to its

closest shape in the reference set R and can be defined as:

MMD(G,R) =
1

|R|
∑
X∈R

min
Y∈G

CD(X ,Y). (34)

Intuitively, MMD measures how likely it is that a generated shape is similar to a reference shape in terms of Chamfer
Distance and is a metric of the plausibility of the generated shapes. Namely, a high MMD score indicates that the shapes in
the generated set G faithfully represent the shapes in the reference set R.

The Coverage score (COV) measures the percentage of shapes in the reference set that are closest to each shape from the
generated set. In particular, for each shape in the generated set G, we assign its closest shape from the reference set R. In our
measurement, we only consider shapes from R that are closest to at least one shape in G. Formally, COV is defined as

COV(G,R) =
|{argmin X∈R CD(X ,Y) | Y ∈ G}|

|G|
(35)

Intuitively, COV measures the diversity of the generated shapes in comparison to the reference set. In other words, a high
Coverage indicates that most of the shapes in the reference set R are roughly represented by the set of generated shapes G.
To ensure a fair comparison, with our baselines, we use the evaluation code of [27].
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Method Rendering Representation Textures Supervision Parts

GET3D [27] Differentiable Mesh 3 2D 7

GRAF [105] Volumetric Neural Field 3 2D 7
Pi-GAN [10] Volumetric Neural Field 3 2D 7
EG3D [9] Volumetric Neural Field 3 2D 7

DualSDF [37] - Implicit SDF 7 3D 3
SPAGHETTI [44] - Implicit Occupancy 7 3D 3

Ours Volumetric Neural Field 3 2D 3

Table 3. Comparison to Prior Work. We introduce the first part-based generative model that does not require explicit 3D supervision.
We compare our model with NeRF-based generative models [9,10,105], part-based generative models [37,44] and the concurrent [27] that
unlike our model relies on differentiable rendering.

A.6. Baselines

In this section, we provide additional details regarding our baselines. To the best of our knowledge, our work is the first
part-aware generative model that does not require explicit 3D supervision, thus there are no other works that are directly
comparable to our model. Therefore, in our evaluation, we consider three types of baselines: NeRF-based generative models
[9, 10, 105] that are part agnostic, part-based generative models [37, 44] that require explicit 3D supervision in the form
of watertight meshes and can only generate shapes without textures and finally the concurrent GET3D [27] that relies on
differentiable rendering and again does not consider any parts. A concise comparison between our model and these baselines
is provided in Tab. 3. Furthermore, we also compare our model with our baselines wrt. the editing capabilities of each model
in Tab. 4.

GET3D: In concurrent work, GET3D [27]2, proposed a novel generative model for textured meshes that relies on a highly
optimized differentiable graphics renderer [58]. In particular, their model comprises a geometry generator that employs
DMTet [26] to recover surfaces of arbitrary topologies and a texture generator that generates textures as a texture field [90].
During training, they rely on two discriminator losses on the rendered image and the 2D silhouette. As the underlying
representation of GET3D is a textured mesh, their generated textures and geometries are more detailed compared to ours.
However, as they do not consider parts, they cannot perform several editing operations that our model is capable of. As
already mentioned in our main submission, training GET3D requires approximately 16 GPU days (8 NVIDIA A100 for 2
days), whereas training our model takes approximately one third of the time (5 GPU days). Due to their rigorous evaluation
and to ensure a fair comparison, we report their results in Table 1 and Figure 6 in our main submission.

GRAF: GRAF [105]3 was among the first 3D-aware generative models that combined a 2D GAN [33] with volumetric
rendering as in NeRF [76]. In particular, they introduce a conditional NeRF parametrized as an MLP that maps the positional
encoding of a 3D point and a viewing direction to a color and a volume density value, conditioned on a shape and an
appearance latent codes. Unlike [76], GRAF is trained from a collection of unposed images and employs a PatchGAN [46]
discriminator to improve the quality of the rendered images from a novel view. While GRAF’s code is publicly available,
to generate the qualitative results for Fig 6 and the quantitative comparison in Table 1 from our main submission, we do not
train their model. Instead, we directly report the results from [27]. Unlike our model, GRAF employs a discriminator to
improve the quality of the rendered images from novel view points. Furthermore, as [105] does not consider parts, it only
enables few editing operations on the entire image, i.e. changing the color of the depicted object.

