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A GEOMETRIC PERSPECTIVE ON PLUS-ONE GENERATED

ARRANGEMENTS OF LINES

ANCA MĂCINIC∗ AND JEAN VALLÈS∗∗

Abstract. We give a geometric characterisation of plus-one generated projective line

arrangements that are next-to-free. We present new succinct proofs, via associated line

bundles, for some properties of plus-one generated projective line arrangements.

1. Introduction

Let A be an arrangement of n lines in P2 = P2(C), defined as the zero locus of a

homogeneous degree n polynomial fA := ΠH∈AαH, where αH ∈ C[x, y, z] is the linear

form that defines the line H.

Let IA be the Jacobian ideal of fA, i.e. the image of the Jacobian map

(1) O3

P2

∇ fA
−→ OP2(n − 1),

where ∇ fA = [
∂ fA
∂x

∂ fA
∂y

∂ fA
∂z

], the matrix with entries the partial derivatives of fA with

respect to x, y, z.

The kernel TA of ∇ fA, defined by the short exact sequence:

0 −−−−−→ TA −−−−−→ O
3
P2 −−−−−→ IA −−−−−→ 0

is a rank 2 reflexive sheaf, hence a vector bundle over P2, to which we will refer to as

the vector bundle associated to A. It is isomorphic to the sheafification of the graded

module of Jacobian syzygyes of fA.

Definition 1.1. The arrangementA is called free with exponents (a, b), a, b ∈ N if

TA = OP2(−a) ⊕ OP2(−b)

To an arrangement of hyperplanes in general one can naturally associate the poset of

intersections of various subsets of its set of hyperplanes, ordered by reversed inclusion,
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2 A. MĂCINIC AND J. VALLÈS

which proves to be in fact a geometric lattice (see [11]) for details), called the intersection

lattice of the arrangement. Terao conjectured in [11] that, if an arrangement is free, then

all the other arrangements in the realisation space of its intersection lattice are free.

Motivated by the long standing Terao conjecture, the study of free arrangements is a

very active area of research, and, in connection to that, a series of freeness-like notions

emerged in the recent literature. We will refer in this note to Abe’s recently introduced

notion of plus-one generated arrangements from [1]. They appear in subsequent papers

on generalized deletion-addition ([3, 5]), respectively deletion-restriction problems ([2]).

Since we will only work with arrangements of lines in P2, we will call them simply

arrangements, considering the context implicit.

Definition 1.2. The arrangement A is called plus-one generated (POG) of exponents

(a, b) and level d if its associated vector bundle TA has a resolution of type

(2) 0 −−−−−→ OP2(−1 − d) −−−−−→ OP2(−d) ⊕ OP2(−b) ⊕ OP2(−a) −−−−−→ TA −−−−−→ 0

We consider here the exponents of a POG arrangement to be ordered, i.e. a ≤ b. No-

tice that, if if d = b, then 1.2 restricts to the definition of the nearly free arrangements

introduced by Dimca-Sticlaru in [8]. Also, we have that c1(TA) = 1−a−b, where c1(TA)

is the first Chern class of TA.

Our interest in plus-one generated arrangements is justified by their occurrence in the

vicinity of free arrangements, in the following sense.

Theorem 1.3. [1] Let A be a free arrangement. Then:

(1) For any H ∈ A, A \ {H} is either free or plus-one generated.

(2) For any H ∈ P2, A∪ {H} is either free or plus-one generated.

Definition 1.4. An arrangement is called next to free (NT-free) if it can be obtained

either by deletion of a line from a free arrangement or by addition of a line to a free

arrangement. In the first situation we call the arrangement next to free minus (NT-free

minus), whereas in the second situation we call the arrangement next to free plus (NT-free

plus).

