
HAL Id: hal-04294188
https://hal.science/hal-04294188

Submitted on 19 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functionalization of Gold Nanoparticles with
Ru-Porphyrin and Their Selectivity in the

Oligomerization of Alkynes
Francesca Limosani, Hynd Remita, Pietro Tagliatesta, Elvira Maria Bauer,

Alessandro Leoni, Marilena Carbone

To cite this version:
Francesca Limosani, Hynd Remita, Pietro Tagliatesta, Elvira Maria Bauer, Alessandro Leoni, et al..
Functionalization of Gold Nanoparticles with Ru-Porphyrin and Their Selectivity in the Oligomeriza-
tion of Alkynes. Materials, 2022, 15 (3), pp.1207. �10.3390/ma15031207�. �hal-04294188�

https://hal.science/hal-04294188
https://hal.archives-ouvertes.fr


����������
�������

Citation: Limosani, F.; Remita, H.;

Tagliatesta, P.; Bauer, E.M.; Leoni, A.;

Carbone, M. Functionalization of

Gold Nanoparticles with

Ru-Porphyrin and Their Selectivity in

the Oligomerization of Alkynes.

Materials 2022, 15, 1207. https://

doi.org/10.3390/ma15031207

Academic Editors: Marcin Nabialek

and Antonio Gil Bravo

Received: 20 December 2021

Accepted: 3 February 2022

Published: 5 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Functionalization of Gold Nanoparticles with Ru-Porphyrin
and Their Selectivity in the Oligomerization of Alkynes
Francesca Limosani 1,2,* , Hynd Remita 3 , Pietro Tagliatesta 4,* , Elvira Maria Bauer 5 , Alessandro Leoni 4

and Marilena Carbone 4

1 Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 1,
60131 Ancona, Italy

2 INFN-National Laboratories of Frascati, Via Enrico Fermi, 40, Frascati, 00044 Rome, Italy
3 Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, 91405 Orsay, France;

hynd.remita@universite-paris-saclay.fr
4 Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca

Scientifica, 1, 00133 Rome, Italy; alessandro.leoni@uniroma2.it (A.L.); carbone@uniroma2.it (M.C.)
5 Institute of Structure of Matter (CNR-ISM), Italian National Research Council, Via Salaria km 29.3,

Monterotondo, 00015 Rome, Italy; elvira.bauer@ism.cnr.it
* Correspondence: f.limosani@univpm.it (F.L.); pietro.tagliatesta@uniroma2.it (P.T.)

Abstract: Gold nanoparticles (AuNPs) were functionalized by ruthenium porphyrins through a
sulfur/gold covalent bond using a three-steps reaction. The catalyst was characterized by scanning
electron microscopy (SEM) and thermogravimetric analysis (TGA) in order to control the binding
of ruthenium porphyrin on AuNPs’ surface. The catalyst was tested and compared with an analog
system not bound to AuNPs in the oligomerization reaction using 1-phenylacetylene as the substrate.

Keywords: gold nanoparticles; metalloporphyrin; oligomerization; arylalkynes; catalysis

1. Introduction

Gold nanoparticles (AuNPs) are attracting the attention of a large community of
scientists because of their tunable electronic structures that generate useful characteristics
such as size-related and shape-related optoelectronic properties [1–3]. large surface-to-
volume ratio, excellent biocompatibility, and low toxicity [4–6], which stimulated their
applications in several fields such as biotechnology [7,8], sensing [9], and catalysis [10].

Properties and applications of AuNPs can be tuned by functionalization, which al-
lows the imprinting of a hydrophilic or a hydrophobic character, varies hindrance, and
influences photoluminescence. Functionalization is usually carried out by capping AuNPs
with labile ligands (citrates, thiols, or other adsorbed ligands), subsequently displaced by
thiols through a location with ligand exchange reaction to synthesize monolayer-protected
AuNPs, thus allowing the spontaneous binding of organic molecules or biomolecules
through the formation of –S–Au bonds [11–13].

Hybrid architectures composed of both porphyrin/metalloporphyrin and different ma-
terials such as organic or inorganic nanoparticles [14,15] and carbon-based-nanomaterials [16],
obtained by a bottom-up approach, are well suited for the formation of functional nanos-
tructures [17] that display structural control and synergic functionalities. These preparation
methods will result in the formation of unique materials with properties fundamental for
the development of compounds that find wide space in several fields such as optics [18–22];
electronics [23]; photodynamic therapy [24]; materials able to enhance light absorption [25];
and catalysis [26].

