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Abstract
The influence of topography and land cover on air temperature space-time variability is examined in an urban environment 
with contrasted topography through simple and multiple linear regression (SLR and MLR) models, ran for each hour of the 
period 2014–2021, to explain spatial patterns of air temperature measured by a dense network. The SLR models reveal a 
complementary influence of topography and land cover, with the largest influence during daytime and nighttime, respectively. 
The MLR significantly improves upon the SLR models despite persistent intensity errors at night and spatial errors in the 
early morning. Topography influences air temperatures all year round, with temperature decreasing with height during the 
day and frequent thermal inversions at night (up to 30% of the time). Impervious surfaces are more influential in summer and 
early fall, especially during the late afternoon for the fraction covered by buildings and during the early night for the distance 
from the city centre. They contribute to increase air temperature close to the city centre and where the fraction covered by 
buildings is large. By contrast, vegetation contributes to cool air temperature during the night, especially in spring and early 
summer for field crops, summer and early fall for forests, and late fall and winter for low vegetation. Our framework proves 
to be a low-cost and efficient way to assess how strongly and how recurrently the static surface conditions influence air 
temperature along the annual and diurnal cycles. It is easily transposable to other areas and study fields.

1 Introduction

There is growing interest for understanding air temperature 
space-time variability in urban environments, because cit-
ies are highly vulnerable to climate change and are home 
for about 60% of the world’s population—a percentage 
expected to reach 70% by 2050 according to the United 
Nations (2019). The most popular phenomena under study 
are the so-called Urban Heat Islands (UHIs). UHIs corre-
spond to a well-known mechanism inducing warmer surface 

and air temperature over urban than nearby rural areas, due 
to sensible heat absorption and storage by mineral surfaces 
and buildings and weak evapotranspiration of impervious 
surfaces (Oke 1973, 1982; Oke et al. 2017). UHIs exacer-
bate human thermal stress in summer, especially during heat 
waves and hot spells (Fouillet et al. 2006; Matzarakis et al. 
2009; Gabriel and Endlicher 2011; Steeneveld et al. 2011; 
Pascal et al. 2018), but may also be an opportunity dur-
ing winter to reduce energy consumption (Li et al. 2019) 
and cold-related mortality compared to adjacent rural areas 
(Macintyre et al. 2021).

Many previous studies dedicated to assess the drivers of 
urban air temperature variability have focused on UHIs and 
compared individual effects through correlation and regres-
sion analyses. This has been done considering individual 
factors (Oke 1973; Jusuf et al. 2007; Imhoff et al. 2010; Tan 
and Li 2015) and more rarely multiple factors (Peng et al. 
2012; Coseo and Larsen 2014; Wang et al. 2021). The UHI 
intensity increases proportionally to the size and population 
of the urban area (Oke 1973) and under calm (wind speed 
<2 m/s), clear-sky, and dry-air conditions (Oke 1982; Morris 
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et al. 2001; Mestayer et al. 2005; Hoffmann and Schlünzen 
2013; Arnds et al. 2017). In addition, strong UHIs are often 
associated with thermal inversions even in relatively flat cit-
ies (Oke and Maxwell 1975; Nkemdirim 1980; Goldreich 
1984; Kuttler et al. 1996; Szymanowski 2005; Hidalgo et al. 
2010; Bokwa et al. 2015). Elevation and landforms have 
been shown to modulate UHIs, e.g. with air temperature 
cooling with elevation during the day and colder conditions 
on northern than southern slopes (in the Northern Hemi-
sphere; Zhao et al. 2016; Peng et al. 2020). Landforms also 
significantly affect spatial patterns of air temperature (Gei-
ger et al. 2003; Whiteman et al. 2004). After sunset, cold 
air tends to slide downslope and accumulate in the valley 
bottoms (katabatic wind), while hilltops and upper slopes 
experience milder temperatures. Conversely, in the middle 
of the day, warm air is further heated by contact with the 
ground and tends to rise along hillslopes exposed to the sun 
(anabatic wind). These landform-induced thermal effects, 
also known as slope breezes, influence air temperature well 
beyond the hillslopes where they are generated. Finally, land 
cover strongly perturbs the surface energy and radiation bal-
ance (Oke 1982) and can lead to marked air temperature 
contrasts both within cities, but also between them and 
their rural surrounding environment. Mineral surfaces tend 
to slow nighttime cooling (Eliasson 1996), thereby caus-
ing temperature gradients with plant-covered surfaces that 
cool more rapidly (Sun et al. 2009; Sun 2011; Heusinkveld 
et al. 2014; Song et al. 2014). Green areas form Urban Cool 
Islands (UCIs), which can contribute to decrease air temper-
ature 300 to 1000 m beyond their spatial extension (Petralli 
et al. 2014). City centres are not systematically the hottest 
parts, depending on local shading and canyon effects (Hart 
and Sailor 2009; Sun et al. 2009).

