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I. Lattice accommodation and residual misfits at the bcc-fcc interfaces 

Here the bcc metal is considered as a 2D substrate for the epitaxial growth of the fcc metal. The 
lattice parameters are respectively a  and a .  

 

a) At the {001}bcc/{001}fcc interface (Bain epitaxial relationship) 

Fig. S1(a) shows the superimposition of the two basal {001} cells for the relaxed crystals. The 
misfit is: 

f =
a − √2 a

√2 a
 

In coherent epitaxy (Fig. S2(b)), the fcc crystal adopts the in-plane parameter a =

√2 a  

 
Fig. S1. Superimposition of the two basal {001} cells. (a) Relaxed bcc and fcc 
crystals; (b) coherent epitaxy. 
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This results in a compressive bi-axial stress of the fcc crystal. The in-plane and out-of-plane 
components of the elastic strain are, respectively, 

ε =  
√   

  and ε = − ε  

where 𝐶  and 𝐶  are the elastic constants of the fcc metal. The out-of-plane parameter 

a  is related to the strain by: 

a = (1 + ε ) a  

The angle α between two different {111}fcc planes can be calculated (Fig. S2) as:  

tan
α

2
=

a

√2 a
 

 

 

Fig. S2. Two families of {111}fcc planes seen in projection along a <110>fcc direction. 

 

a  (nm) a  (nm) f ε  a  (nm) ε  a  (nm) 

0.28665 0.40784 0.61 % -0.60 % 0.40538 1.02 %  0.4120 

Table S-I. Numerical values for Au on Fe. (Au elastic constants at 300 K: C =192 GPa and C =163 GPa, 
from J.R. Neighbours and G.A. Alers, Phys. Rev. 111, 707 (1958). Lattice parameters from H. Okamoto, T. 
Massalski, L. Swartzendruber and P. Beck. 1984, Bulletin of Alloy Phase Diagrams 5, 592 (1984).) 

 

It comes from Table S-I that α = 69.66° in the strained fcc crystal versus 70.53° in the relaxed 
one (or its complement 110.36° versus 109.47°). 

 

 

b) At the {110}bcc/{111}fcc interface (Nishiyama-Wassermann epitaxial relationship) 

 

In the <001>bcc//<110>fcc direction: see section a). The fcc lattice is slightly stressed in 
compression in the <110>fcc direction (with -0.60% in-plane strain). 

In the <110>bcc//〈112〉fcc direction, the misfit f is 23% and is accommodated by a coincidence 
network of 4 fcc atoms for 5 bcc atoms (Fig. S3). There is a residual misfit f  (Table S-
II). The fcc lattice is slightly stressed in tension in the 〈112〉fcc direction (with 1.42% in-plane 
strain) (Table S-II). 

The coincidence network corresponds to a dislocation every 4 fcc and 5 bcc atomic columns. 
The dislocation line is along the <001>bcc//<110>fcc direction. The Burgers vector is (Fig. 
S3(b)): 
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b⃗ = a 2⁄ 〈011〉 in the fcc lattice. The 23% misfit accommodation is insured by 
the edge component a 4⁄ 〈112〉. The screw component is a 4⁄ 〈110〉. 

b⃗ = a 2⁄ 〈111〉 in the bcc lattice (edge component a 2⁄ 〈110〉 and screw 
component a 2⁄ 〈001〉.) 

Two successive dislocations have opposite screw components that annihilate each other, so that 
the dislocation network has overall an edge character. 

 

Fig. S3. (a) Projection along 〈110〉fcc and <001>bcc directions of relaxed lattices with a 
23% misfit along the <110>bcc//<112>fcc directions. (b) Thanks to a slight tensile stress 
of the fcc lattice in the <112>fcc direction, the coincidence network accommodates the 
misfit by a dislocation every 4 fcc and 5 bcc atomic planes. The atoms represented by full 
or empty symbols are not in the same {110}fcc or {001}bcc plane. 

 

a √2 2⁄  (nm)  a √6 4⁄  (nm) f 5 a √2 2⁄  (nm) 4 a √6 4⁄  (nm) f  

0.20269 0.24975 23% 1.01346 0.9990 -1.42% 

Table S-II. Numerical values for Au on Fe. 

 

 

II. Patterns of all possible bcc(core)@fcc(shell) NP morphologies with an 18 faces core 
(truncated rhombic dodecahedron)  

 

Figure S4 displays the patterns of the different possible morphologies of the nanoparticles (NPs) 
with a truncated rhombic dodecahedron core, and their symmetry group (exhaustive except for 
groups m and 1). Some patterns can be grouped as follow: 

(a) Chirality: The patterns in the groups 3, 4, 2, and 1 are chiral. Enantiomorph patterns are 
labelled in Fig. S4 with the same letter and a different number (for instance a1, a2). 
(Two enantiomorph patterns differ only by the sense of rotation of the arrow sequence 
around the fold axis.) 