Ruthenium porphyrins, properly functionalized, represent suitable candidates to be
used as organic units to bind on AuNPs’ surface. Some different synthetic methods have
been proposed to obtain these assemblies, depending on the porphyrin functional group
used as a linker for AuNPs [27,28]. These networks represent the combination of different
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moieties with various functionalities in order to obtain a final composite material that has
more complex functions to be employed in the field of catalysis.

Metalloporphyrins are well known for their catalytic properties [29] in many important
organic reactions, such as, for example, the oxidation of organic substrates [17,30–32]; the
cyclopropanation of olefins [33–36]; the carbonyl ylide/1,3-dipolar cycloaddition reactions
of a-diazoketones [37]; the insertion of carbene into the S–H bond [38,39]; the amination of
hydrocarbons [40,41]; and the olefination of aldehydes [42].

The oligomerization reaction [26,43–45] is an important test to obtain information on
the conjugated compound because it can provide different, although limited products,
alkyne scaffolds, which are considered the most useful building blocks for a wide vari-
ety of applications such as organic light emitters [46,47], discotic liquid crystals [48,49],
high-porosity materials [50,51], or tools to design organic units in synthetic and material
chemistry [52,53].

In the present study, we investigated the functionalization of AuNPs with a Ru-
thiomethyl-tetraphenylporphyrin (Ru-TPP-CH2-SH) and compared the selectivity of cou-
pled compound Ru-TPP-CH2S-AuNPs to separate moieties for the oligomerization of
phenylacetylene.

The aim of this investigation is to determine whether the conjugated compound
Ru-TPP-CH2S-AuNPs is stable and its catalytic properties prevail over metalloporphyrin
without AuNPs.

The synthetic strategy required an ad hoc synthesis of Ru tetraphenylporphyrin, substi-
tuted with a thiomethyl group in para-position of one of the phenyl rings (Ru-TPP-CH2-SH)
and subsequent functionalization with monodispersed gold nanoparticles. The strategy
adopted for the synthesis of Ru-TPP-CH2-SH is a three-stepped one based on the substitu-
tion of the acetyloxy group of 5-(4′-acetyloxymethylphenyl)-10,15,20-triphenylporphyrin by
the thioacetate group, metalation, and subsequent deprotection of the thioacetate to yield
the corresponding thiol group. The 30 nm diameter, monodispersed citrate capped AuNPs
were obtained by radiochemical methods and subsequently used for functionalization
according to a recently standardized method [54]. This is a two-phases reaction, where the
citrate substitution with thiolated porphyrin occurs at the interphase between the aqueous
and the organic solution, using acetone as transfer agent. The obtained catalyst Ru-TPP-
CH2S-AuNPs was, then, tested and compared with the not-bound Ru-TPP-CH2-SH in an
oligomerization reaction using phenylacetylene as a substrate.

2. Materials and Methods
2.1. Materials and Equipment

Compounds 5-(4′-acetyloxymethylphenyl)-10,15,20-triphenylporphyrin (1),
5-(4′-acetylthiomethylphenyl)-10,15,20- triphenylporphyrin (2), ruthenium(II)
5-(4′-acetylthiomethylphenyl)- 10,15,20-triphenylporphyrin (3), and ruthenium(II)
5-(4′-sulfanylmethylphenyl)- 10,15,20-triphenylporphyrin (4) were synthesized and charac-
terized as reported [55].

The formation of dimerization and trimerization products of phenylacetylenes was
measured by gas chromatography (GC) analyses, with a Focus Thermo Fisher Instrument
(Waltham, MA, USA), using helium as the carrier gas (35 cm/s). A Restek MXT-5 column
(length 15 m; i.d. 0.28 mm; low-polarity stationary phase) was used. The gas chromato-
graphic conditions were as follows: initial temperature, 70 ◦C for 2 min; temperature
increase rate, 40 ◦C/min; final temperature, 320 ◦C; injector temperature, 320 ◦C; detector
temperature, 350 ◦C.

