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Editorial on the Research Topic

Brain dopaminergic mechanisms

Dopamine was first synthesized in 1910. It was initially named 3-hydroxytyramine and

gained little interest in the science community. About a half-century later, neuroscientists

started to realize that dopamine is a neurotransmitter and plays a key role in Parkinson’s

disease (PD). It was then formally renamed “dopamine” by Sir Henry Dale at the Physiology

Society Meeting at Cambridge (Hornykiewics, 1986). Now, more than a century after

its discovery, dopamine remains the key player in brain control of motor functions,

activity state, reward, and drug addiction and is tightly incorporated in multiple interplay

circuits. In this Research Topic, we collected research articles investigating dopamine-

related mechanisms of regulating neuronal properties and potentially PD, as well as non-

dopaminergic modulation of such regulations at the level of the basal ganglia interplay.

Likewise, review articles discuss the dopamine-related basal ganglia circuits and network

determinants of motor disability in PD.

In PD, midbrain dopaminergic neurons innervating the basal ganglia are lost. This

results in an increased neuronal activity, particularly exaggerated beta oscillations, in the

basal ganglia (Deffains and Bergman, 2019). In the basal ganglia’s input nucleus, the

striatum, the hyperactivity is generally thought to be due to hyperactivity in spiny projection

neurons (SPNs) that consist of 95% of cells in the striatum. However, Padilla-Orozco

et al. found it is not the SPNs, but the cholinergic interneurons (CINs) that are the

main source of hyperactivity in dopamine-depleted striatum. This consists with decades of

clinical observations that when striatal dopamine level drops, acetylcholine level rises, and

anticholinergic drugs were used to treat the motor symptoms of PD in the pre-levodopa

era. The authors further showed that changes in both intrinsic and synaptic properties

contribute to CIN hyperactivity. Among the synaptic inputs, not only glutamatergic, but also

GABAergic and nicotinic transmission drive the pathological hyperactivity in CINs. These

different mechanisms that all contribute to CIN hyperactivity during parkinsonism provide

new directions for future investigations on basal ganglia hyperactivity and therapeutic targets

for treating PD.

Other than motor symptoms, PD patients also suffer non-motor symptoms, including

sleep disorders, speech problems, fatigue, pain, anxiety, depression, hallucination, etc.

Dopaminemedication can also induce impulsive-compulsive behaviors (ICBs), exacerbating
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incentive motivation and choice impulsivity. To better understand

the neurocognitive mechanisms underlying ICBs in PD, Dawson

et al. performed a deep evaluation of impulsivity in PD patients

with and without ICBs. The authors confirmed that PD patients

with ICBs show an exacerbation of incentive motivation and

choice impulsivity. Specifically, they have a higher tendency to

choose hard tasks regardless of reward probability and have a high

level of delay discounting. The authors also examined antisocial

behaviors and found greater reactive aggression in PD patients with

ICBs. The authors concluded that a transdiagnostic neurocognitive

endophenotype approach should be adopted to understand and

predict the addictive and aggressive behaviors in PD patients under

dopamine medication.

The cardinal motor symptoms of PD are caused by the loss

of midbrain dopaminergic neurons. Alzheimer’s disease (AD),

another common neurodegenerative disorder, is characterized

by the loss of glutamatergic and cholinergic neurons in the

forebrain as well as other regions. Growth factors that have

neural protective effects in principle should protect neuronal

loss and maintain synaptic transmission. A key issue with

most growth factors is the ability to cross the blood-brain

barrier. Hölscher reviewed studies on glucagon-like peptide 1

(GLP-1) and glucose-dependent insulinotropic peptide (GIP)

receptor agonists that are ready to cross the blood-brain

barrier for the protection of PD and AD. In PD mouse

models, GLP-1 and GIP receptor agonists enhanced dopamine

levels in the striatum, protected dopaminergic neuronal loss,

and improved motor functions. Similarly, these agonists also

enhanced synaptic transmission, protected synaptic plasticity,

and facilitated learning and memory in AD mouse models.

