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Why considering GORF?

Random Forests are mainly designed for Regression or
Classification purposes. In these cases, the target is observed.
Other aims may be pursued, e.g.:

conditional quantiles
conditional average treatment effects (CATE)
other conditional risk measure such as expectiles
...

=⇒ Distributional Random Forest1 vs Goal Oriented Random
Forest.

1 Domagoj Ćevid et al. (2022). In: Journal of Machine Learning Research
Qiming Du et al. (2021). In: International Conference on Artificial

Intelligence and Statistics
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Recall CART
Classification And Regression Tree2. Input variables:
X = (X1, . . . ,Xd), Output variable: Y . Tree: constant piecewise
predictor, obtained by binary recursive partitioning.

Separate the data from the cur-
rent node, by looking for the split
reducing the most the heterogene-
ity of Y at the two child nodes.
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Loss function

In the regression context, Y = m(X) + ε, the goal is to estimate
E(Y |X) = m(X). Consider a random sample
Dn =

(
Xi ,Y i) , i = 1, . . . , n, the heterogeneity of Y is measured by

the intra-groups variance, so that we shall maximise:

LnC (j , z) = 1
#C

n∑
i=1

(
Y i − Y C

)2
1{Xi∈C}−[

1
#C

n∑
i=1

(
Y i − Y CL

)2
1{∈CL} + 1

#C

n∑
i=1

(
Yi − Y CR

)2
1{Xi∈CR}

]
,

where C is the current cell, ie an hyper-rectangle
d∏

j=1
[aj , bj ], #C is

the number of elements of Dn for which Xi , i = 1, . . . , n belongs
to C ; CL = C ∩ {xj ≤ z}; CR = C ∩ {xj > z}.
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Random Forests

Agregate several CART’s to reduce the estimation variance =⇒
Bootstrap aggregating

Training sample: Dn =
(
Xi ,Y i) , i = 1, . . . , n

Θ`, ` = 1, . . . , k are independent random variables, following
Θ = (Θ1,Θ2)’ law: Θ1 provides the bootstrap indices on Dn
and Θ2 gives which mtry variables are considered for the splits
of each node. Θ` is assumed to be independent of Dn.
An(x; Θ`,Dn): the leaf that is obtained when dropping x
down the tree.
Nn(x,Θ`,Dn): the number of points which are in
An(x; Θ`,Dn).
Nb
n (x,Θ`,Dn): the number of points of the bootstrapped

sample, which are in An(x; Θ`,Dn).
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CART estimation
In the regression framework, E(Y |X) = m(X) is estimated on the
random forest by. Let Bj (Θ`,Dn) be the number of times that the
observation

(
Xj ,Y j) has been drawn from the original dataset for

the `-th tree construction. Consider the weights:

ωn,i(x,Θ) =1
k

k∑
j=1

1Xi∈An(x,Θj ,Dn)

Nn(x,Θj ,Dn) ,

ωb
n,i (x,Θ) =1

k

k∑
`=1

Bi (Θ`,Dn) 1Xi∈An(x;Θ`,Dn)
Nb
n (x; Θ`,Dn) ,

and the corresponding estimations of m(x):

m̂b
n (x) =

n∑
i=1

ωb
n,i (x)Y i .
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Focus on causality and quantile estimation

Conditional quantile estimation : α ∈]0, 1[, the conditional
quantile qα(Y |X) could be estimated by inverting the
estimated conditional distribution function: and the
corresponding estimations of F (y |X = x) (introduced in
Meinshausen 2006 and a.s. consistency proved in
Elie-Dit-Cosaque and Maume-Deschamps 2022):

F̂ b
n (y |X = x) =

n∑
i=1

ωb
n,i (x) 1{Y i6y}.

Conditional Average Treatement Effect

9 / 41
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Focus on causality and quantile estimation

Conditional quantile estimation
Conditional Average Treatement Effect:
CATE (X) = E(Y (1)− Y (0)|X) where Y (W ) is a target
variable (eg some biological quantity) in presence (Y (1)) or
absence (Y (0)) of a treatement W . Some causal models
write: Y = τ(X)W + γ(X), in this case, CATE (X) = τ(X).
Modifications on the CART construction has to be done in
order to estimate CATE , since for each individual, we observe
either Y i(1) or Y i(0) .
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Other forests

Generalized Random Forests3 consider θ the target (eg
conditional quantiles or CATE and use the following loss
function:

#CL#CR
#C2

[
θ̂CL − θ̂CR

]2
where θ̂C is an estimator of the target θ on the cell C .
Distributional Random Forests4 use Maximal Mean
Discrepancy as loss function or the Wasserstein distance 5 for
the construction of the split criterion.
Trees designed for Extreme Value Analysis6.