The compounds are detected by flame ionization detector (FID).
The surface morphology and diameter of AuNPs was determined with an FE-SEM,

Field Emission Scanning Electron Microscope SUPRA TM 35, Carl Zeiss SMT, Oberkochen
(Germany), operating at 7 kV. The diameter of AuNPs was estimated using Image J and
the histogram of particle size was elaborated with Origin Pro program and fitted using a
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Gaussian function to determine the averaged particle size. For the estimation of the particle
size, we used 4 microscope images, analyzing the size of 55–65 particles per image.

TGA measurements were carried with a TA-Instruments Q500 under N2 flow at a
heating rate of 10◦/min.

2.2. Synthesis
2.2.1. Synthesis of AuNPs

The synthesis of the AuNPs was performed by a reaction of HAuCl4 with trisodium
citrate (NaCt), which also acts as a capping agent (Scheme 1). In a typical synthesis, 50 mL
of 0.25 mM HAuCl4 was refluxed in water under constant and vigorous stirring.

Then, 1 mL of 34.0 mM (1.0 wt.%) trisodium citrate (NaCt) was added. The colour of
the solution turns from light yellow to grey and finally to red. The red colour corresponds
to the formation of AuNPs (with a plasmon around 520 nm). The reaction was carried
out until the colour of the suspension did not undergo any further changes. The resulting
suspension/solution was cooled to room temperature.
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2.2.2. Synthesis of Ru-TPP-CH2-SH (4)

The strategy adopted for the synthesis of Ru-TPP-CH2-SH porphyrin used for bind-
ing on the AuNPs surface in order to form the new Ru-TPP-CH2S-AuNPs catalyst is a
three-step reaction.

The Ru-TPP-CH2S-AuNPs catalyst investigated in this work has never been consid-
ered for catalytic applications. All intermediate compounds have been synthesized and
characterized according to the literature [55], as highlighted in Section 2.1.

The starting material 5-(4′-acetyloxymethylphenyl)-10,15,20-triphenylporphyrin was
obtained according to the literature method [56].

The first step was the substitution of the acetyloxy group of the 5-(4′-
acetyloxymethylphenyl)-10,15,20-triphenylporphyrin (1) by the thioacetate group [57],
dissolving compound 1 and potassium thioacetate in dry DMF under nitrogen for 5 h at
100 ◦C to obtain compound 2 in 40% of yield.

Subsequently, the second step consists in the metalation of the obtained compound 2
with Ru3(CO)12 in toluene under nitrogen for 48 h to obtain compound 3 (yield 75%) [58].

Finally, the third step was the deprotection of the thioacetate, reacting with compound
3 with NaOH in THF for 2 h under nitrogen [59] to yield the corresponding porphyrin thiol
derivative and compound 4 in a quantitative yield (>99%).
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In Scheme 2, the synthetic pathways for obtaining the Ru-TPP-CH2-SH (4) compound
are reported.
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2.2.3. Synthesis of Ru-TPP-CH2S-AuNPs (5)

The functionalization of AuNPs with Ru-TPP-CH2-SH porphyrin (4) was performed by
a variant of the two-phases synthetic procedure previously proposed [54,60] and reported
in Scheme 3.

Specifically, 2.5 mL of the solution containing AuNPs, stabilized with citrate and
0.6 mL of acetone used as transfer agent, was added to 1 mg/mL of compound 4 dispersed
in toluene. The mixture was stirred vigorously until the color changed from red to colorless,
indicating that Ru-TPP-CH2-SH porphyrins (4) were anchored on the surface of the AuNPs
to form Ru-TPP-CH2S-AuNPs’ final compound (5).
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2.3. Typical Oligomerization Reaction

In order to evaluate the performance of Ru-TPP-CH2-SH (4) as a catalyst, in a one-
neck flask, 1 mg (0.0013 mmol) of Ru-TPP-CH2-SH (4) was added to 1 mL of substrate
(phenylacetylene) under magnetic stirring at 160 ◦C.

In order to analyze the products of the reaction by gas chromatographic analysis, three
aliquots of the mixture were taken up at different reaction times, 3 h, 10 h, 24 h, and 48 h.

The same procedure was repeated by adopting the same reaction condition but using
AuNPs and Ru-TPP-CH2S-AuNPs (5) as catalysts.