Theorem 1.3 states in particular that NT-free arrangements are either free or plus-one

generated. One could naturally ask when is a plus-one generated arrangement also an

NT-free one. In [1, Theorem 1.11] the author implicitly gives conditions for a plus-one

generated arrangement to be NT-free, in terms of exponents and combinatorics. We will

give in Theorem 3.5 a geometric characterisation of the situation when a plus-one gen-

erated arrangement is NT-free.
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In section 2 we prove some deletion results for plus-one generated arrangements, and

we revisit and present new simplified geometric proofs, using vector bundles, for a num-

ber of results from [7], see Theorem 2.1 and Proposition 2.5.

2. Deletion for plus-one generated line arrangements

Let A be a plus-one generated arrangement of exponents (a, b) and level d. From

Definition 1.2 if follows that d ≥ b.

The resolution (2) induces a non-zero section:

(3) 0 −−−−−→ OP2(−a) −−−−−→ TA −−−−−→ IZ(1 − b) −−−−−→ 0

where Z is a finite scheme of length d+1−b defined by a complete intersection of a line

l0 = lA
0

and a degree d + 1 − b curve:

0 −−−−−→ OP2(−1 − d) −−−−−→ OP2(−d) ⊕ OP2(−b) −−−−−→ IZ(1 − b) −−−−−→ 0.

This line lA
0

will play an important role in formulating necessary and sufficient conditions

for a plus-one generated arrangement to be NT-free, see Theorem 3.5.

To state the next theorem, we need to recall a classic result on vector bundles. Given a

rank 2 vector bundle E over P2 and an arbitrary line l ∈ P2, the restriction of E to l splits

as a sum of two line bundles, by Grothendieck’s splitting theorem:

E|l := E ⊗ Ol = Ol(α) ⊕ Ol(β)

where the pair (α, β) ∈ Z2 is called the splitting type of E on l.

Theorem 2.1. LetA be a plus-one generated arrangement of exponents (a, b) and level

d and l ∈ P2 arbitrary.

(1) If l ∩ Z = ∅ then TA ⊗ Ol = Ol(−a) ⊕ Ol(1 − b).

(2) If |l ∩ Z| = 1 then TA ⊗ Ol = Ol(1 − a) ⊕ Ol(−b).

(3) If l = lA
0

, i.e. |l ∩ Z| = d + 1 − b, then TA ⊗ Ol = Ol(−d) ⊕ Ol(d + 1 − a − b).

Proof. Tensoring the exact sequence (3) by Ol, where l ⊂ P2 is a line, we get

(4) 0 −−−−−→ Ol(−a) −−−−−→ TA ⊗ Ol −−−−−→ Ol(1 − b − |l ∩ Z|) ⊕ Ol∩Z −−−−−→ 0.

There are three different cases for a line l meeting Z: l does not meet Z, then |l∩Z| = 0;

l cuts transversally l and meets Z, then |l ∩ Z| = 1; or l = lA
0

, then l ∩ Z = Z and

|l ∩ Z| = d + 1 − b. These three cases give the three different splitting types of TA along

l. �

Corollary 2.2. LetA be a plus-one generated arrangement of exponents (a, b) and level

d > b. Then there exists a unique line lA
0
⊂ P2 such that the splitting type of TA on lA

0
is

(a + b − d − 1, d).
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Remark 2.3. (1) Theorem 2.1 retrieves [7, Theorem 4.4] and extends similar results

for nearly free arrangements from [4, 10].

(2) Considering the last splitting type one can also deduce that d + 1 ≤ a+ b. Indeed

since TA is the kernel of the Jacobian map (1), which restricted to l remains

exact, then TA ⊗ Ol cannot have a strictly positive component.

Let l be a line inA and denote byA\ l the arrangement obtained fromA by removing

l. We first recall the well known relation:

Lemma 2.4. Let h := |l ∩ A| be the number of distinct intersection points and t be the

number of triple points ofA on l counted with multiplicity. Then t = |A| − h − 1.

We have also two canonical exact sequences according to the data l,A,A\ l and t the

number of triple points ofA on l:

(5) 0 −−−−−→ TA −−−−−→ TA\l −−−−−→ Ol(−t) = Ol(h + 1 − a − b) −−−−−→ 0

and after dualizing this exact sequence we get

0 −−−−−→ T ∨
A\l
−−−−−→ T ∨A −−−−−→ Ol(a + b − h) −−−−−→ 0.