Various clinical trials of different GLP-1 and GIP agonists

have also shown protective effects in PD and AD patients.

Ongoing and future trials, particularly of dual receptor agonists,

are promising in developing effective and safe treatments for

PD and AD. This is even more exciting given the recent

FDA approval of dual receptor agonists tirzepatide that is

superior to GLP-1 agonist semaglutide in treating diabetes at

much higher doses but with similar mild to moderate side

effects (Frías et al., 2021).

Dopamine release is spatiotemporally regulated by

multiple mechanisms, including tonic and phasic, axonal and

somatodendritic, somatic activity-driven and distal activity-driven

mechanisms. Recent studies suggest Nogo receptor 1 (NgR1) may

also regulate dopamine release. The article of Arvidsson et al. used

both NgR1-overexpression and NgR1 knockout mice to study

how NgR1 affects dopamine release. The authors found NgR1

overexpression reduced dopamine release while NgR1 knockout

increased dopamine release. While dopamine may induce global

synaptic plasticity changes via broad dopaminergic projections,

NgR1 modules local structural changes. This work suggests a

mechanism where neuronal activity temporally down-regulates

NgR1 expression, which leads to an increase in dopamine release,

together these create a window where local and global synaptic

plasticity regulating systems may work in synergy for learning and

memory consolidation.

The functional circuit organization of the basal ganglia consists

of two major pathways initiating from the striatal SPNs. The

direct pathway SPNs project directly to the basal ganglia output

structures, the substantia nigra pars reticulata and globus pallidus

interna; the indirect pathway SPNs project indirectly to the output

structures via the globus pallidus externa and the subthalamic

nucleus. Interestingly, it was found that the direct pathway SPNs

express type 1 dopamine receptors (D1Rs) while the indirect

pathway SPNs express type 2 dopamine receptors (D2Rs). However,

this conclusion did not come easily. Gerfen wrote an excellent

historical review on this topic where he played the central role in

not just demonstrating the receptor expression patterns in these

two pathways, but also creating the first mouse lines labeling these

two pathways that are most commonly used in the basal ganglia

field now. Gerfen also integrated more recent findings that have

challenged the classical “go/no-go” model of the direct and indirect

pathways and proposed a more complex circuit organization of the

basal ganglia, particularly at the globus pallidus externa.

Dopamine-induced changes in the nucleus accumbens are

crucial for reward learning and drug addiction. In turn, McDevitt

et al. investigated how morphine, a highly addictive opioid,

alters the synaptic and intrinsic properties of the dopamine

cellular targets: D1R- and D2R-expressing SPNs in the nucleus

accumbens shell. They found morphine treatment did not alter the

synaptic and intrinsic properties in D1R-SPNs. However, morphine

treatment reduced the frequency of both the miniature excitatory

and inhibitory postsynaptic currents in D2R-SPNs. Interestingly,

they found that as the frequency of the miniature postsynaptic

currents decreased, there’s a concomitant increase in D2R-SPN

intrinsic excitability. Notably, the functional output of synaptically-

driven firing in D2R-SPNs was unchanged, suggesting a potential

mechanism for homeostatic modulation of neuronal activity in

D2R-SPNs upon morphine exposure.

Another recent study led by the Surmeier group also challenged

the classical model with their finding that striatal dopamine

depletion is not sufficient to induce PD motor symptoms, but

dopamine depletion throughout the basal ganglia is (Gonzalez-

Rodriguez et al., 2021). Surmeier et al. therefore raised eight

problems with the classical model and provided detailed discussion

on (1) the striatal circuit with an emphasis on the role of

cholinergic modulations, (2) striatal adaption in PD focusing on

how dopamine depletion-induced synaptic plasticity changes affect

SPN ensembles essential for motor functions, (3) dopamine release

beyond the striatum, particularly en passant release in nuclei

downstream of striatum and dendritic release in substantia nigra

pars reticulata.

More than a century has passed since the initial synthesis

of dopamine. Still more is going to be discovered regarding

dopamine’s function in health and diseases. We hope you enjoy

reading this Research Topic and we look forward to new advances

in the dopamine field.
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