(b) The two patterns of each pair (b1, c1), (b1, c2), (b2, c1) and (b2, c2) of group 3 are 
identical “by half”, and chiral “by half”. 
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(c) If two different patterns a and b derive from each other by complete inversion of the 
arrows, they are noted b=inv[a]. This occurs in groups 3 (a1/a2), 4/m (a/b), mm2 (a/b; 
c/d), 2 (a1/b1; a2/b2), m (one example a/b) and 1 (two examples a1/b1, a2/b2). In all 
other cases, the pattern is similar to its own inverse (a=inv[a]). 

 

Fig. S4. Patterns of all possible bcc(core)@fcc(shell) NP morphologies with a 18 faces core 
(rhombic dodecahedron core truncated by {001}bcc faces), exhaustive except for groups 
m and 1. The arrows symbolize the fcc variant distribution on the {110}bcc faces, that 
determines the NP symmetry. The same color for the hexagonal basis of <111>fcc oriented 
grains means that they are in symmetrical position between them. The light or dark yellow 
shades symbolize the morphology of the <001>fcc oriented grains (the nearest boundary is 
a {111}fcc twin or {111}fcc low angle grain boundary, respectively). The Hermann-
Mauguin notation of the NP symmetry groups refers to the crystallographic directions of 
the bcc core (Schoenflies notation in parenthesis). 
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m3 (Th) 

 

 

 

3 (S6) 

 

 

3 (C3) 
a1=inv[a2]     a2=inv[a1] 

 

  

 b1 b2 

 

  

 c1 c2 

 

  



6 
 

 

4/m 
(C4h) 

a=inv[b] b=inv[a] 

  

4 (C4)       
a1 a2 

 

  

4 (S4) 
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mmm 
(D2h) 

 

 

 

mm2 
(C2v) 

a=inv[b] b=inv[a] 

  

 c=inv[d] d=inv[c] 

 

  

 e f 
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2/m 
(C2h) 

 

 

 

2 (C2) 
a1=inv[b1] a2=inv[b2] 

 

  

 b1=inv[a1] b2=inv[a2] 

 

  

m (Cs)  
non-
exhaustive 

a=inv[b] b=inv[a] 
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1 (Ci) 

 

 

1 (C1)  
a1=inv[b1] a2=inv[b2] 

non-
exhaustive 

  

 b1=inv[a1] b2=inv[a2] 
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III. Examples of dissymmetric NPs with a cube-shaped core and with a truncated cube-
shaped core 

 

a) Experimental case of non-cubic shells with cube-shaped cores 

Experimentally, we sometimes observe Fe@Au NPs with square core section, that fail to fully 
restore a cubic symmetry (Fig. S5). The case of a single truncation of the core also illustrates 
the 3D morphology and symmetry of such NPs, by considering that the truncation, basis of the 
<111>fcc oriented grain, is reduced to a cube edge (Fig. S6 adapted from the Fig. 13(d-e)). The 
shell morphology can then be understood as having kept the memory of a <111>fcc oriented 
grain formerly grown on a {110}bcc face now disappeared. 

 

 

 

Fig. S5. (a) High resolution TEM micrograph of a Fe@Au NP observed close to a 
<001>bcc zone axis. (The NP core is not perfectly oriented along the <001>bcc zone axis, 
so that one family of {110}bcc planes is much better observed than the other.) (b) 
Crystallographic analysis of the NP. The NP displays a square core section and a non-fully 
cubic symmetry for the shell. The <001>fcc oriented pyramids are separated quasi-
symmetrically by the so called 45° boundaries, except at top, where a twin is clearly visible. 
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(a) Core pattern 
(Group m3m) 
 

 

(b) NP pattern (Group m) 

 

 

Fig. S6. Pattern of a cube-shaped core 
(a) and of a NP (b) developing a non-
cubic shell (group m). The arrow 
symbolizes the variant of a <111>fcc 
oriented grain whose base is reduced 
to a cube edge (blue line). Light and 
medium yellow shades indicate that 
the boundaries between the <111>fcc 
oriented grain and the <001>fcc 
oriented neighbors will be a twin and 
a LAGB boundary, respectively. 

 

b) Multiple truncations from a cube-shaped core 

Fig. S7 displays an example of multiple truncations of same extension from a cube-shaped core. Three 
truncated faces joining at a cube corner lower the core symmetry to the group 3 (Fig. S7(a)). Either this 
symmetry subsists for the NP (Fig. S7(b)) or it is lowered to group 1 (Fig. S7(c)), depending on the 
variants growing on the three truncated faces. While there are 2 different kinds of {001}bcc faces on the 
core (squares and pentagons) (Fig. S7(a)), the number of different morphologies of <001>fcc oriented 
grain is 2 and 4, in Fig. S7(b) and Fig. S7(c), respectively. 

 

 

Fig. S7. Core and NP patterns with a cube-shaped core with three adjacent truncations. The 
core belongs to the group 3 (a), and the NP either to the group 3 (b) or 1 (c). The arrows 
symbolize the variants of <111>fcc oriented grains growing on {110}bcc truncated faces. 
The same color for the basis of the <111>fcc oriented grains means that they are 
symmetrical to each other. Light, medium or dark yellow shades indicate that the nearest 
neighbor of a <001>fcc oriented grain will be a <111>fcc oriented grain separated by a 
twin, a LAGB boundary or the third type of boundary, respectively, and chestnut color 
indicates that the neighbor is another <001>fcc oriented grain. 