The stability of the Ru-TPP-CH2S-AuNPs (5) system at high reaction temperatures
(160 ◦C) was verified by the UV-Vis method. In fact, after 24 h and 48 h of reaction, no trace
of free metalloporphyrin was detected in the reaction medium.

2.4. Recycling of the Ru-TPP-CH2S-AuNPs (5) Catalyst

At the end of the reaction, the solvent was evaporated under vacuum, and the solid
was washed with three portions of fresh chloroform or dichloromethane, each time using
centrifugation to obtain the starting solid. The absence of any free catalyst in the solution
was confirmed by UV-Vis analysis.

The recovered catalyst was dried under vacuum at 60 ◦C for 2 h and reused.

3. Results and Discussion

The synthesized Ru-TPP-CH2S-AuNPs (5) catalyst was characterized with different
techniques. In particular, the average size of AuNPs and the presence of the Ru-TPP-CH2-
SH porphyrins (4) on AuNPs’ surface were estimated by using SEM microscopy. TGA was
also used to confirm the obtained functionalization of compound 4 on Au nanoparticles.
Subsequently, gas-chromatography analysis was used to confirm the ability of Ru-TPP-
CH2S-AuNPs (5) to be used as a catalyst in oligomerization reactions of phenylacetylenes.

3.1. Characterization of Ru-TPP-CH2S-AuNPs (5) Catalyst

In Figure 1a, the SEM image of the Ru-TPP-CH2S-AuNPs (5) catalyst is reported. The
size distribution of AuNPs is estimated using SEM analysis showing an average diameter
of 24.58 ± 5.85 nm, as reported in Figure 1b. The covalent anchoring of Ru-TPP-CH2-SH
(4) on AuNPs’ surface can be observed in the ~4 nm texture surrounding the AuNPs, as
shown in Figure 1a.
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The binding of Ru-TPP-CH2-SH porphyrins (4) to AuNPs’ surface was confirmed by
thermogravimetric analysis. In particular, the TGA thermogram of Ru-TPP-CH2S-AuNPs,
in the range of 100–650 ◦C, as reported in Figure 2, indicates a weight loss of about 2.1 wt %
completed at 430 ◦C and attributed to the loss of organic moieties, i.e., the porphyrins,
bonded to the Au surface. The degree of functionalization of the AuNPs can be estimated
by combining SEM and TGA information. More in detail, considering that the density of
bulk face-centered cubic (fcc) Au is 59 atoms/nm3 and that the average diameter of a gold
particle is D ∼= 25 nm, the approximate number of gold atoms in a nanoparticle is consistent
with NAu = (59 nm3)(π/6) D3 = 482,692. Since AuNPs (atomic mass ∼= 200) represent 97.9%
of weight loss and ligands (Ru-TPP-CH2SH, molar mass 753 g/mol) represent 2.1% of the
weight loss, proportionally, this corresponds to an approximate number of 2746 ligands
per AuNP.
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3.2. Oligomerization of Phenylacetylenes Catalyzed by Ru-TPP-CH2S-AuNPs

Our investigation was then directed to the evaluation of the efficiency of Ru-TPP-
CH2S-AuNPs (5) as a catalyst for the phenylacetylene oligomerization reaction.

In these regards, the formation of several triphenylbenzenes and 1-phenylnapthalene
has been particularly considered.

For this instance, a decision was made to study the performance of our new Ru-TPP-
CH2S-AuNPs (5) catalyst in the oligomerization reaction of phenylacetylene using gas
chromatographic analysis and to compare the results with those obtained using two other
catalysts, i.e., AuNPs and the Ru-TPP-CH2-SH (4) compound, for the same reaction as
shown in Scheme 4.
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Scheme 4. Phenylacetylene oligomerization reaction catalyzed by (a) AuNPs, (b) RuTPP-CH2-SH (4),
and (c) RuTPP-CH2S-AuNPs (5).

In Table 1, the formation of dimers and trimers in terms of percentage of product (%)
after 24 h and 48 h using AuNPs, Ru-TPP-CH2-SH (4), and Ru-TPP-CH2S-AuNPs (5) as
catalyst are reported.
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Table 1. Oligomerization of phenylacetylene reaction using AuNPs, Ru-TPP-CH2-SH (4), and Ru-
TPP-CH2S-AuNPs (5) as catalysts.