The assessment of topography and land cover effects on 
air temperature space-time variability has been facilitated 
by the development of fine-scale digital terrain models 
and vectorial database describing land cover at high spa-
tial resolutions. These effects vary over both annual and 
diurnal cycles (e.g. Fenner et al. 2014; Wicki and Parlow 
2017; Nikoloudakis et al. 2020) and are modulated by cli-
matological and meteorological conditions (Johnson et al. 
1991; Alcoforado and Andrade 2006; Heusinkveld et al. 
2014), thereby suggesting potential additive or antagonist 
effects depending on the time of day and year. Furthermore, 
an accurate assessment of the drivers of urban air tempera-
ture variability requires to sample air temperature at high 
spatial resolution and over a long time period (e.g. multi-
ple years) to account for (i) the diversity of land cover and 
topographical properties within and around the city, (ii) the 
huge thermal range along the annual and diurnal cycles, and 
(iii) internal variability of the climate system (e.g. weather 
systems). To date, very few networks fulfil this requirement. 
In France, for instance, two cities only are equipped with a 

dense network recording air temperature for 10 years or so 
(Rennes and Dijon).

This paper explores the individual and combined influ-
ences of topography and land cover on air temperature 
space-time variability as measured in Dijon, France, by a 
dense station network (up to 67 sites) from 2014 to 2021. We 
build over previous studies by applying Simple and Multiple 
Linear Regression (SLR/MLR) analyses to assess the indi-
vidual and combined effects of topography and land cover 
on air temperature spatial patterns along both the annual and 
diurnal cycles. The originality of the approach is twofold. 
First, the regression approach is not used in a predictive 
mode (e.g. one unique or few SLR/MLR models) but as a 
framework to objectively identify the influence of individual 
factors and their combination explaining each air tempera-
ture spatial pattern. This implies one SLR/MLR model to 
be built for each hour for the period 2014–2021. Second, 
in addition to traditional metrics used to assess individual 
and combined influences (e.g. root mean square error and 
coefficient of determination), we also examine the frequency 
of occurrence and mean regression coefficient associated 
with SLR and MLR predictors along the annual and diurnal 
cycles, to pinpoint how recurrently and how strongly they 
influence the spatial patterns of air temperature, based on a 
~10-year-long period.

The paper is organized as follows. Section 2 presents the 
site area, the data, and the SLR and MLR frameworks. Sec-
tion 3 presents both the individual and combined influences 
of the predictors in the SLR and MLR frameworks, respec-
tively. Section 4 gives the main conclusions and discusses 
the limitations of our work.

2  Material and methods

2.1  Site area

The study area is Dijon located in Burgundy, eastern 
France. Dijon is a mid-sized European city of about 
260,000 inhabitants that covers 240  km2 (Fig. 1). The 
city is bordered to the west by a ~500 m elevated plateau 
(Fig. 2a–c) that is largely forested (Fig. 2g). This plateau 
is incised by a steep-sided valley (Fig. 2a–c) that is mostly 
grassland (Fig. 2i). The ~220 m plain lying east of the city 
(Fig. 2a–c) is covered by field crops (Fig. 2h), forests, 
and ponds further east (Fig. 2i). The city is characterized 
by three main built-type categories forming a concentric 
pattern: compact mid-rise in the city centre and compact 
low- and high-rise further from the city centre (Emery 
et al. 2021). Forests and low vegetation are sparse within 
the city, except for a 33 ha urban park some 3 km south-
east of the city centre, a 37 ha lake surrounded by parks in 
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the western part of the city, and the River Ouche (Fig. 2g, 
i) that flows through the city from northwest to southeast 
(Fig. 1).

Dijon is characterized by a Köppen temperate oceanic 
climate (Cfb) on the European scale and by a continental-
like climate on the French scale (Joly et al. 2010). The 
climatological conditions, derived from the Météo-France 
synoptic station located south-east of the city (blue dot in 
Fig. 1), are characterized by wide variability in diurnal 
temperatures and insolation over the annual cycle, with 
relatively hot summers and cold winters (Fig. 3a, b). This 
contrasts with rainfall amounts, which vary barely over 
the mean diurnal and annual cycles (Fig. 3c). Rainfall 
amounts seem to be slightly higher in the late afternoon 
when convective precipitation dominates (April to July; 
see Marteau et al. 2015) and at night when stratiform pre-
cipitation prevails (November to February: ibid.). Wind 
speeds display a somewhat insubstantial annual cycle, but 
a prominent diurnal cycle shows higher speeds during the 
day (Fig. 3d). At night, south-westerlies dominate during 
winter and north-westerlies dominate during the remaining 
seasons (Fig. 3e, f).