Pi-GAN: Similar to GRAF [105], Pi-GAN [10]4 addresses the 3D-aware image synthesis task and leverages a neural rep-
resentation with periodic activation functions [107]. Unlike [105] that conditions on a shape and appearance latent code,
Pi-GAN conditions the MLP on a single input noise vector, as in StyleGAN [54]. Also, Pi-GAN uses a discriminator to
further improve the quality of the volumetric rendering. As they do not consider parts, [10] have limited editing capabilities.
Again, to ensure a fair comparison, we do not train their model from scratch but instead report the results from [27].

2https://nv-tlabs.github.io/GET3D/
3https://github.com/autonomousvision/graf
4https://marcoamonteiro.github.io/pi-GAN-website/
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Method Image Inversion Shape Inversion Generation Shape Mixing Shape Editing Texture Editing

GET3D [27] 3 3 3 7 7 7

GRAF [105] 3 3 3 7 7 7
Pi-GAN [10] 3 3 3 7 7 7
EG3D [9] 3 3 3 7 7 7

DualSDF [37] 7 3 3 7 3 7
SPAGHETTI [44] 7 3 3 3 3 7

Ours 3 3 3 3 3 3

Table 4. Comparison to Prior Work wrt. Editing Operations. We compare the editing capabilities of our model and our baselines. Note
that Shape Editing and Texture Editing refer to local changes on the texture and the shape of the generated object.

EG3D: More recently, EG3D [9]5 proposed a StyleGAN-based generator [54] that relies on a tri-plane representation instead
of positional encoding. Their model is capable of generating images at high resolutions using a CNN-based upsampling
module. Despite its impressive results, EG3D does not consider parts, hence it cannot perform local edits on the generated
shapes. Similar to [10, 105], for the qualitative and quantitative evaluation in Sec. 4.2 of our main submission, we report the
results from [27]. In addition, note that as EG3D [9] requires training of approximately 8 days on 8 NVIDIA Tesla V100
GPUs, we are not able to run their code due to our limited GPU resources.

DualSDF: DualSDF [37]6 was among the first to introduce a model capable of editing neural implicit shapes. In particular,
they proposed a representation with two levels of granularity, where a user can manipulate a 3D shape through the coarse
primitive-based representation and these edits are reflected to a high-resolution implicit shape, via a shared latent code.
Unlike our model, DualSDF assumes explicit 3D supervision in the form of a watertight mesh and cannot generate shapes
with texture. To ensure a fair comparison, we report the results from [44] in Table 2 of our main submission. Although our
model considers 2D supervision in the form of posed images and object masks, our model outperforms DualSDF in terms of
MMD and COV both for airplanes and tables (see Table 2 in our main submission).

SPAGHETTI: SPAGHETTI [44]7 is the state-of-the-art part-based generative model that similar to [37] permits manipu-
lating neural implicit shapes. Similar to our model, they implement their generative model as an auto-decoder [6, 91] that
takes an instant-specific latent code as input and decomposes it to M per-part latent codes, representing different parts of the
object. Unlike our model, SPAGHETTI [44], employs a transformer decoder that merges the parts and produces the final
implicit shape as an occupancy field. Unlike our model, [44] assumes explicit 3D supervision in the form of a watertight
mesh and cannot generate meshes with texture. As already mentioned previously, to ensure a fair comparison, the numbers
in Table 2 of our main submission are from [44]. For the qualitative comparison in Fig. 7 of our main submission, we use the
pre-trained models provided to us by the authors.

A.7. Mesh Extraction

To extract meshes from the predicted occupancy field, we employ the Multiresolution IsoSurface Extraction (MISE)
technique introduced in [74]. In particular, we start from a voxel grid of 323 initial resolution for which we predict occupancy
values. Next, we follow the process proposed in [74] and extract the approximate isosurface with Marching Cubes [70], which
is then refined using 3 optimization steps. For the mesh extraction, we use the code provided by Mescheder et al. [74]. Note
that for the individual parts, we only extract approximate surfaces with Marching Cubes [70].

