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Goal oriented random forest (GORF)
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Separate the data from the current node, by looking for the split reducing the most the heterogeneity of Y at the two child nodes.
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Loss function

In the regression context, Y = m(X) + ε, the goal is to estimate

E(Y |X) = m(X). Consider a random sample D n = X i , Y i , i = 1, . . . , n,
the heterogeneity of Y is measured by the intra-groups variance, so that we shall maximise:

L n C (j, z) = 1 #C n i=1 Y i -Y C 2 1 {X i ∈C } - 1 #C n i=1 Y i -Y C L 2 1 {∈C L } + 1 #C n i=1 Y i -Y C R 2 1 {X i ∈C R } ,
where C is the current cell, ie an hyper-rectangle

d j=1 [a j , b j ], #C is the number of elements of D n for which X i , i = 1, . . . , n belongs to C ; C L = C ∩ {x j ≤ z}; C R = C ∩ {x j > z}.
Agregate several CART's to reduce the estimation variance =⇒ Bootstrap aggregating

Training sample:

D n = X i , Y i , i = 1, . . . , n Θ , = 1, . . . , k are independent random variables, following Θ = (Θ 1 , Θ 2
)' law: Θ 1 provides the bootstrap indices on D n and Θ 2 gives which mtry variables are considered for the splits of each node. Θ is assumed to be independent of D n .

A n (x; Θ , D n ): the leaf that is obtained when dropping x down the tree.

N n (x, Θ , D n ): the number of points which are in

A n (x; Θ , D n ). N b n (x, Θ , D n ):
the number of points of the bootstrapped sample, which are in A n (x; Θ , D n ).

In the regression framework, E(Y |X) = m(X) is estimated on the random forest by. Let B j (Θ , D n ) be the number of times that the observation X j , Y j has been drawn from the original dataset for the -th tree construction. Consider the weights:

ω n,i (x, Θ) = 1 k k j=1 1 X i ∈An(x,Θ j ,Dn) N n (x, Θ j , D n ) , ω b n,i (x, Θ) = 1 k k =1 B i (Θ , D n ) 1 X i ∈An(x;Θ ,Dn) N b n (x; Θ , D n ) ,
and the corresponding estimations of m(x):

mb n (x) = n i=1 ω b n,i (x) Y i .

Focus on causality and quantile estimation

Conditional quantile estimation : α ∈]0, 1[, the conditional quantile q α (Y |X) could be estimated by inverting the estimated conditional distribution function: and the corresponding estimations of F (y |X = x) (introduced in Meinshausen 2006 and a.s. consistency proved in Elie-Dit-Cosaque and Maume-Deschamps 2022):

F b n (y |X = x) = n i=1 ω b n,i (x) 1 {Y i y } .

Conditional Average Treatement Effect

Focus on causality and quantile estimation

Conditional quantile estimation

Conditional Average Treatement Effect:

CATE (X) = E(Y (1) -Y (0)|X) where Y (W ) is a target variable (eg some biological quantity) in presence (Y (1)) or absence (Y (0)) of a treatement W . Some causal models write: Y = τ (X)W + γ(X), in this case, CATE (X) = τ (X).
Modifications on the CART construction has to be done in order to estimate CATE , since for each individual, we observe either Y i (1) or Y i (0) .

Other forests

Generalized Random Forests3 consider θ the target (eg conditional quantiles or CATE and use the following loss function:

#C L #C R #C 2 θC L -θC R 2
where θC is an estimator of the target θ on the cell C . Distributional Random Forests4 use Maximal Mean Discrepancy as loss function or the Wasserstein distance5 for the construction of the split criterion. 

Goal oriented loss function

We propose loss functions specifically designed for CATE estimation, Conditional quantile estimation, with a common proof scheme for a.s. consistency.

HTERF

Heterogeneous Treatment Effect Random Forest 7 Consider the loss function:

L C (j, z) = #C L #C R #C 2 Y C L1 -Y C L0 -Y C R1 -Y C R0
For the estimation of CATE we use:

CATE ( x) = i:W i =1 ω n,i (x, Θ) Y i - i:W i =0 ω n,i (x, Θ) Y i , (2) 
where ω (resp. ω ) are the weights associated to observations such as

W i = 1 (resp. W i = 0).
Consider the pin-ball function8 : ψ α (y , θ) = (y -θ)(α -1 {y ≤θ} ) Recall that the α-quantile is given by:

q α (Y ) = arg min θ E[ψ α (Y , θ)].
Consider the loss function9 :

L C (j, z) = n i=1 ψ τ (Y i , θC )1 X i ∈C - n i=1 ψ τ (Y i , θC L )1 X i ∈C L + n i=1 ψ τ (Y i , θC R )1 X i ∈C R ,
where θC is an estimator of the α-quantile in C . Estimate the conditional distribution function then the quantile as before.

Introduction Alternative loss functions

On the consistency of RF 

Consistency of random forests

Results by Scornet, Biau, Vert (2015) in a linear model context:

Y = m(X ) + ε with ε N (0, σ 2 ) and m(X ) = d j=1 m j (X j ).
Under various assumptions including tree size wrt n and a forest correlation control, for X

U[0, 1] d , E[(m n (X) -m(X)) 2 ] -→ 0, with m n = E Θ ( mn ).
The bootstrap is not taken into account in Θ

No results for m(x)

Results for fully grown trees and for limited grown trees.