2.2  Data

2.2.1  Hourly air temperature measurements

Hourly air temperatures are taken from the MUSTARDi-
jon network (Richard et al. 2018; Fig. 1). The network is 
equipped with sensors measuring near instantaneous tem-
peratures every hour at 3 m above ground level since 6 
June 2014. The network has been progressively densified 
from 50 sensors in 2014 to 67 in 2021 (Fig. 1). Until 2019, 
air temperatures were measured with HOBO Pro v2 U23-
001A sensors, which were accurate to ±0.25 °C from −40 
to 0 °C and ±0.2 °C from 0 to 70 °C, and measurements 
were collected manually, once a year. These sensors were 
replaced by automatic HOBO MicroRX stations equipped 
with HOBO S-THC-M002 sensors between 2020 and 2021 
(Fig. 1). The new sensors have a similar accuracy, but 
their response time is shorter (~4 min compared to ~10 
min for the previous sensors). This induces slightly more 
pronounced air temperature variability when measured by 
the newer sensors, but these changes do not significantly 
impact our results.

Fig. 1  Location of the sensors recording hourly air temperatures in 
Dijon and evolution in the MUSTARDijon network from 2014 to 
2021. The inset box shows the same features for the city centre. Small 
dots with warm colours indicate the deployment date of the sensors. 
Large rings with cold colours indicate the date of the changeover 

from manual to automatic recovery of the data. The large red dots 
show the stations that have been closed. The large blue dot indicates 
the Météo-France weather station used to describe the mean climate 
conditions over Dijon
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The World Meteorological Organization gives recom-
mendations that differ between rural (e.g. Cerlini et al. 2020) 
and urban environments (Schlünzen et al. 2023). The MUS-
TARDijon network follows the main recommendations for 
urban environments. Each station is georeferenced and char-
acterized in terms of Local Climate Zone (Stewart and Oke 
2012; Richard et al. 2018). Each air temperature sensor is 
accompanied by metadata describing instrument type and 
change (if any) and reporting date, time, and cause of sen-
sor’s replacement and failure. The network is now part of the 
Service National d’Observation Observil (https:// sno- obser 
vil. fr/), a French observatory dedicated to monitor urban envi-
ronments, certified in 2020 by the National Institute of Uni-
verse Sciences (INSU) of the National Center for Scientific 
Research (CNRS). Hourly time series from each sensor have 
been quality-checked from 6 June 2014 to 31 December 2021, 
the period considered in this study, with systematic removal 
of aberrant values based on standard deviation analysis and 
comparisons between the nearest sensors. Overall, ~3.5 % of 
data are missing due to maintenance and outlier removal.

The network has been designed to capture mesoscale 
rather than local or microscale thermal conditions (Oke 
1984, 2006). While the sensors describe all land cover 

categories and landforms at various elevations (Fig. 2), some 
peculiarities need to be accounted for to interpret the results. 
In particular, 85% of the sensors have an elevation below 
300 m and are located less than 6 km from the city centre, 
while sensors over rural areas are much fewer, especially 
over the plateau, west of the city. This is because the pri-
mary objective of the network was to characterize the local 
UHI over the agglomeration (Richard et al. 2018). Therefore, 
although the network is optimal to monitor urban areas, it is 
less suited to assess the role of topography on air tempera-
ture variability.

2.2.2  Topography and land cover descriptors

Three categories are used as potential predictors to explain 
observed air temperature space-time variability at the hourly 
timescale: (i) topography, (ii) distance from the city centre, 
and (iii) land cover (Fig. 2).

Topography descriptors are derived using the 50 m 
resolution Digital Terrain Model (DTM) from the Insti-
tut Géographique National (IGN). We consider the eleva-
tion of the closest 50 m pixel for each sensor (Fig. 2a and 
Table 1), since elevation drives a west–east gradient in air 

Fig. 2  Topography and land cover descriptors mobilized as potential 
predictors in the MLR models to interpolate hourly air temperatures 
measured by the MUSTARDijon network in Dijon. a–c Topography 
descriptors. d–f Distance from the city centre and urban descriptors. 

g–i Vegetation descriptors. Circles or rectangles show the descriptor 
values associated with each sensor used to build the SLR and MLR 
models. Shading shows the descriptor values on a 100 m × 100 m 
grid covering Dijon. See the main text for details

https://sno-observil.fr/
https://sno-observil.fr/
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Fig. 3  Hourly climatology in 
Dijon for the period 2014–2021. 
a 2 m temperature. b Insola-
tion. c Rainfall amounts. d 
10 m wind speed. e, f Zonal 
and meridional wind speed, 
respectively. The hourly records 
are measured by the Météo-
France weather station located 
south-east of the city (blue dot 
in Fig. 1)