5https://nvlabs.github.io/eg3d/
6https://www.cs.cornell.edu/ hadarelor/dualsdf/
7https://github.com/amirhertz/spaghetti
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B. Ablation Study
In this section, we ablate various components of our model and demonstrate their impact on its generation capabilities.

We conduct all our ablations on a subset of ShapeNet [11] Airplanes, which comprises approximately 10% of the original
train set. Namely, we use 178 training samples and 100 views for training all our model variants. In Sec. B.1, we discuss the
effect of our loss terms on the overall performance of our model and in Sec. B.2, we demonstrate the impact of the number
of parts on the generation capabilities of our model. Finally, we provide additional information regarding the impact of our
hard ray-part assignment, presented in our main submission (see Sec. B.3)

B.1. Loss Functions

Our optimization objective L is the sum of six terms combined with two regularizers on the shape and texture embeddings
zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) + Loverlap(R) + Lcontrol + ‖zs‖2 +
∥∥zt∥∥

2
. (36)

As supervision, we use the observed RGB color C(r) ∈ R3 and the object mask I(r) ∈ {0, 1} for each ray r ∈ R. In
addition, we associate r with a binary label `r = I(r), as shown in Fig. 15. Namely, we label a ray r as inside, if `r = 1
and outside if `r = 0. In this section, we discuss how the loss terms affect the performance of our model wrt. the plausibility
of the generated shapes. In particular, we train 4 variants of our model and for each one we omit one of the loss terms. We
provide both quantitative (see Tab. 5) and qualitative comparison (see Fig. 16) for these scenarios. For a fair comparison, all
models are trained for the same number of epochs, which is set to 50. Furthermore, in this experiment, we set the number
of parts to 10. To compute the metrics in Tab. 5, we consider a subset of the test set, which amounts to 46 shapes, namely
roughly 10% of the original test set.

w/o Lmask w/o Locc w/o Lcov w/o Loverlap Ours

MMD-CD (↓) 1.787 1.823 1.737 1.757 1.732

Table 5. Ablation Study on Loss Terms. We investigate the impact of each loss term by training our model without each one of them. We
report the MMD-CD (↓) for all variants.

w/o Mask Loss: The mask loss is the squared error between the observed and the rendered pixel value of the object mask
for a set of rays. We observe that removing the mask loss Lmask(R) results in more noisy/blurry renderings, in particular
around the surface boundaries (see first column in Fig. 16). We experimentally observed that Lmask(R) helps the network
find the object boundaries faster, which naturally improves the overall rendering quality. On the part-level, we also observe
that the generated parts are less smooth (e.g. see the tail parts of the two last airplanes in the first column of Fig. 16).

w/o Occupancy Loss: The occupancy loss makes sure that the generated shape does not occupy empty space. This is
enforced by making sure that the generated parts only contain/cover inside rays, namely rays with `r = 1. Therefore,
removing Locc(R) from our optimization objective results in renderings of worse quality, particularly around the object
boundaries (see second column in Fig. 16). Note that in our evaluation, even if we remove this loss, we still use Lmask(R),
which forces, to some extent, the network to capture the surface boundary.

w/o Coverage Loss: The coverage loss prevents degenerate parts, that are either too thin or too large. Therefore, when we
remove Lcov(R) from our optimization, we note that the generated parts become either very small (first and second example
in third column of Fig. 16) or too large (last example in the same column).

w/o Overlapping Loss: The overlapping loss encourages the generated parts to not capture the same regions of the object.
We identify overlapping parts by a ray being internal to more than λ parts and we set λ = 3. Note that this done using the
predicted label for ray r wrt. to part m, ˆ̀mr = max

xr
i∈Xr

hmθ (xri ). Removing Loverlap(R) results in generated parts that capture

the same regions of the object, as shown in the fourth column of Fig. 16.