3 Susan Athey, Julie Tibshirani, Stefan Wager, et al. (2019). In: The Annals
of Statistics

4 Domagoj Ćevid et al. (2022). In: Journal of Machine Learning Research
5 Qiming Du et al. (2021). In: International Conference on Artificial

Intelligence and Statistics
6 Sébastien Farkas et al. (2021). In: arXiv preprint arXiv:2112.10409
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Goal oriented loss function

We propose loss functions specifically designed for
CATE estimation,
Conditional quantile estimation,

with a common proof scheme for a.s. consistency.

13 / 41
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HTERF

Heterogeneous Treatment Effect Random Forest7
Consider the loss function:

LC (j , z) = #CL#CR
#C2

((
Y CL1 − Y CL0

)
−
(
Y CR1 − Y CR0

))2
, (1)

where CL1 = {Xi ∈ CL,W i = 1}, CL0 = {Xi ∈ CL,W i = 0},
CR1 = {Xi ∈ CR ,W i = 1}, CR0 = {Xi ∈ CR ,W i = 0},

7 Bérénice-Alexia Jocteur, Véronique Maume-Deschamps, and
Pierre Ribereau (2023). In: https://hal.science/hal-04112079
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HTERF estimation

For the estimation of CATE we use:

ĈATE (x) =
∑

i :W i=1
ωn,i (x,Θ)Y i −

∑
i :W i=0

ω′n,i (x,Θ)Y i , (2)

where ω (resp. ω′) are the weights associated to observations such
as W i = 1 (resp. W i = 0).
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Pin-ball loss

Consider the pin-ball function8: ψα(y , θ) = (y − θ)(α− 1{y≤θ})
Recall that the α-quantile is given by:
qα(Y ) = arg minθ E[ψα(Y , θ)].
Consider the loss function9:
LC (j , z) =

n∑
i=1

ψτ (Y i , θ̂C )1Xi∈C −
[ n∑
i=1

ψτ (Y i , θ̂CL)1Xi∈CL

+
n∑

i=1
ψτ (Y i , θ̂CR )1Xi∈CR

]
,

where θ̂C is an estimator of the α-quantile in C .
Estimate the conditional distribution function then the quantile as
before.

8It is also named check function, quantile loss.
9 Harish S Bhat, Nitesh Kumar, and Garnet J Vaz (2015). In: 2015 IEEE

International Conference on Big Data (Big Data). IEEE
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Consistency of random forests

Results by Scornet, Biau, Vert (2015) in a linear model context:

Y = m(X ) + ε with ε N (0, σ2) and m(X ) =
d∑

j=1
mj(Xj).

Under various assumptions including tree size wrt n and a forest
correlation control, for X U [0, 1]d ,

E[(mn(X)−m(X))2] −→ 0, with mn = EΘ(m̂n).

The bootstrap is not taken into account in Θ
No results for m(x)
Results for fully grown trees and for limited grown trees.

18 / 41
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Consistency of GRF

Asymptotic normal laws obtained10 under
regularity asumptions of the target function,
constraints on the tree construction

10 Susan Athey, Julie Tibshirani, Stefan Wager, et al. (2019). In: The Annals
of Statistics
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Consistency of GRF

Asymptotic normal laws obtained10 under
regularity asumptions of the target function, which write in
the CATE estimation case:
x 7→ E[Y (u)|X = x] and x 7→ E[Y (u)2|X = x] are
Lipschitz-continuous, Var [Y (u)|X = x] > 0 and
E[|Y (u)− E[Y (u)|X = x]|2+δ|X = x] ≤ M for some
constants δ,M > 0 uniformly over all x ∈ [0, 1]d .
constraints on the tree construction

10 Susan Athey, Julie Tibshirani, Stefan Wager, et al. (2019). In: The Annals
of Statistics

20 / 41



Introduction Alternative loss functions On the consistency of RF Simulation studies Conclusion References

Consistency of GRF

Asymptotic normal laws obtained10 under
regularity asumptions of the target function,
constraints on the tree construction:

at every step of the tree building procedure, the probability
that the next split is done along the j − th feature is bounded
below by π/d for some 0 < π ≤ 1 for all j = 1, . . . , d random
split hypothesis.
for some fixed γ, each split leaves at least a fraction γ of the
available training sample on each side of the split, γ-regularity
hypothesis
for some fixed p, the leaf containing x has at least p
observations for each treatment group and the leaf containing
x has either less than 2p − 1 observations with W i = 0 or
2p − 1 observations with W i = 1.

10 Susan Athey, Julie Tibshirani, Stefan Wager, et al. (2019). In: The Annals
of Statistics
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Consistency of GRF

Asymptotic normal laws obtained10 under
regularity asumptions of the target function,
constraints on the tree construction

The bootstrap is not taken into account, the proof is done for
honest forests (ie independance of the sample used for the tree
construction and the estimation).