Table 1  Predictors used as independent variables in the simple and 
multiple linear regression (SLR and MLR, respectively) models to 
explain hourly air temperature patterns measured by the MUSTARDi-
jon network (dependent variable). The SLR models are fed by each 
of the 8 predictors listed in column 2. The MLR models are fed by 5 

predictors at most out of the 6 groups of predictors, coloured in grey 
scale in column 2. They never use either distance from the city centre 
and the fraction of buildings or elevation and hump magnitude at the 
same time to avoid multicollinearity issues

Predictor Definition

Tendency term Distance from the city centre (m)
Euclidean distance between each station 

and the city centre (Libération square)

Land cover

Fraction of buildings (%)

Fraction computed on 300 m circular 

buffer around each station

Fraction of forests and water (%)

Fraction of field crops (%)

Fraction of low vegetation (%)

Topography Elevation (m) closest 50 m pixel

Land form
Hump magnitude (m)

average of the 7 closest 50 m pixels
Valley magnitude (m)
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temperature across Dijon (Richard et al. 2018). Landform 
effects are accounted for by considering the magnitude of 
humps and of valleys (Fig. 2b, c), which characterize the 
height or depth of a positive or a negative relief relative to 
a topographic reference point. Following Joly et al. (2012), 
the magnitude of humps and valleys has been computed 
in three stages. First, ridgelines and thalwegs have been 
identified using the Peucker and Douglas (1975) algorithm 
applied to the DTM elevation spatially averaged over 
seven 50 m pixels. This allows one to focus on the most 
prominent ridgelines and thalwegs, which would have been 
too noisy using 5 pixels and too smoothed using 9 pixels 
(Supplementary Fig. S1). Second, we have constructed two 
fictitious topographic surfaces: (1) the “ceiling” passing 
through all the ridgelines to encompass all of the emerg-
ing relief and (2) the “floor” joining up all the thalwegs. 
Between these two surfaces, the distance varies locally 
with the altitudinal position of the ridgelines relative to 
the thalwegs. The ridgelines and thalwegs, often separated 
by great distances, depict surfaces with a long radius of 
action. Finally, hump magnitudes are obtained by the dif-
ference between the altitude of the floor vertically below 
pixel p and the elevation of the same pixel p provided by 
the DTM. Similarly, valley magnitudes are the difference 
between the altitude of the ceiling vertically above pixel p 
and the altitude of pixel p.

The distance from the city centre is an isotropic ten-
dency term which implicitly describes the decrease in 
urban density (resulting therefore in a similar decrease in 
impervious surfaces) with distance from the city centre 
(Fig. 2d). This tendency term is known to affect air tem-
perature spatial patterns in urban environments (Edmond-
son et al. 2016) and is computed as the Euclidean dis-
tance between each station and the city centre (Libération 
square: black cross in Fig. 1).

Land cover descriptors have been derived using a hybrid 
product mixing the French BD TOPO database (version 
2, 2020) developed by IGN and one satellite image from 
Pléaides (https:// www. eopor tal. org/ satel lite- missi ons/ 
pleia des) acquired in August 2015 at 2 m resolution. The 
BD TOPO2 is preferred to other products (e.g. MAPuCE; 
Bocher et al. 2018) for consistency with other projects 
in which our team is currently involved. Vegetation in 
BD TOPO2 is obtained by automatic classification using 
supervised learning followed by a series of processing 
operations during which the unwooded vegetation-covered 
surfaces are removed (e.g. meadows and grasslands) for 
polygons of less than 50 ares (i.e. 5000  m2). The Pléiades 
image is used to make up for this missing information 
by calculating the modified soil-adjusted vegetation index 
(MSAVI version 2; Qi et al. 1994) based on the red (590 
to 710 nm) and near-infrared (740 to 940 nm) spectral 
bands (Eq. 1).

The MSAVI2 is an index designed to substitute the nor-
malized difference vegetation index (NDVI) where it fails 
to provide accurate data due to low vegetation or a lake of 
chlorophyll in the plants (Qi et al. 1994). It improves upon 
the NDVI by incorporating a soil adjustment factor into the 
denominator of the NDVI equation. This greatly improves 
vegetation models (Bannari et al. 2000). This additional fac-
tor varies inversely with the amount of vegetation present, 
which increases the dynamic range of the vegetation signal 
while further minimizing the soil background influences (Qi 
et al. 1994).