B.2. Number of Parts

In this section, we analyze the impact of the number of parts on the quality of the generated shapes. Specifically, we
train our model with: 5, 10, 16 and 20 parts. Unlike the results presented in our main submission, for this experiment, we
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(1) w/o Lmask (2) w/o Locc (3) w/o Lcov (4) w/o Loverlap (5) Ours

(6) w/o Lmask (7) w/o Locc (8) w/o Lcov (9) w/o Loverlap (10) Ours

(11) w/o Lmask (12) w/o Locc (13) w/o Lcov (14) w/o Loverlap (15) Ours

Figure 16. Ablation Study on Loss Terms. Qualitative evaluation of the impact of the 4 loss terms on the performance of our model. We
train our model, without each loss term and generate novel shapes.
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train all model variants on a subset of the Airplanes category, consisting of 178 training samples, for 50 epochs. To evaluate
the plausibility of the generated shapes, we compute the Minimum Matching Distance (MMD-CD) score between shapes
generated with a different number of parts and a set of reference shapes. As reference shapes, we take 10% of the entire test
set, which amounts to approximately 46 shapes. Results are summarized in Tab. 6. Note that we do not compare our model

5 Parts 10 Parts 16 Parts 20 Parts

MMD-CD (↓) 1.87 1.73 1.53 1.52

Table 6. Ablation Study on the Number of Parts. This table shows a quantitative comparison of our approach with different numbers of
parts wrt. MMD-CD (↓).

variants wrt. Coverage (COV), which is a metric indicative of the diversity of the generated shapes, as we only consider a
very small reference set of shapes and the results could have been misleading.

5 Parts

10 Parts

16 Parts

20 Parts

Figure 17. Ablation Study on the Number of Parts. Qualitative evaluation of the impact of the number of parts. The first row shows
randomly generated airplanes with 5 parts, the second row with 10, the third with 16, and the last row with 20 parts. Note that we train a
different model for the four different numbers of parts.

From the quantitative comparison in Tab. 6, we observe that the quality of the generated meshes increases for a larger
number of parts, namely using more parts yields higher MMD-CD scores. From the qualitative comparison of Fig. 17, we
note that using fewer parts results in parts that capture multiple regions of the object, e.g. the red part represents the left wing
and the tail. Since our main goal is to enable editability and part-level control, we want to ensure that there is an adequate
number of parts so that the user can choose what they want to edit/change. For the case of 10 parts, we note that now parts
are capable of recovering more distinct regions of the object.
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B.3. Hard Ray-Part Assignment

In Sec. 4.1 of our main submission, we demonstrate that enabling a soft assignment between parts and rays, namely the
color of one ray being determined from multiple parts, prevents several editing operations (see Fig. 5 in our main submission).
This is to be expected as for the case of the soft ray-part assignment, the colors and opacities of all rays are determined jointly
by all NeRFs. As a result, changing one NeRF naturally affects the others, hence the colors and opacities of parts of the
object that we did not intend to change.
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C. Additional Experimental Results
In this section, we provide additional information regarding our experiments on ShapeNet [11]. In particular, we consider

five categories: Motorbike, Chair, Table, Airplane, Car, which contain 337, 6678, 8509, 4045 and 7497 shapes respectively.
For the Car, Table, Airplane and Chair, we use 24 random views, while for Motorbike we use 100, as it contains fewer
training samples. To ensure fair comparison with our baselines, we use the train-test splits of [27] for the Motorbike, Car,
Chair object categories and the train-test splits of [44] for the Airplane, Table category. To render our training data, we
randomly sample camera poses from the upper hemisphere of each shape and render images at 2562 resolution as in [27]. To
render both the RGB images and the corresponding object masks we use simple-3dviz [2]8. Examples of the rendered RGB
images and object masks per category are provided in Fig. 18.

Figure 18. Rendered RGB Images and Object Masks. We provide examples of the rendered RGB images and object masks that we use
for training.

C.1. Shape Generation

In this section, we provide additional qualitative results for our shape generation experiment on the five ShapeNet [11]
categories: Motorbike, Chair, Table, Airplane, Car. In particular, we visualize several random samples per category, rendered
from a novel view point, not seen during training. In addition, we also show the corresponding 3D meshes and parts.
Specifically, in Fig. 19, we illustrate randomly generated motorbikes. We notice that all motorbikes are consistently plausible
and the underlying parts meaningfully capture several motorbike’s geometry. Likewise, for the case of generated cars (see
Fig. 20) and airplanes (see Fig. 21), we observe that our model is capable of generating diverse geometries and textures
that are consistently plausible. For the case of chairs and tables (see Fig. 22), we notice that the geometries are consistently
plausible, as also evidenced from Table 1 in our main submission, however the generated textures are less crisp in comparison
to the other categories. We hypothesize that this discrepancy stems from the fact that tables and chairs have thinner parts than
the other objects. We believe that incorporating a coarse and a fine volume of 3D coordinates would potentially improve this.