Since T ∨
A\l
= TA\l(a+b−2) and T ∨

A
= TA(a+b−1) we obtain after shifting by 1−a−b:

(6) 0 −−−−−→ TA\l(−1) −−−−−→ TA −−−−−→ Ol(1 − h) −−−−−→ 0.

Now these exact sequences force h to be one of the following numbers, giving a short

geometric argument for [7, Proposition 4.7]:

Proposition 2.5. The allowed values for h are:

(1) h < a;

(2) h = a;

(3) h = a + 1;

(4) h = b;

(5) h = b + 1;

(6) h = d + 1.

Proof. The surjective map

TA −−−−−→ Ol(1 − h)

induces a surjective map:

TA ⊗ Ol −−−−−→ Ol(1 − h).

When TA ⊗ Ol = Ol(−a) ⊕ Ol(1 − b) the allowed values for h are h ≤ a, h = a + 1 or

h = b. Other values would not give a surjection.

When TA ⊗ Ol = Ol(1 − a) ⊕ Ol(−b) the allowed values for h are h < a, h = a or

h = b + 1. Other values would not give a surjection.

When TA ⊗ Ol = Ol(−d) ⊕ Ol(d + 1 − a − b) the allowed values for h are h = d + 1,

or h = a + b − d or h ≤ min(d, a + b − d − 1). Other values would not give a surjection.

Since d ≥ b ≥ a, we get in the last two cases h ≤ a, respectively h < a. �
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For lines l ∈ A exhibiting some of the values of h from Proposition 2.5, one can

precisely describe the arrangement obtained by deletion of the line l fromA.

Proposition 2.6. Let A be a plus-one generated of type (a, b) and level d, a < d. Let

l ∈ A and h = |l ∩ A| = a + 1. Then A \ l is plus-one generated of type (a, b − 1) and

level (d − 1).

Proof. We have according to (5):

0 −−−−−→ TA\l(−1) −−−−−→ TA −−−−−→ Ol(−a) −−−−−→ 0

and a commutative diagram:

0 −−−−−→ OP2(−b) ⊕ OP2(−d) −−−−−→ TA\l(−1)










y











y











y

0 −−−−−→ OP2(−d − 1) −−−−−→ OP2(−b) ⊕ OP2(−d) ⊕ OP2(−a) −−−−−→ TA −−−−−→ 0










y











y











y

0 −−−−−→ OP2(−a − 1) −−−−−→ OP2(−a) −−−−−→ Ol(−a) −−−−−→ 0

which implies using the snake lemma:

0 −−−−−→ OP2(−b) ⊕ OP2(−d) −−−−−→ TA\l(−1) −−−−−→ OΓ(−a − 1) −−−−−→ 0

where deg(Γ) = d − a. We then deduce

0 −−−−−→ OP2(−d − 1) OP2(−d − 1)










y











y











y

0 −−−−−→ OP2(−b) ⊕ OP2(−d) −−−−−→ OP2(−b) ⊕ OP2(−d) ⊕ OP2(−a − 1) −−−−−→ OP2(−a − 1) −−−−−→ 0
∥

∥

∥

∥











y











y

0 −−−−−→ OP2(−b) ⊕ OP2(−d) −−−−−→ TA\l(−1) −−−−−→ OΓ(−a − 1) −−−−−→ 0.

�

Proposition 2.7. LetA be a plus-one generated of type (a, b) and level d > b. Let l ∈ A

and h = |l ∩ A| = b + 1. Then A \ l is plus-one generated of type (a − 1, b) and level

(d − 1).

