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Introduction

A (re-)insurer observes many (positive) random variables that
represent losses from several portfolios of risks.
A major topic is the evaluation and modeling of the dependency
between those risks. Indeed, the properties of this dependency has
a huge impact on the behavior of the total loss, and therefore on
the capital management of the company.

Risks can be heavy-tailed, skewed, and are usually dependant with
each other, including in the extremes.

The infinite divisibility may be a wanted property.
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Why infinite divisibility ?

Definition (ID r.v. X)
1 X is n-divisible if and only if there exists X1, ...Xn i.i.d. such

that X = X1 + ...+ Xn
2 X is ID iff this can be done for all n.
3 Xi is called a piece of X .

Dependencies are largely unobservables in reinsurance;
Experts are providing information as divisibility parameters:
"20% of this is driven by the same risk factors as 10% of
that.." this means comonotonic pieces accross marginals.
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Company’s Solvency
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SC (Solvency Capital): regulatory capital calculated using a risk
measure that the re-insurer must have to absorb potential losses.
For example, in the Solvency II directive of the European Union, it
is the VaR(99.5%) of the P&L distribution.
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Risk factors modelisation

In the internal modeling point of view, the distributions of several
losses X1, . . . ,Xd are supposed to be known, but the dependence
structure between them must still be evaluated and taken into
account to assess the variability and behavior of the total loss:

d∑
i=1

Xi .

It might be achieved by a risk factors decomposition: Xi =
k∑

j=1
Xi ,j ,

where Xi ,j ,X`,j are either independent or comonotonic.
Divisibility allows to interpret the Xi ,j as pieces of Xi .
=⇒ multivariate generalized Gamma convolutions give an answer
to that question.
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Recall Gamma distributions

Well known class of infinite divisible distributions.
X ∼ G(k, θ) if its density function is:

xk−1ek/θ

Γ(k)θk .
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Multivariate Gamma convolutions classes Gd ,n and Gd

x, t ∈ Rd , Recall: Cumulant generating function:
K (t) = ln

(
E
(
e〈t,X〉

))
.

Multivariate Thorin Classes 1

X ∼ Gd ,n(α, s)⇔ K (t) = −
n∑

i=1
αi ln (1− 〈si, t〉)

X ∼ Gd (ν)⇔ K (t) = −
∫

ln (1− 〈s, t〉) ν(∂s).

Example
All gammas, log-Normals, Paretos, α-stables, and sums and/or
products of these are in G1.

No estimation procedures were available before our work.
1 Lennart Bondesson (Nov. 2009). en. In: Journal of Statistical Planning

and Inference
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Motivation: interpretability of Gd ,n models

X ∈ Gd ,n has an additive risk-factor structure: there exists gamma
random variables G1, ...Gn such that:
X1
...
Xd

 =

s1,1 ... ... s1,n
... ... ... ...

sd ,1 ... ... sd ,n

 ·
G1
...
Gn


1 For all i ∈ 1, ..., n,

Gi ∼ G1,1(αi , 1)
2 G1, ...,Gn are

independent.
Goal: Estimate ν from observations of the random vector X.
Pb: It is a deconvolution problem, which is numerically hard (can
also be interpreted as a solution-less moment problem for the
Thorin measure, see MFK 2).

2 Justin Miles, Edward Furman, and Alexey Kuznetsov (2019). In: Variance
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The orthonormal Laguerre basis of L2(Rd
+)

Consider the following orthonormal basis of L2(Rd
+) called Laguerre

basis 3: let p ∈ Nd ,

φp(x) =
d∏

i=1
φpi (xi ), with φp(x) =

√
2

p∑
k=0

(p
k
) (−2x)k

k! e−x .

Any square integrable distribution density f can be expended as :

f (x) =
∑

p∈Nd

apφp(x) where ap =
∫
φp(x)f (x)∂x

3 Florian Dussap (2021). In: Journal of Statistical Planning and Inference
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Estimation
Consider a random sample X1, . . . ,XN of X ∈ Gd (α, s). Let

âp = 1
N

N∑
i=1

φp(Xi ).

Consider the integrated square error loss:
L(α, s) = ∑

k≤m
(âk − ak(α, s))2 and

(α̂, ŝ) = argmin(α,s)L(α, s).

Remark that the theoretical Laguerre coefficients may be
computed using the formula:

ak = 〈φk, f 〉 = E (φk(X)) =
√
2d ∑

k≤p

(
p
k

)
(−2)|k|

k! E
(
X ke−|X|

)
.
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Consistency

We have the following consistency result 4 under the thechnical
well-behaved asumption (which holds for univariate Gamma
convolutions, independent multivariate Gamma convolution and
invertible linear transformations of them e.g.).

Theorem
If X is drawn from an ε-well-behaved density fα,s ∈ Gd (α, s) then,

‖f(α̂,̂s) − fα,s‖22
a.s−−−−→

N→∞
m→∞

0.

4 Oskar Laverny et al. (Jan. 2021). In: Electronic Journal of Statistics
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Dimensionality issues

The loss L(α, s) is too costly to work with when d gets large.
Indeed, the number of coefficents to compute is given by

D(m, d) =
m∑

i=1

(
i + d − 1

d − 1

)
.

which is exponentially increasing in d and therefore unusable in
high dimension (ok until d = 4 or 5.

Improvement of the method by Oskar Laverny 5 by using an
approximation of an integrated loss function and random
projections (tested for d = 1000).

5 Oskar Laverny (2022). In: arXiv preprint arXiv:2203.13741
15 / 22



Introduction / motivation Multivariate generalized Gamma convolutions Simulations References

Plan

1 Introduction / motivation

2 Multivariate generalized Gamma convolutions

3 Simulations

16 / 22



Introduction / motivation Multivariate generalized Gamma convolutions Simulations References

Multivariate log-Normal

Figure: MLN case: n = 10
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Multivariate log-Normal

Figure: MLN case: n = 20

18 / 22



Introduction / motivation Multivariate generalized Gamma convolutions Simulations References

Tail dependency: A Clayton copula

Figure: Clayton case: n = 20
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Conclusions

The univariate Thorin class is wide: LN, Pareto, α-stable,
(some) Weibull, ...
The Multivariate analogue provides an asymmetrical
dependence structure which include tail dependency, and can
take a lot of different shapes.
Deconvolution is a hard inverse problem, and estimation of
these distributions is complicated.
The final additive risk-factor model gives easy interpretation
of parameters and easy aggregation schemes. Should be
shortly used by SCOR in some parts of their internal model.
Improvement to go to high dimension in Oskar’ work 6 and
the open-source Julia package 7 provides the implementation.

6 Oskar Laverny (2022). In: arXiv preprint arXiv:2203.13741
7 Oskar Laverny (Mar. 2021). Version v0.1
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Thank you

Thanks for your attention.
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