8https://simple-3dviz.com/
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Figure 19. Generated Motorbikes. Generated motorbikes accompanied by their corresponding 3D geometries and part-based geometries.
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Figure 20. Generated Cars. Generated cars accompanied by their corresponding 3D geometries and part-based geometries.
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Figure 21. Generated Airplanes. Generated airplanes accompanied by their corresponding 3D geometries and part-based geometries.
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Figure 22. Generated Chairs & Tables. Generated chairs and tables accompanied by their corresponding 3D geometries and part-based
geometries.
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C.1.1 Comparison with Part-Based Generative Models

In this section, we provide more qualitative comparisons of our generated shapes with existing part-based generative meth-
ods [44], that require explicit 3D supervision in the form of occupancy labels. In particular, we visualize random samples
for three ShapeNet [11] categories: Table, Airplane, Chair. Results are summarized in Fig. 23. Our method can generate
geometries of similar quality to [44], without the need of explicit 3D supervision.

C.2. Shape Interpolation

In this section, we show interpolations between the shape and texture codes of two various objects for all object categories.
In particular, we interpolate between the latent codes of two shapes and demonstrate that our model is able to smoothly
interpolate between two shapes, while preserving the shape structure and the part-based structure for all object categories.
Fig. 24 shows three interpolations from left to right between two airplanes. For the case of cars and motorbikes, interpolation
results are summarized in Fig. 26 and Fig. 25. Note that for all interpolations the transitions from one shape to the other are
consistently meaningful.
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SPAGHETTI [44]

Ours

Ours with Parts

SPAGHETTI [44]

Ours

Ours with Parts

SPAGHETTI [44]

Ours

Ours

Figure 23. Shape Generation Comparisons. We compare our model with [44] and show six randomly generated samples per category.
The first row per category corresponds to samples from [44], the second row to our results, and the third row to our part geometry results.
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Figure 24. Airplanes Shape Interpolation. From left to right, we interpolate between the geometry and texture latent codes of the two
airplanes.

35



Figure 25. Motorbikes Shape Interpolation. From left to right, we interpolate between the geometry and texture latent codes of the two
motorbikes.
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Figure 26. Cars Shape Interpolation. From left to right, we interpolate between the geometry and texture latent codes of the two cars.
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D. Shape Inversion
Our generative model is realized by an auto-decoder architecture. In order to be able to edit a shape that does not belong

to the training set, we seek to match the given shape to a shape embedding zs that can closely reconstruct its geometry.
Following [44], we randomly initialize the shape embedding zs, sampling from a multivariate normal distribution using the
mean µstrain and covariance Σs

train of shape embeddings seen during training:

zs ∼ N (µstrain,Σ
s
train). (37)

Then, we sample points along rays R from N = 5 different views of the object, and freeze our entire network, optimizing
the latent code zs using the following loss function:

Linversion = Lmask(R) + Locc(R) + ‖zs‖2 , (38)

using weights 1.0, 1.0 and 0.0001. We optimize the latent code zs for a fixed number of 700 gradient update steps. Note that
this experiment does not require any color information, as we are solely interested in extracting an accurate representation
of the geometry of the target shape. We therefore utilize only object masks during optimization. We compare our method
with DualSDF [37] and SPAGHETTI [44] on the test set of the ShapeNet Airplanes category. Our results are summarized in
Tab. 7. To measure the Chamfer-L1 distance, we follow [44] and sample 30, 000 points on the surface of the generated and
the target mesh.

DualSDF SPAGHETTI Ours

Chamfer-L1 0.806 0.050 0.4536

Table 7. Shape Inversion. Quantitative evaluation of our method against DualSDF [37] and SPAGHETTI [44] wrt. to Chamfer distance
(↓) on the test set of the Airplanes category.