Reaction Time AuNPs
(%)

Ru-TPP-CH2-SH
(%)

Ru-TPP-CH2S-AuNPs
(%) Products

24 h

77.4 76.1 62.4 1-PN

1.9 1.7 3.0 1,2,3-TFB

8.2 7.4 11.9 1,2,4-TFB

12.5 14.8 22.7 1,3,5-TFB

48 h

77.3 77.0 64.6 1-PN

1.0 1.7 2.5 1,2,3-TFB

9.3 7.4 10.2 1,2,4-TFB

12.4 14.8 22.7 1,3,5-TFB

Analyzing the results obtained by gas chromatographic analysis during the time
interval between 3 h and 10 h for the phenylacetylene oligomerization reaction, this elapsed
time is not sufficient to form the expected dimerization/trimerization products. Only low
percentages of 1-PN product were obtained for all catalysts used.

The reaction times of 24 h and 48 h are chosen based on previous experimental evidence
in which a similar catalyst, i.e., Ru-porphyrin bound to a Merrifield resin [26], was used for
the oligomerization reaction. For this reason, the data after 24 h and 48 h, using AuNPs,
Ru-TPP-CH2-SH (4), and Ru-TPP-CH2S-AuNPs (5) as catalysts, are considered significant
and are reported in Table 1.

The control experiment without any catalysts was performed, but no results in terms
of the formation of dimers and trimers were obtained.

Figure 3 shows the comparison of percentage of products (%) obtained using AuNPs, Ru-
TPP-CH2-SH (4), and Ru-TPP-CH2S-AuNPs (5) as catalysts after 24 h and 48 h reaction times.
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In particular, by comparing the efficiency of Ru-TPP-CH2S-AuNPs (5) with respect to
AuNPs and Ru-TPP-CH2-SH (4) at 24 h and 48 h, it can be observed that the functionaliza-
tion of porphyrin with AuNPs increases, in all cases, the response in terms of percentage of
products (%) in the formation of trimers.

Specifically, an evident increase in the percentage of products (%) of 1,3,5-TFB is
observed at 24 h: from 12.5% (AuNPs) and 14.7% (Ru-TPP-CH2-SH) to 22.7% using Ru-
TPP-CH2S-AuNPs (5) as the catalyst.

A comparable increase, in terms of percentage of product (%) in the formation of
trimers, was observed at 48 h using the Ru-TPP-CH2S-AuNPs (5) system.

Substrate conversion for all reactions reported is always above 95%, and the reaction
products did not change under experimental conditions, after three recycling cycles, and
remained within the experimental error.

The different formation of dimers and trimers seems to be affected by the presence of
AuNPs in terms of an increase in trimer products. This effect can be due to the different
steric hindrances of the Ru-TPP-CH2S-AuNPs (5) compound compared with metallopor-
phyrin without AuNPs, as reported in our previous studies [26] for an analog system
comprising ruthenium porphyrin bound to a Merrifield resin.

In a previous study [61], we proposed a mechanism for the oligomerization of pheny-
lacetylene to produce 1-PN, catalyzed by ruthenium porphyrins, in terms of the formation
of a vinylidene intermediate of the metal complex by a Z2-1-alkyne-Z1-vinilydene rear-
rangement. Such an intermediate could then undergo the concerted attack of a second
molecule of alkyne in a Diels–Alder reaction (Scheme 5) in order to produce the final
dimeric product while the trimers are probably derived from an open intermediate.
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4. Conclusions

In the present investigation, we synthesized a newly functionalized material by cou-
pling ruthenium porphyrin to AuNPs through the formation of –S–Au bonds using three-
step reactions and characterizing the new material by SEM and TGA analysis in order to
evaluate the degree of functionalization of AuNPs’ surface. The catalytic efficacy of the new
hybrid architecture is studied and compared to the separate moieties in the oligomerization
of phenylacetylene. The study determines that compound Ru-TPP-CH2S-AuNPs is stable
and shows an increase in terms of percentage of product for the formation of trimers for
the oligomerization of phenylacetylene, as an effect of the different accessibilities of the
catalytic site by the reagent and different electronic properties due to coupling with metal
nanoparticles, when compared with metalloporphyrin without AuNPs.
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