Automatic Nested Spatial Entity and Spatial Relation Extraction From Text for Knowledge Graph Creation: A Baseline Approach and a Benchmark Dataset

Helen Mair RAWSTHORNE¹,

Nathalie ABADIE¹, Eric KERGOSIEN², Cécile DUCHÊNE¹, Eric SAUX³

¹LASTIG, Univ Gustave Eiffel, IGN-ENSG, France; ²GERiiCO, Université de Lille, France; ³IRENav, École navale, France

13 november 2023 | Hamburg, Germany

7th ACM SIGSPATIAL International Workshop on Geospatial Humanities

Why extract spatial entities and spatial relations from text?²

- Textual sources
 - Unstructured spatial knowledge
 - Current or historical
 - Examples: travel guides, historical documents, social media posts, etc.
 - Spatial knowledge
 - Alternative names
 - Additional features
 - Unknown spatial entities
 - Geographic location information

Why store spatial knowledge in a knowledge graph?

- Heterogeneous spatial knowledge
 - Different authors
 - Different points of view
 - Different levels of detail
 - Vagueness
- Geospatial knowledge graphs
 - Queries
 - Spatial reasoning
 - Links to other sources

Why extract *nested* spatial entities from text?

- Flat spatial entity extraction
 - Port of Hamburg: geographic name
- Nested spatial entity extraction
 - Port of Hamburg: geographic name
 - Port: geographic feature
 - Hamburg: name

entity class assigned automatically

Port of Hamburg

indication of geographic location

Why extract *nested* spatial entities from text?

- Flat spatial entity extraction
 - Robben Island Lighthouse: geographic name
- Nested spatial entity extraction
 - Robben Island: geographic name
 - Island: geographic feature
 - Robben: name
 - Robben Island Lighthouse: geographic name
 - Lighthouse: geographic feature

Robben Island Lighthouse automatically

indication of _____ geographic location

Why extract spatial relations from text?

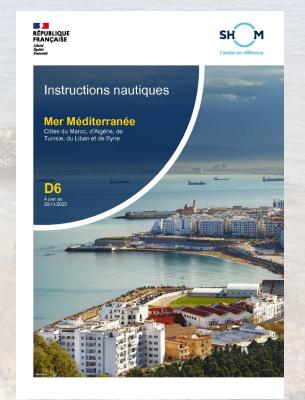
- Help disambiguation of entities
- Locate unknown entities
- Verify coherence of spatial knowledge
- Indirect spatial references

Context

- Structure geographic information from text as knowledge graph
 - Define ontology
 - Extract geographic information
 - Structure and disambiguate
- Application to the Instructions nautiques
 - Coastal navigation instructions
 - Coastal environment descriptions

25 À 1,9 M au SSW du phare d'Alger, un monument (36° 44,7' N – 3° 04,2' E) haut de 80 m est remarquable. Le monument et les pylônes environnants portent des feux d'obstacle aérien. À 1 M au SE du monument, le petit dôme blanc de l'ancien séminaire de Kouba (36° 44,1' N – 3° 05,3' E) est visible de toute la baie.

31 Le tronçon Nord de la jetée détachée est remarquable par les grands réservoirs qu'il porte.



Method

- Princeton University Relation Extraction system (PURE) [Zhong and Chen 2021]
 - Prepare annotated training dataset
 - Flat entities
 - Binary relations
 - Train two pretrained deep language models
 - Flat entity extraction
 - Binary relation extraction
- Our approach: PURE with nested spatial entities and binary spatial relations
 - Context window size?
 - Monolingual vs multilingual models?

Dataset Preparation

- Instruction nautiques extracts
 - Worldwide coverage
 - ~101,000 tokens
 - ~17,000 entity labels
 - ~3,000 relation labels
- Manual annotation
 - brat rapid annotation tool

Annotation Scheme

- Nested spatial entity annotations
 - geographic name
 - geographic feature
 - o name
- Binary spatial relation annotations
 - Topological: "is off the coast of", "is marked by", "is an element of"
 - Absolute directional: 16 cardinal directions

Un port de pêche est établi à 5,7 M à l'ENE de Ras Magroua.