10 Susan Athey, Julie Tibshirani, Stefan Wager, et al. (2019). In: The Annals
of Statistics
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General scheme for the a.s. consistency

Conditions
Relations between k (number of trees) and Nb

n (x; Θ,Dn) (number
of bootstrap observations in a leaf node):

1 k = O (nα) , with α > 0.
2 ∀x, Nb

n (x; Θ,Dn) = Ω
(√

n (ln (n))β
)
, with β > 5

2 , a.s.
a or

an asumption on mean and variance of Nb
n (x; Θ,Dn)

The variation of the target function θ is small on the trees’ leaves:
for any x,

sup
z,z′∈An(x,Θj )

∣∣θ(z)− θ(z′)
∣∣ a.s.−→
n→∞

0.

af (n) = Ω (g (n)) ⇐⇒ ∃k > 0, ∃n0 > 0 | ∀n > n0 |f (n)| > k · |g (n)|
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Consistency: result

Theorem
Assume the conditions above are verified then

|θ̂n(x)− θ(x)| a.s.−→
n→∞

0

Proof for conditional distributions11 and CATE 12 but the proof
scheme applies more generally.

11 Kevin Elie-Dit-Cosaque and Véronique Maume-Deschamps (2022). In:
Electronic Journal of Statistics

12 Bérénice-Alexia Jocteur, Véronique Maume-Deschamps, and
Pierre Ribereau (2023). In: https://hal.science/hal-04112079
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Remark on the variation hypothesis

In order to get the variation hypothesis we need the continuity of θ
and either

the random split and γ-regularity hypothesis or,
the convergence of the empirical loss function to the
theoretical one (with some uniformity on the cells C) and the
fact that the theoretical loss function is 0 on a cell C of a
theoretical tree13 implies that θ is zero on C . This last
condition is true e.g. in the CATE estimation setting for a
large class of functions (including sums, products, dense
classes).

13introduced in Scornet, Biau, and Vert 2015 and deeply used in
Elie-Dit-Cosaque and Maume-Deschamps 2022
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Theroetical trees

A theoretical tree is grown following the same rules as an empirical
tree, except that the theoretical equivalent of the empirical split
criterion on a node C is used to choose the best split. E.g. for the
CART-tree, the theoretical split criterion is:

L?C (j , z) =Var (Y |X ∈ C)
− P (X ∈ CL|X ∈ C) Var (Y |X ∈ CL)
− P (X ∈ CR |X ∈ C) Var (Y |X ∈ CR) .

Hence, a theoretical tree is obtained thanks to the best
consecutive cuts (j?, z?), among j ∈Mtry, z ∈ C j optimizing the
previous criterion L?C (·, ·).

26 / 41
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Empirical vs theoretical trees

Consider the model Y = m(X) + ε with m(·) in the ♠-class14 and
ε with ligth tails.

Proposition
For any h ∈ N fixed, for any empirical tree with node sizes greater
than C

√
n(ln n)β, β > 5

2 , consider a node at height h in the
theoretical tree (resp. empirical tree) and Th the set of theoretical
trees of height h, then

let A =
d∏

j=1
[aj , bj ] and An =

d∏
j=1

[anj , bnj ]. We have:

inf
Th

max
j=1,...,d

max
(
|aj − anj |, |bj − bnj |

)
−→ 0 a.s. as n→∞.

14Functions in this class satisfy that if L?
C (j, z) = 0 for all j, z the m is

constant on C .
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Empirical vs theoretical trees

Proposition
For any h ∈ N fixed, for any empirical tree with node sizes greater
than C

√
n(ln n)β, β > 5

2 , consider a node at height h in the
theoretical tree (resp. empirical tree) and Th the set of theoretical
trees of height h, then

let A =
d∏

j=1
[aj , bj ] and An =

d∏
j=1

[anj , bnj ]. We have:

inf
Th

max
j=1,...,d

max
(
|aj − anj |, |bj − bnj |

)
−→ 0 a.s. as n→∞.

Proved for CART trees14 and for causal forests15.
14 Kevin Elie-Dit-Cosaque and Véronique Maume-Deschamps (2022). In:

Electronic Journal of Statistics
15 Bérénice-Alexia Jocteur, Véronique Maume-Deschamps, and

Pierre Ribereau (2023). In: https://hal.science/hal-04112079
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The two samples method.

One of the main idea to prove the constistency of random forests is
to use an auxiliary sample: let (Xi�,Y i�, i = 1, . . . n) be a second
sample, independent from (Xi ,Y i , i = 1, . . . , n) and consider the
weights

ω�n,i(x,Θ) = 1
k

k∑
j=1

1Xi�∈An(x,Θj ,Dn)

N�n(x,Θj ,Dn)

and the corresponding estimator θ�n of θ. We prove:
1
∣∣∣θ̂n (x)− θ�n (x)

∣∣∣ a.s.−→
n→∞

0, uses a Hoeffding like inequality +
Vapnik-Chervonenkis classes16 (proximity of N� and Nb),

2 |θ�n (x)− θ (x)| a.s.−→
n→∞

0, uses Vapnik-Chervonenkis classes
again and the variation hypothesis.