Proof. We have according to (5):

0 −−−−−→ TA\l(−1) −−−−−→ TA −−−−−→ Ol(−b) −−−−−→ 0

and a commutative diagram:



6 A. MĂCINIC AND J. VALLÈS

0 −−−−−→ OP2(−a) ⊕ OP2(−d) −−−−−→ TA\l(−1)










y











y











y

0 −−−−−→ OP2(−d − 1) −−−−−→ OP2(−b) ⊕ OP2(−d) ⊕ OP2(−a) −−−−−→ TA −−−−−→ 0










y











y











y

0 −−−−−→ OP2(−b − 1) −−−−−→ OP2(−b) −−−−−→ Ol(−b) −−−−−→ 0

which implies using the snake lemma:

0 −−−−−→ OP2(−a) ⊕ OP2(−d) −−−−−→ TA\l(−1) −−−−−→ O∆(−b − 1) −−−−−→ 0

where deg(∆) = d − b. We then deduce

0 −−−−−→ OP2(−d − 1) OP2(−d − 1)










y











y











y

0 −−−−−→ OP2(−a) ⊕ OP2(−d) −−−−−→ OP2(−1 − b) ⊕ OP2(−d) ⊕ OP2(−a) −−−−−→ OP2(−b − 1) −−−−−→ 0
∥

∥

∥

∥











y











y

0 −−−−−→ OP2(−a) ⊕ OP2(−d) −−−−−→ TA\l(−1) −−−−−→ OΓ(−b − 1) −−−−−→ 0.

�

Proposition 2.8. LetA be a plus-one generated of type (a, b) and level d. Let l ∈ A and

h = |l ∩ A| = d + 1. ThenA \ l is free with exponents (a − 1, b − 1).

Proof. We have according to (5):

0 −−−−−→ TA\l(−1) −−−−−→ TA −−−−−→ Ol(−d) −−−−−→ 0

and a commutative diagram:

0 −−−−−→ OP2(−a) ⊕ OP2(−b) −−−−−→ TA\l(−1)










y











y











y

0 −−−−−→ OP2(−d − 1) −−−−−→ OP2(−b) ⊕ OP2(−d) ⊕ OP2(−a) −−−−−→ TA −−−−−→ 0
∥

∥

∥

∥











y











y

0 −−−−−→ OP2(−d − 1) −−−−−→ OP2(−d) −−−−−→ Ol(−d) −−−−−→ 0

which implies using the snake lemma:

0 −−−−−→ OP2(−a) ⊕ OP2(−b) TA\l(−1).

�
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Remark 2.9. Proposition 2.8 is also a consequence of [1, Theorem 1.11].

If h ≤ a thenA \ l is not necessarily free or plus-one generated.

Example 2.10. LetA be the arrangement of equation xyz(x+y)(x−y)(x+4y+z)(y+z) = 0.

ThenA is a plus-one generated arrangement of exponents (3, 4) and level 5.

The line l of equation x + 4y + z = 0 intersects generically the rest of the lines in the

arrangement, so h = 6 = d + 1 in this case. Then A with this line deleted gives a free

arrangement of exponents (2, 3), see for instance Proposition 2.8.

If l is one of the lines of equations x − y = 0, x + y = 0, x = 0, we have h = 4 = a + 1. If

we delete fromA any one of these lines we get, by Proposition 2.6, a plus-one generated

arrangement of exponents (3, 3) and level 4.

For any of the lines of equations z = 0, y + z = 0 we have h = 5 = b + 1. If we delete

fromA any of these lines we get, by Proposition 2.7, a plus-one generated arrangement

of exponents (2, 4) and level 4.

For the line l : y = 0 we have h = 3 = a. Then one easily checks (using for instance

Macaulay2) that the arrangement obtained by deleting the line l fromA, A\ l, is neither

free nor plus-one generated, since its associated derivation module has 5 generators.

3. A geometric characterisation of NT-free arrangements of lines

Given an arrangement A, for each H ∈ A one has an associated multiarrangement,

the Ziegler restriction of A onto H, as introduced in [15]. In our context, where A is

a complex projective line arrangement, the Ziegler restrictions are multiarrangements in

C
2, and their associated graded module of derivations is always free, of rank 2 (see for

instance [4, 14] for details). The exponents of a Ziegler restriction are by definition the

pair of degrees of the generating set of derivations for this graded module.