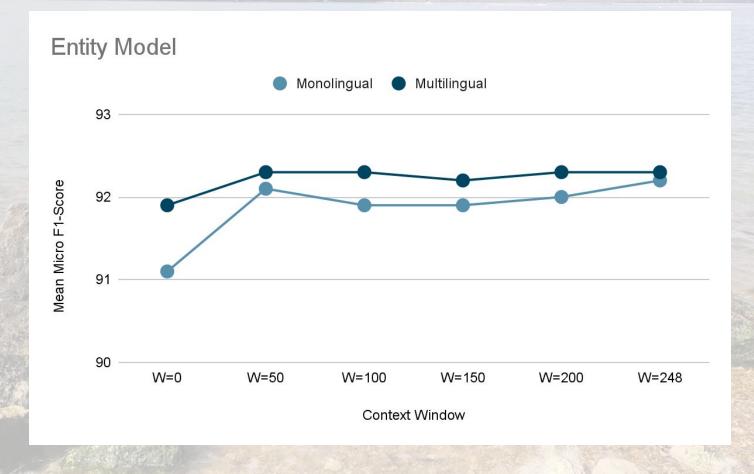
is ENE of

Model Training

- Pretrained models
 - Monolingual: bert-base-french-europeana-cased
 - Multilingual: bert-base-multilingual-cased
- Context windows
 - Entity model: 0, 50, 100, 150, 200, 248
 - Relation model: 0, 50, 100

Hyperparameter	Entity Model	Relation Model
learning rate	1e-5	2e-5
task learning rate	5e-4	
train batch size	16	32
training epochs	100	10

Results: Context Window

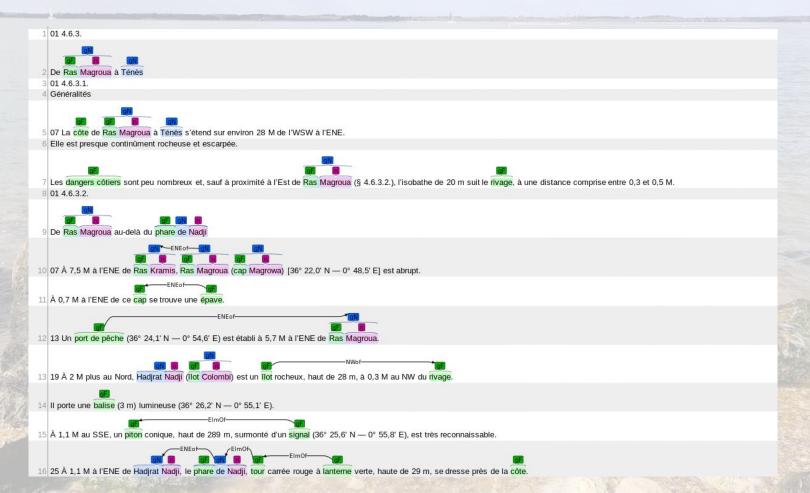


Results: Context Window

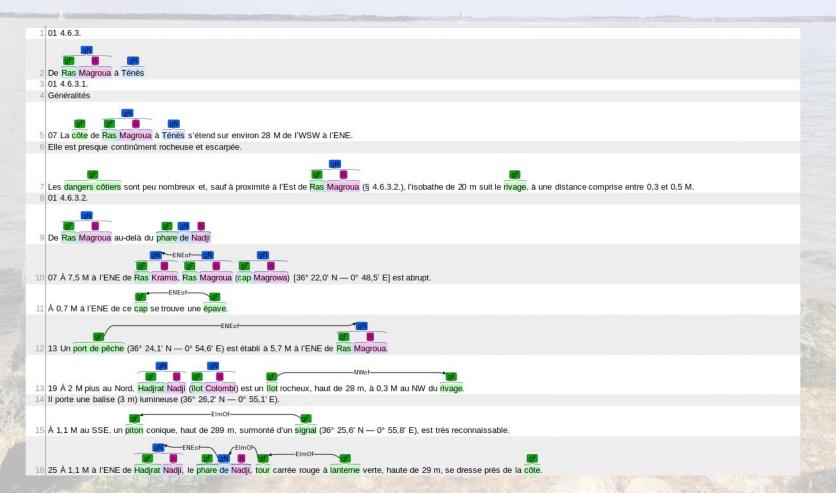


	F1-Score	
	Monolingual	Multilingual
Entity	92.2	92.3
Relation	64.2	63.2
Relation (e2e)	63.9	63.2

Results: Monolingual Example



Results: Multilingual Example



Conclusion

- PURE [Zhong and Chen 2021] → spatial entities, spatial relations
 - Nested entity extraction approach
- New French-language dataset
 - <u>https://github.com/umrlastig/atlantis-dataset</u> (from 16/11)
 - o https://www.kaggle.com/competitions/defi-textmine-2024/
- Benchmark results

Future Work

- Reducing annotation time
 - Smaller dataset + unsupervised learning
 - Machine-assisted annotation
 - Synthetic data
- Extending extraction scope
 - N-ary relations
 - Distance spatial relations
 - Intrinsic and relative directional spatial relations
 - Entity characteristics

Thank you!

Helen Mair RAWSTHORNE helen.rawsthorne@gmail.com

SH