The BD TOPO2–Pléiades hybrid product is used to 
derive the area fraction covered by (i) buildings (Fig. 2e), 
(ii) artificial surfaces (buildings and transport infrastruc-
tures; Fig. 2f), (iii) forests and water (Fig. 2g), (iv) field 
crops (Fig. 2h), and (v) low vegetation (Fig. 2i). Following 
Foissard et al. (2019), these descriptors have been computed 
within a circular buffer of 50 to 600 m radius, every 50 m, 
and around each sensor, to assess the impact of the buffer 
size on air temperature spatial variability. The impact of the 
buffer size is weak for the fraction covered by buildings and 
field crops but is non-negligible for the fraction covered by 
forests and water and by low vegetation (Supplementary 
Fig. S2). A 300 m radius leads to satisfactory results for 
all land cover descriptors and is thus retained in this study. 
Thus, the total area fraction covered by artificial surfaces 
and the three vegetation categories equals 100%, a necessary 
step guaranteeing that there is no loss of information and no 
overlapping information in our BD TOPO2–Pléiades hybrid 
product. Importantly, this product gives an instantaneous 
view of land cover, which is by no means perfect since we 
use it to assess its impacts on air temperature spatial patterns 
for the period 2014–2021. However, land cover properties 
did not drastically change around the sensors during this 
period, allowing us to use static land cover descriptors with 
confidence.

To limit information redundancies, the collinearity 
between the above-described descriptors has been exam-
ined (Supplementary Fig. S3). Four couples of descriptors 
depict strong collinearities: (i) elevation and hump magni-
tude (r=0.87), (ii) distance from the city centre and frac-
tion of buildings (r=−0.71), (iii) fraction of buildings and 
artificial surfaces (r=0.66), and (iv) fraction of artificial 
surfaces and field crops (r=−0.62). Based on these results, 
we decided to exclude artificial surfaces from the analyses, 
since this descriptor is significantly correlated with many 
others (Supplementary Fig. S3). When assessing the com-
bined effects of the predictors, we similarly decided to retain 
only the best predictor (based on p values, calculated hourly; 

(1)
MSAVI2 =

2 × NIR + 1 −
√

(2 × NIR + 1)
2 − 8 × (NIR − RED)

2

https://www.eoportal.org/satellite-missions/pleiades
https://www.eoportal.org/satellite-missions/pleiades
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see Section 2.3) between elevation and hump magnitude on 
the one hand and between the distance from the city centre 
and the fraction covered by buildings on the other hand. The 
exact list of predictors used in this study and the way they 
are computed are summarized in Table 1.

2.3  Assessing individual and combined influences 
of topography and land cover on air 
temperature space‑time variability

Individual and combined influences of the above-described 
descriptors on air temperature space-time variability are 
assessed using simple and multiple linear regression (SLR 
and MLR) frameworks, respectively. In both cases, the aim 
is not to build a predictive model for air temperature, but to 
assess the individual and combined influences of the predic-
tors in terms of frequency of occurrence and thermal effect 
(i.e. regression coefficient) without imposing subjectively 
the nature and number of predictors for MLR models.

To that end, we have constructed one SLR/MLR model 
for each hour of the period 2014–2021 when at least 40 
sensors have no missing values. Each SLR model is built 
with each of the eight predictors listed in Table 1, regard-
less of the statistical significance of its influence. This leads 
to 66,347 SLR models for each predictor out of the 66,386 
hourly timesteps of the period.

Slightly less MLR models are built (66,289) because, 
unlike the SLR models, they account for the statistical sig-
nificance of the predictors. Each MLR model is built as a 
combination of 1 to 5 out of 6 potential predictors (Table 1: 
distance from the city centre or fraction of buildings, frac-
tion of forests and water, field crops and low vegetation, 
elevation or hump magnitude and valley magnitude). For 
each hour, we first compute a SLR between each predictor 
(Table 1) and the measured air temperature pattern. This 
step allows one to select the best predictors between eleva-
tion and hump magnitude and between the distance from the 
city centre and the fraction covered by buildings, in order to 
limit multicollinearity issues (see Section 2.2). This gives 

a total of 6 potential predictors listed above. Next, we com-
pute a series of MLR models with backward elimination as 
follows. A first MLR model accounting for the 6 potential 
predictors is computed. The predictor associated with the 
largest p value is eliminated. This procedure is repeated until 
the regression coefficient of each retained predictor reaches 
the 95% confidence level (p value <0.05), with a maximum 
of 5 predictors. Retaining 5 predictors at most is the best 
compromise between MLR skill and MLR complexity (Sup-
plementary Fig. S4). The fact that the number and rank-
ing of predictors used to build each MLR model are chosen 
objectively (based on p value at the 95% confidence level) 
implies that the number and nature of predictors feeding the 
MLR models are not fixed in time (even between two suc-
cessive hours). Out of the 66,289 MLR models built for the 
period 2014–2021, 16% use 5 predictors, 23% 4 predictors, 
35% 3 predictors, 22% 2 predictors, and 4% only are based 
on SLR (with 1 predictor). In all cases, the predictors used 
to build the MLR models weakly co-vary when two or more 
predictors are used as inputs. The variance inflation factor 
remains below 2 more than 90% of the time and is almost 
always below 5 (Table 2), indicating weak multicollinearity 
issues (Craney and Surles 2002; James et al. 2017).