Ground Truth Input Object Masks Ours

Figure 27. Shape Inversion. We show examples of our results when performing shape inversion on the ShapeNet airplanes.

Our model yields better reconstructions than DualSDF [37] in terms of Chamfer distance, even though [37] was trained
with explicit 3D supervision. Compared to SPAGHETTI [44], our model yields worse reconstructions. We hypothesize that
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conditioning our generations to more than 5 views would further improve the performance of our model. In Fig. 27, we show
examples of our shape inversion experiment.

E. Image Inversion
The goal of this experiment is to recover both the appearance and geometry of a 3D shape, as opposed to only the shape

as for the case of shape inversion (Sec. D). To this end, we need to find an appropriate match for both the shape and texture
embeddings {zs, zt}, given a set of posed images and masks as targets. In a similar manner to the sampling process of
Sec. A.3, we randomly initialize the shape and texture embeddings, as discussed in Sec. A.3. Then, we freeze the network
parameters and optimize the embeddings using the loss function:

Limage inversion = Lrgb(R) + Lmask(R) + Locc(R) + ‖zs‖2 +
∥∥zt∥∥

2
, (39)

with weights of 1.0, 1.0, 1.0, 0.0001 and 0.0001. We use N = 5 posed images and masks as targets, and optimize the latent
codes for a fixed number of 2000 gradient update steps. We showcase several inverted examples in Fig. 28.

Input Images Ours Ours - Geometry

Figure 28. Image Inversion. We show examples of our results when performing image inversion on the ShapeNet airplanes.

We observe that our model can faithfully recover the object geometry and appearance for various objects. Note that Image
Inversion enables users to directly edit shapes, by just providing a few posed images and masks. In Sec. F we showcase
several editing functionalities on the inverted shapes.

F. Shape Editing
In this section, we demonstrate the editing capabilities of our model on inverted shapes from ShapeNet Airplane. To

perform the image inversion, we follow the process described in Sec. E. In Fig. 29, we show several examples of geometry,
texture mixing and shape editing. In particular, we show two shape editing examples, (see last four rows in Fig. 29), where
we select several parts from two airplanes and we translate them along the body of the two airplanes. The parts that we select
correspond to the tail of the first airplane and the wings of the second, highlighted in green. Across both transformations,
only the pose of the selected parts change, while their appearance/texture as well as the shape and appearance of the other
parts does not change. For the case of texture mixing (see third and fourth rows in Fig. 29), we start from three airplanes
and perform several texture mixing operations. For example, in the last column of the third row of Fig. 29, we show a
generated airplane, whose texture and shape for the tail is from the first shape, while the texture and shape for the wings and
the body are from the second and third shape respectively. Likewise, for the geometry mixing experiment (see two first rows
in Fig. 29), we show examples where we mix the shapes of the three input airplanes, while keeping the texture of the first
(fourth column), the second (fifth column) or the third input airplane (sixth column).
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Shape 1 Shape 2 Shape 3 Mixing (Texture 1) Mixing (Texture 2) Mixing (Texture 3) Mixing (Combined)

Geometry Mixing

Texture 1 Texture 2 Texture 3 Mixing (Shape 1) Mixing (Shape 2) Mixing (Shape 3) Mixing (Combined)

Texture Mixing

Shape Editing

Figure 29. Shape Editing. We show examples of our results when performing geometry mixing, texture mixing and part editing operations
on image inverted ShapeNet airplanes.
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G. Discussion and Limitations
In the primitive-based literature, the word part refers to geometric primitives that are typically simple shapes such as

cylinders [61], cuboids [116], superquadrics [93, 94], spheres [37] or more generally convex shapes [19]. More recently, the
term part has also been used to describe parts that can capture complex geometries and are not limited to simple geometric
shapes [31, 56, 92]. Regardless of the part’s expressivity, primitive-based methods yield semantically consistent reconstruc-
tions, where the same part is consistently used for representing the same part of the object. Being semantically consistent
does not necessarily mean that parts will also be semantically meaningful, namely refer to humanly identifiable parts.