Understanding exponents of Ziegler restrictions turned out to be an essential tool in

the study of freeness of arrangements, as proved by Yoshinaga in [14]. Notably, the split-

ting type of the vector bundle associated to an arrangementA onto a line l ∈ A coincides

to the exponents of the Ziegler restriction ofA onto l, again by [14].

We have the following generalization of an addition-type formula from exponents of

Ziegler restrictions to splitting types.

Proposition 3.1. Let A, B be two line arrangements such that B = A ∪ {H}, for some

line H ⊂ P2. Take l ⊂ P2 a line such that l < B and denote by (aA, bA) the splitting type

along the line l for TA and by (aB, bB) the splitting type along the line l for TB. Then

(7) (aB, bB) ∈ {(aA + 1, bA), (aA, bA + 1)}

Proof. We always have the exact sequence:

0 −−−−−→ TA∪{H} −−−−−→ TA −−−−−→ OH(−t) −−−−−→ 0

where t is the number of triple points on H ofA∪ {H}.
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Restricting to Ol we obtain :

0 −−−−−→ TA∪{H} ⊗ Ol −−−−−→ TA ⊗ Ol −−−−−→ Op −−−−−→ 0

where p = l ∩ H. So, if

TA ⊗ Ol = Ol(−aA) ⊕ Ol(−bA),

then we necessarily have

TB ⊗ Ol = Ol(−aA − 1) ⊕ Ol(−bA)

or

TB ⊗ Ol = Ol(−aA) ⊕ Ol(−bA − 1).

�

Remark 3.2. (1) If we change the hypothesis of Proposition 3.1 by assuming l to be

a line inA, then the splitting types are exponents of Ziegler restrictions, and the

conclusion of the proposition still holds, see [12], [6].

(2) For l = H, the claim of Proposition 3.1 no longer holds, as we can see in the

following counterexample.

Example 3.3. Let B be an arrangement with precisely two multiple points P,Q of mul-

tiplicities p+1, respectively q+1, with p, q > 2, and only multiple points of multiplicity

2 in rest, such that the line l := PQ ∈ B. Then B is free of exponents (p, q) and

|B| = p + q + 1. A := B \ {l} is plus-one generated with exponents (p, q) and level

p + q − 2.

The splitting type along the line l for the vector bundle associated to the arrangement

B is (p, q) and the splitting type along the line l for the vector bundle associated to the

arrangementA is (1, p + q − 2), hence an equality of type (7) does not take place.

In particular, the previous example shows that any pair of positive integers can be

realized as exponents of a plus-one generated arrangement of lines, compare to [9] for

similar results on nearly free arrangements.

Recall that, forA plus-one generated of exponents (a, b) and level d > b, there exists

a unique line lA
0
⊂ P2 as in Corollary 2.2.

Lemma 3.4. (1) Let A be plus-one generated of exponents (a, b) and level d > b,

such that lA
0
< A. ThenA cannot be NT-free plus.

(2) Let A be plus-one generated of exponents (a, b) and level d > b, such that lA
0
∈

A. ThenA cannot be NT-free minus.

Proof. Part (1) Assume the contrary, that A is NT-free plus. That is, there is a line

H ∈ A such that A \ {H} is free. Then, by [1, Thm. 1.11], |A ∩ H| = d + 1. By [12]

the exponents of the Ziegler restriction of A onto H are (a + b − d − 1, d), which coin-

cides with the splitting type onto H for the bundle of logarithmic vector fields associated

to the arrangement A. But, since lA
0

is unique with the property that the splitting type
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onto lA
0

for the bundle of logarithmic vector fields associated to the arrangement equals

(a + b − d − 1, d), from Corollary 2.2, it follows that lA
0
= H, so lA

0
∈ A, contradiction.