2.4  Statistical analyses

The individual and combined influences of topography 
and land cover on air temperature space-time variability 
are assessed by examining SLR/MLR skill metrics, as well 
as the frequency of occurrence of the predictors and their 
regression coefficients.

Two skill metrics are considered. First, the root mean 
square error (RMSE), computed for each sensor using a 
leave-one-out cross-validation (LOOCV) and then area-aver-
aged, gives insights on the SLR/MLR capability in capturing 
the observed magnitude of air temperature across the city. 
Second, the coefficient of determination (R2) for SLR mod-
els and adjusted R2  (R2-Adj) for MLR models, computed 
for all sensors at a time, assess the SLR/MLR capability in 

Table 2  Key statistics of the 
variance inflation factor (VIF) 
computed for each MLR model 
set with 5 predictors at most for 
the period 2014–2021

Predictor name Min VIF Max VIF Mean VIF Frequency of 
VIF<2 (%)

Frequency 
of VIF<5 
(%)

Distance from the city centre 1.00 2.69 1.46 91.67 100.00
Fraction of buildings 1.00 6.99 1.36 92.82 99.73
Fraction of forests and water 1.00 4.12 1.43 94.30 100.00
Fraction of field crops 1.00 5.37 1.64 92.93 99.96
Fraction of low vegetation 1.00 2.32 1.23 99.75 100.00
Elevation 1.00 2.13 1.17 99.99 100.00
Hump magnitude 1.00 2.04 1.18 99.93 100.00
Valley magnitude 1.00 1.37 1.11 100.00 100.00
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capturing the observed spatial patterns of air temperature. 
These two metrics give complementary information (mag-
nitude and spatial errors, respectively) and are used to rank 
the individual effects of topography and land cover on the 
space-time variability of air temperature (for SLR models) 
and then discuss to which extent MLR models improve upon 
the latter.

The frequency of occurrence of the predictors is exam-
ined in three different ways. First, we analyze the frequency 
of occurrence of SLR-derived positive/negative regression 
coefficients over the annual and diurnal cycles, to discuss 
the stationarity in the thermal effects of these predictors. 
Second, we compute the frequency of occurrence of each 
MLR-derived predictor as the ratio between the number of 
times it is selected in the MLR models at a given hour of a 
given month for the period 2014–2021 (numerator) and the 
total number of predictors used for the same hour, month, 
and period (denominator). Third, we compute the frequency 
of occurrence of each predictor as the ratio between the 
number of times it is selected in MLR models for each hour 
and month for the period 2014–2021 (numerator) and its 
total occurrence, all months and days combined, for the 
same period (denominator). This ratio is then compared to 
equiprobable occurrence along the annual and diurnal cycles 
(1/288, with 288 = 12 months × 24 h) to pinpoint when 
the predictors are more (positive values) or less (negative 
values) frequent than expected. The difference between real 
and equiprobable distributions is tested using a Chi-2 test. 
This methodology makes it possible to assess when each 
MLR-derived predictor preferentially occurs over both the 
annual and diurnal cycles.

The SLR- and MLR-derived regression coefficients 
describe the thermal effect of each predictor, i.e. whether a 
given predictor contributes to increase or decrease air tem-
perature in the SLR/MLR frameworks. We finally examine 
both the probability density function of SLR-derived regres-
sion coefficients and the mean MLR-derived values along 
the annual and diurnal cycles to qualitatively assess the ther-
mal effect of topography and land cover.

3  Results

3.1  Individual effects

Individual effects are assessed by analyzing the results from 
the SLR models built for each hour of the period 2014–2021 
and fed by each predictor listed in Table 1.

3.1.1  Ranking the predictor’s influence

Figures 4 and 5 show, for each predictor, the SLR-derived 
RMSE and R2 along both the diurnal and annual cycles, 

respectively. The mean RMSEs are relatively similar for all 
predictors (Fig. 4). They are lowest in the early morning (0.3 
to 0.5 °C), increase during the day, and reach their largest 
values during the night (0.7 to 1 °C). Such a diurnal cycle 
in the RMSE is less marked in fall and winter than in spring 
and summer, i.e. when air temperature and insolation are the 
lowest (Fig. 3a, b).