Consistency of GRF

Asymptotic normal laws obtained 10 under regularity asumptions of the target function, which write in the CATE estimation case:

x → E[Y (u)|X = x] and x → E[Y (u) 2 |X = x] are Lipschitz-continuous, Var [Y (u)|X = x] > 0 and E[|Y (u) -E[Y (u)|X = x]| 2+δ |X = x] ≤ M for some constants δ, M > 0 uniformly over all x ∈ [0, 1] d .
constraints on the tree construction Asymptotic normal laws obtained 10 under regularity asumptions of the target function, constraints on the tree construction:

at every step of the tree building procedure, the probability that the next split is done along the jth feature is bounded below by π/d for some 0 < π ≤ 1 for all j = 1, . . . , d random split hypothesis. for some fixed γ, each split leaves at least a fraction γ of the available training sample on each side of the split, γ-regularity hypothesis for some fixed p, the leaf containing x has at least p observations for each treatment group and the leaf containing x has either less than 2p -1 observations with W i = 0 or 2p -1 observations with W i = 1.

Asymptotic normal laws obtained 10 under regularity asumptions of the target function, constraints on the tree construction

The bootstrap is not taken into account, the proof is done for honest forests (ie independance of the sample used for the tree construction and the estimation).

General scheme for the a.s. consistency

Conditions

Relations between k (number of trees) and N b n (x; Θ, D n ) (number of bootstrap observations in a leaf node): -→ n→∞ 0. 

1 k = O (n α ) , with α > 0. 2 ∀x, N b n (x; Θ, D n ) = Ω √ n (ln (n)) β ,
a f (n) = Ω (g (n)) ⇐⇒ ∃k > 0, ∃n0 > 0 | ∀n n0 |f (n)| k • |g (n)|

Consistency: result

Theorem Assume the conditions above are verified then

| θn (x) -θ(x)| a.s.
-→ n→∞ 0 Proof for conditional distributions11 and CATE12 but the proof scheme applies more generally.

In order to get the variation hypothesis we need the continuity of θ and either the random split and γ-regularity hypothesis or, the convergence of the empirical loss function to the theoretical one (with some uniformity on the cells C ) and the fact that the theoretical loss function is 0 on a cell C of a theoretical tree13 implies that θ is zero on C . This last condition is true e.g. in the CATE estimation setting for a large class of functions (including sums, products, dense classes).

Consider the model Y = m(X) + ε with m(•) in the ♠-class14 and ε with ligth tails.

Proposition

For any h ∈ N fixed, for any empirical tree with node sizes greater than C √ n(ln n) β , β > 5 2 , consider a node at height h in the theoretical tree (resp. empirical tree) and T h the set of theoretical trees of height h, then

let A = d j=1 [a j , b j ] and A n = d j=1 [a n j , b n j ]. We have: inf T h max j=1,...,d max |a j -a n j |, |b j -b n j | -→ 0 a.s. as n → ∞.

Proposition

For any h ∈ N fixed, for any empirical tree with node sizes greater than C √ n(ln n) β , β > 5 2 , consider a node at height h in the theoretical tree (resp. empirical tree) and T h the set of theoretical trees of height h, then

let A = d j=1 [a j , b j ] and A n = d j=1 [a n j , b n j ]. We have: inf T h max j=1,...,d max |a j -a n j |, |b j -b n j | -→ 0 a.s. as n → ∞.
Proved for CART trees14 and for causal forests15 .

One of the main idea to prove the constistency of random forests is to use an auxiliary sample: let (X i , Y i , i = 1, . . . n) be a second sample, independent from (X i , Y i , i = 1, . . . , n) and consider the weights

ω n,i (x, Θ) = 1 k k j=1 1 X i ∈An(x,Θ j ,Dn) N n (x, Θ j , D n )
and the corresponding estimator θ n of θ. We prove: 

1 θn (x) -θ n (x)

Conclusion

We consider simulated data close to causal frameworks previously studied17 . X ∼ U([0, 1] p ), W ∼ Bern(0.5) and Y = τ (X)W + βγ(X), p = 10, τ (x) = sin(x 1 ) and γ(x) = cos(2x 2 + 3x 3 ). The scalar β allows to consider the impact of the magnitude of τ relative to γ. Example 1: Y |X ∼ N (0, 1 + 1(X 1 > -0.5)), p = 10, X j , j = 1, 2, ..., 10 are independent draws from uniform distribution U(-1, 1), x i = (x i , 0, 0, ..., 0), and x i is taken from regular grid over [-1, 1].

Example 2: Y = X 1 -X 2 + ε, X j , j = 1, 2, ..., 10 are independent draws from X j ∼ Exp(1), ε ∼ N (0, 1), 

x i = (x i1 , x i2 , 1, 1, ...,

Conclusion.

Use Goal Oriented Random Forest for specific purposes:

better estimation (in general) better interpretability.

Results developped for CATE and conditional quantile estimations but other quantities are reachable.

General scheme for a.s. consistency results.

Theoretical random forest = a powerfull tool to better understand the random forests methods.
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Theroetical trees

A theoretical tree is grown following the same rules as an empirical tree, except that the theoretical equivalent of the empirical split criterion on a node C is used to choose the best split. E.g. for the CART-tree, the theoretical split criterion is:

Hence, a theoretical tree is obtained thanks to the best consecutive cuts (j , z ), among j ∈ M try , z ∈ C j optimizing the previous criterion L C (•, •). Table : Frequencies of splitting on X 1 at depths 3, 5 and 10 and importance of X 1 .

CATE estimation: interpretability

CATE estimation: a non linear framework

Let X ∼ U([0, 1] p ), W ∼ Bern(0.5) and Y = sin(X 1 )(W + 2) 3 + cos(X 2 ), where p = 3. Hence we have CATE that satisfies: τ (x) = 19 sin(x 1 ).

Method RMSE importance GRF 0.321 0.777 HTERF 0.209 1

Table : Root mean squared errors of GRF and HTERF methods that estimate heterogeneous treatment effect, with 500 tree forests. We also consider the importance of X 1 .