Part (2) Just as before, assume the contrary, thatA is NT-free minus. That is, assume

there exists a line H ⊂ P2 such that B := A ∪ {H} is free. Then exp(B) = (a, b). Since

the exponents of the Ziegler restriction of A onto lA
0

are (a + b − d − 1, d), it follows

that the exponents of the Ziegler restriction of B onto lA
0

should be one of the two pairs

{(a + b − d, d), (a + b − d − 1, d + 1)} (see Remark 3.2(1)). At the same time, since B is

free of exponents (a, b), the exponents of the Ziegler restriction of B onto lA
0

should be

equal to (a, b), but this implies b ∈ {d, d + 1}, contradiction. �

Theorem 3.5. Let A be plus-one generated of exponents (a, b) and level d > b.

(1) Assume lA
0
< A. Then the following are equivalent:

(a) A is NT-free.

(b) A is NT-free minus.

(c) d = |A| − |A ∩ lA
0
|.

(d) A∪ {lA
0
} is free.

(2) Assume lA
0
∈ A. Then the following are equivalent:

(a) A is NT-free.

(b) A is NT-free plus.

(c) d + 1 = |A ∩ lA
0
|.

(d) A \ {lA
0
} is free.

Proof. (1) Case lA
0
< A

AssumeA is NT-free. Since, by Lemma 3.4(1), A cannot be NT-free plus, it follows

that A is NT-free if and only ifA is NT-free minus (i.e. there exists a line H ⊂ P2 such

thatB := A∪{H} is free). From [1, Thm. 1.11], this holds if and only if d = |A|−|A∩H|.

Moreover, exp(B) = (a, b).

To conclude the proof, we only need to show that H = lA
0

.

Assume the contrary, H , lA
0

. Then lA
0
< B. Denote by (aA, bA) the splitting type onto

lA
0

for the vector bundle associated toA and by (aB, bB) the splitting type onto lA
0

for the

vector bundle associated to B. By Proposition 3.1, we have:

(aB, bB) ∈ {(aA + 1, bA), (aA, bA + 1)}.

But (aB, bB) = (a, b) and (aA, bA) = (a + b − d − 1, d), so b ∈ {d, d + 1}, contradiction.

Then necessarily H = lA
0

.

(2) Case lA
0
∈ A

AssumeA is NT-free. Since, by Lemma 3.4(2),A cannot be NT-free minus, it follows

that A is NT-free if and only if A is NT-free plus, i.e. there exists a line H such that

B := A \ {H} is free. According to [1, Thm. 1.11], this latter claim holds if and only if

|AH | = d + 1, whereAH is the restriction ofA to H. In this case, B is free of exponents

(a − 1, b − 1).
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Assume H , lA
0

. To conclude the proof, it is enough to show that this assumption

leads to a contradiction. Notice that in this assumption lA
0
∈ B. Since the exponents of

the Ziegler restriction ofA onto lA
0

are (a + b− d − 1, d), it follows that the exponents of

the Ziegler restriction ofB onto lA
0

should be either (a+b−d−2, d) or (a+b−d−1, d−1).

But, since B is free of exponents (a − 1, b − 1), we get b ∈ {d, d + 1}, contradiction. �

Remark 3.6. If A is a plus-one generated arrangement of exponents (a, b) and level d,

the condition d > b ensures thatA cannot be simultaneously NT-free minus and NT-free

plus (see Lemma 3.4). But there exist plus-one generated arrangements with b = d (i.e.

nearly free) that are at the same time NT-free minus and NT-free plus. Take for instance

the arrangementA of equation xyz(x+ y)(y+ z)(x+ 2y+ z) = 0. A is plus-one generated

of exponents (3, 3) and level 3. A \ {x = 0} is free of exponents (2, 2), so A is NT-free

plus, andA∪ {y + 1
2
z = 0} is free of exponents (3, 3), soA is also NT-free minus.

Question: Are there any examples of plus-one generated arrangements that satisfy

one of the two conditions below?

1. A plus-one generated arrangement A of exponents (a, b) and level d > b with lA
0
∈

A such that |AlA
0 | , d + 1. Notice that this latter condition is equivalent to |AlA

0 | < d + 1,

by Proposition 2.5.

2. A plus-one generated arrangement A of exponents (a, b) and level d > b with

lA
0
< A such that |A| − |A ∩ lA

0
| , d.
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