Spatial errors depend on the predictor feeding the SLR 
models. Four out of the eight predictors contribute to explain 
a significant fraction of air temperature spatial patterns: (1) 
elevation and (2) hump magnitude during the day (~8 to 17 
UTC), especially in the late afternoon (R2 up to 0.9 and 0.6, 
respectively); (3) distance from the city centre and (4) frac-
tion covered by buildings during the night (~18 to 7 UTC: 
R2 up to 0.5). The remaining predictors have a much lower 
influence, with nighttime R2 values never exceeding 0.2 dur-
ing and rarely exceeding 0.1 at daytime. These results sug-
gest complementary influences of topography and land cover 
throughout the diurnal cycle, highlighting the necessity of 
considering both factors to accurately capture the observed 
space-time variability in air temperature.

3.1.2  Thermal effects

Individual thermal effects are examined by analyzing both 
the frequency of occurrence of SLR-derived regression coef-
ficients (i.e. slopes of the SLR models) according to their 
sign (Table 3 and Fig. 6) and the probability density function 
of regression coefficients (Fig. 7). Topography and landform 
predictors are associated with regression coefficients that 
significantly vary in sign with time (Table 3). The regression 
coefficients are negative 80% of the time and positive 20% of 
the time for both elevation and hump magnitude, indicative 
of much more frequent temperature decrease with height 
than thermal inversions.

Temperature decrease with height is almost systematic at 
daytime (Fig. 6a, b) with a modal value of −0.9 °C/100 m for 
elevation (Fig. 7a) and −0.3 °C/10 m for hump magnitude. 
They are also frequent at nighttime (70% of the time; Fig. 6a, 
b), albeit their slightly weaker magnitude (Fig. 7a, b). Sym-
metrically, thermal inversions are rare during the day, while 
they occur up to 30% of the time during the night (Fig. 6a, 
b). They can reach up to 2 °C/100 m for elevation and 0.7 
°C/10 m for hump magnitude, against maximal values of 
−1.5 °C/100 m and −0.5 °C/10 m in the case of normal 
(negative) altitudinal gradients (Fig. 7a, b). Valley magni-
tudes are associated with regression coefficients that are neg-
ative 65% of the time (Table 3). For this predictor, negative 
regression coefficients denote colder air temperature in than 
out of the valleys, which can result from different mecha-
nisms including, e.g. nighttime thermal inversions or lower 
insolation in incised valleys than plateaus and plains during 
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the day. Such a configuration is more frequent at nighttime 
and reaches up to −0.5 °C/10 m (Figs. 6c and 7c).

The remaining predictors (distance from the city centre 
and fraction covered by buildings and by the three vegetation 
categories) have almost constant qualitative thermal effects, 
since the sign of their regression coefficient is the same at 
least 90% of the time (Table 3, Fig. 6d–h). Air temperature 
increases towards the city centre, together with the frac-
tion of buildings (Fig. 7d–e). By contrast, air temperature 
decreases as the fraction covered by vegetation increases 
(Fig. 7f–h). The thermal effects of the distance from the city 
centre and land cover tend to be stronger during the night 
(Fig. 7d–h), i.e. when the UHI is the strongest (Richard et al. 
2021) and wind speed the lowest (Fig. 3d). The remaining 
10% (reversal in the sign of the regression coefficient) mostly 
occurs just after sunrise (Fig. 6d–h) and denotes shadows in 
the study area more than land cover effects, hence positive 
regression coefficients for distance from the city centre and 
the fraction covered by the three vegetation categories, and 
negative ones with the fraction covered by buildings.

3.2  Combined effects

Combined effects are assessed by analyzing the results 
from the MLR models built for each hour of the period 
2014–2021 and using a maximum of five predictors among 
those listed in Table 1.

3.2.1  Mean model skill

Figure 8 shows the RMSE and R2-Adj of the MLR models 
averaged for the period 2014–2021 over both the diurnal 
and annual cycles. The RMSE metric depicts the same pat-
tern as for SLR models, but errors are much lower (Fig. 8a 
compared to Fig. 4). They reach up to ~0.6 °C at night and 
~0.4 °C during the day, with the largest errors occurring 
from March to September (Fig. 8a). The mean spatial errors 
are also significantly lower in the MLR than SLR models 
(Fig. 8b compared to Fig. 5). They depict a strong diurnal 
cycle, with the lowest skill (mean R2-Adj=0.65) found in 

Fig. 4  SLR skill in capturing 
the magnitude of observed air 
temperature over the diurnal 
(x-axis) and annual (y-axis) 
cycles for the period 2014–
2021. The magnitude errors 
are assessed using the area-
averaged RMSE obtained from 
LOOCV
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the early morning after sunrise and the best one (mean R2-
Adj=0.8) in the evening and in the early night (Fig. 8b).

The worst RMSE and R2-Adj reach as much as 1 
°C at night and 0.3 in the early morning, respectively 

(Supplementary Fig. S5a–b). Symmetrically, the best RMSE 
and R2-Adj reach 0.1 °C and 0.87 (Supplementary Fig. 
S5c–d). This indicates a large spread in MLR skill, probably 
linked to meteorological conditions that are not accounted 
for in the present work.