As we parametrize parts by neural radiance fields, our parts can capture complex topologies that are not limited to simple
geometric shapes. Examples of our generated parts can be found in Fig. 19−Fig. 26. We note that our parts can be coherent
across some objects, e.g. the same part is used for representing the same region of the object, in particular when the parts
have comparable size and shape. However, for two shapes with different sizes e.g a big and small car (see Fig. 20), we note
that our parts are not semantically consistent, namely the part that is used to represent the tire and the top part of the car for
a smaller car is now representing only the tire of a bigger car. Note that this is not a limitation only of our work but also of
existing part-based methods, as they do not explicitly enforce the semantic consistency of parts.

In addition, in Fig. 30, we provide two examples of the renderings produced using our 16 NeRFs/parts, when rendering the
tractor scene from a novel view and when rendering a ShapeNet car from a novel camera. Although the per-part renderings are
consistently crisp and faithfully capture the appearance details of the object, they do not always correspond to semantically
meaningful parts. For example, for the case of the tractor scene, our network has associated one part with the bucket of the
tractor, however it uses multiple parts to capture regions of the floor, whereas ideally we would like one part to capture the
entire floor. Similarly, for the case of the car, while the per-part renderings have sharp colors, they cover parts of the object
that are not humanly interpretable, such as a single NeRF representing part of the tire and part of the car.

(a) Tractor Scene (b) ShapeNet Car

Figure 30. Per-Part Renderings. We show the per-part renderings produced by our 16 NeRF/parts for a novel view.

This is again a common issue observed in all existing part-based methods [19, 92, 93, 116]. As these methods do not
explicitly enforce the meaningfulness of their parts, oftentimes parts are associated with regions of objects that are not
meaningful and do not correspond to humanly interpretable parts. We believe that in future research, it would be valuable
to explore ways to enforce that parts are more interpretable, in order to unlock more editing operations, that better keep
humans in the loop. Our main goal for this work, was to introduce a generative model that enables local control through
parts. While increasing the number of parts enables more control on the generated shape, as we can select multiple small
parts that compose a semantic part such as the wings of the airplane, we believe that it is useful to also explore other types of
more semantic control, where a user for example could select a part based on its semantic class e.g. wing of an airplane or
saddle of a motorbike, without having to manually select multiple parts, as is the case for our model.

In contrast to existing NerF-based generative models [9,10,26,105] that rely on adversarial losses to generate high quality
renderings, our model does not employ such losses. We believe that incorporating triplane-based representations [9] or
adversarial losses could further improve the quality of our generated textures. Moreover, in our current framework, moving
one part of an object to a new location outside the object does not necessarily generate a contiguous shape. To address this,
[44], introduced a blending network, implemented as a transformer decoder that merges the subsequent parts and synthesizes
a novel object. Incorporating such a technique in our model is not possible, as we do not have access to 3D supervision in
the form of a mesh. However, we could utilize [65, 134] to synthesize connections between parts.
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To summarize, while our work makes an important step towards generating editable 3D shapes, it still has several limi-
tations. In particular, during training, our supervision comes from posed images and object masks. Nevertheless, acquiring
detailed masks for objects in the wild is not always possible. Therefore, we believe it would be useful to explore ways to alle-
viate the need for object masks. Likewise, adopting a formulation like [105] that enables training from unposed images could
further extend the capabilities of our model. In addition, while our model can perform several editing operations, our current
formulation does not support operations where a part is deformed using techniques such as Neural Cages [133] or Biharmonic
Coordinates [121]. Incorporating deformations in our editing operations could unlock several editing applications.

H. Potential Negative Impact on Society
Our proposed model enables generating editable 3D meshes with textures. While, we see this as an important step towards

automatic content creation and enabling a multitude of editing functionalities, it can also lead to negative consequences, when
applied to sensitive data, such as human bodies or faces. Therefore, we believe it is imperative to always check the license of
any 3D publicly available 3D model. In addition, we see the development of techniques for identifying real from synthetic
data as an essential research direction that could potential prevent deep fake.

Note that throughout this work, we have only worked with publicly available datasets and did not use any data that involves
privacy or copyright concerns. For future users that would like to train our model on new data, we recommend to first remove
biases from the training data in order to ensure that our model can fairly capture the diversities in terms of shapes, sizes and
textures.
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