16 V. N. Vapnik and A. Ya. Chervonenkis (1971). In: Theory of Probability
and its Applications
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CATE estimation: a first example

We consider simulated data close to causal frameworks previously
studied 17. X ∼ U([0, 1]p), W ∼ Bern(0.5) and
Y = τ(X)W + βγ(X), p = 10, τ(x) = sin(x1) and
γ(x) = cos(2x2 + 3x3). The scalar β allows to consider the impact
of the magnitude of τ relative to γ.

β GRF HTERF
5 0.276 0.117
1 0.122 0.012
0.2 0.079 0.004

Table: Mean squared errors of GRF and HTERF methods that estimate
heterogeneous treatment effect, with 500 tree forests.

17 Susan Athey, Julie Tibshirani, Stefan Wager, et al. (2019). In: The Annals
of Statistics
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CATE estimation: interpretability

GRF HTERF
β dep.3 dep.5 dep.10 imp. dep.3 dep.5 dep.10 imp.
5 0.870 0.378 0.150 0.852 1 0.498 0.175 0.985
1 0.874 0.526 0.174 0.866 1 0.995 0.282 1
0.2 0.875 0.627 0.2 0.866 1 1 0.603 1

Table: Frequencies of splitting on X1 at depths 3, 5 and 10 and
importance of X1.
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CATE estimation: a non linear framework

Let X ∼ U([0, 1]p), W ∼ Bern(0.5) and
Y = sin(X1)(W + 2)3 + cos(X2), where p = 3. Hence we have
CATE that satisfies: τ(x) = 19 sin(x1).

Method RMSE importance
GRF 0.321 0.777

HTERF 0.209 1

Table: Root mean squared errors of GRF and HTERF methods that
estimate heterogeneous treatment effect, with 500 tree forests. We also
consider the importance of X1.
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Conditional quantiles estimation: two examples18

Example 1:
Y |X ∼ N (0, 1 + 1(X1 > −0.5)), p = 10,Xj , j = 1, 2, ..., 10 are
independent draws from uniform distribution U(−1, 1),
xi = (xi , 0, 0, ..., 0), and xi is taken from regular grid over [−1, 1].

Example 2: Y = X1 − X2 + ε,Xj , j = 1, 2, ..., 10 are independent
draws from Xj ∼ Exp(1), ε ∼ N (0, 1),
xi = (xi1, xi2, 1, 1, ..., 1), and (xi1, xi2) are taken from regular grid
over [0, 5]2.

18 Véronique Maume-Deschamps, Clémentine Prieur, and Ri Wang.
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Conditional quantiles estimation: Example 1

α n GRF Quantile06 DRF Pin-ball
0.1 500 0.197 0.219 0.107 0.085

2000 0.038 0.140 0.027 0.028
4000 0.025 0.110 0.019 0.016

0.5 500 0.015 0.016 0.017 0.035
2000 0.007 0.007 0.009 0.010
4000 0.006 0.006 0.010 0.010

0.9 500 0.205 0.221 0.112 0.083
2000 0.037 0.137 0.025 0.022
4000 0.026 0.119 0.017 0.014

Table: MSE19 for Example 1: Y |X ∼ N (0, 1 + 1(X1 > −0.5))

19100 repetitions, number of trees B = 200, min.node.size = 20, mtry = p.
Other parameters use the default setting.
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Conditional quantiles estimation: Example 2

τ n GRF Quantile06 DRF Pin-ball
0.1 500 5.700 2.679 3.074 1.629

2000 4.754 1.770 1.949 0.763
4000 3.959 1.133 1.373 0.474

0.5 500 1.848 1.166 1.713 0.817
2000 0.761 0.405 0.644 0.383
4000 0.411 0.243 0.341 0.235

0.9 500 5.869 2.833 3.022 1.812
2000 4.842 1.717 1.809 0.847
4000 4.093 1.201 1.332 0.497

Table: MSE20 for Example 2: Y = X1 − X2 + ε

20100 repetitions, number of trees B = 200, min.node.size = 20, mtry = p.
Other parameters use the default setting.
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Conclusion.

Use Goal Oriented Random Forest for specific purposes:
better estimation (in general)
better interpretability.

Results developped for CATE and conditional quantile
estimations but other quantities are reachable.
General scheme for a.s. consistency results.
Theoretical random forest = a powerfull tool to better
understand the random forests methods.
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Merci

Thanks for your attention.
Merci pour votre attention.
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