The better performance of MLR models to explain the 
space-time variability of air temperature around the agglom-
eration of Dijon demonstrates that it is significantly influ-
enced by more than one factor, like elevation, landform, 
and land cover. The following section examines when and 
how each predictor influences air temperature in the MLR 
framework.

3.2.2  Frequency of occurrence

Elevation, valley magnitude, and the fraction covered by 
buildings are the main drivers of air temperature spatial 
patterns, especially from March to October. At this time, 
the frequency of occurrence reaches up to 35% in the late 
morning and early afternoon for elevation, 25% during the 

Fig. 5  SLR skill in capturing 
the spatial patterns of observed 
air temperature over the diurnal 
(x-axis) and annual (y-axis) 
cycles for the period 2014–
2021. The spatial pattern errors 
are assessed using the coeffi-
cient of determination (R2)

Table 3  Frequency of occurrence (%) of SLM-derived regression 
coefficients (i.e. slopes) associated with positive and negative values 
for the period 2014–2021

Predictors Positive regres-
sion coefficient

Negative 
regression 
coefficient

Distance from the city centre 6.4 93.6
Fraction of buildings 97.2 2.8
Fraction of forests and water 8.4 91.6
Fraction of field crops 9.1 90.9
Fraction of low vegetation 5.2 94.8
Elevation 18.3 81.7
Hump magnitude 18.3 81.7
Valley magnitude 34.4 65.6
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night for valley magnitude, and 30% during the day for the 
fraction covered by buildings (Fig. 9). By contrast, hump 
magnitude is the least frequent predictor, occurring 10% of 
the time at most from November to February and 15% of the 
time during the morning from March to October. Since the 
MLR models cannot use elevation and hump magnitude as 
predictors at the same time to limit multicollinearity issues, 
we conclude that the former has an overall larger influence 
on air temperature patterns. The remaining predictors occur 
up to 20% of the time during the night, especially from Octo-
ber to March for the fraction covered by low vegetation and 
from March to October for distance from the city centre and 
the two remaining vegetation predictors (Fig. 9).

We now attempt to assess when, over the annual and 
diurnal cycles, each predictor influences air temperature 
spatial patterns, as well as the relationship between these 
predictors. Elevation influences air temperature all year 
long (Fig. 10a). Hump magnitude influences early morn-
ing air temperature from March to October (Fig. 10b), and 
valley magnitude influences nighttime air temperature 

from July to October (Fig. 10c). The largest influence 
of city mineral properties is found in summer and early 
fall (first hours of the night for distance from the city 
centre: Fig. 10d; late afternoon for the fraction of build-
ings: Fig. 10e). Vegetation categories have different influ-
ences over the year: the forests and water category mainly 
influences nighttime air temperature in summer and early 
fall (Fig. 10f), while low vegetation predominates in late 
fall and winter (Fig. 10h), and field crops gain influence 
in spring and early summer (Fig. 10g). Interestingly, the 
influence of field crops on air temperature spatial pat-
terns starts ~1 month earlier in spring and finishes ~1 
month earlier in summer than that of forests and water. 
The main field crops around Dijon are wheat, rapeseed, 
and barley (Colbach et al. 2014). They are harvested in 
July, leaving bare soils from August to October. Thus, 
even though vegetative cycles are not explicitly accounted 
for, the seasonality in the occurrence of these two vegeta-
tion predictors is consistent with the observed vegetative 
cycle in Burgundy.

Fig. 6  Frequency of occur-
rence of negative SLR-derived 
regression coefficients over 
the diurnal (x-axis) and annual 
(y-axis) cycles for the period 
2014–2021
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Fig. 7  Probability density function of SLR-derived regression coeffi-
cients for the period 2014–2021 regardless of the diurnal cycle (all) 
and during daytime (day: sunrise to sunset) and nighttime (night: 

dusk to dawn of the next day). Sunrise, sunset, dusk, and dawn of 
each day under study are identified using the pytz and astral Python 
packages

Fig. 8  MLR skill over the 
diurnal (x-axis) and annual 
(y-axis) cycles for the period 
2014–2021. a Magnitude errors 
as defined by area-averaged 
RMSE obtained from LOOCV. 
b Spatial errors as defined by 
the R2-Adj metric
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3.2.3  Thermal effects

Mean MLR-derived regression coefficients are very consist-
ent with those derived from the SLR models in terms of sign. 
Elevation, valley magnitude, and, to a lesser extent, hump 
magnitude are associated with regression coefficients with 
reversed signs between night and day (Fig. 11a–c). Nega-
tive altitudinal gradients prevail during the day (~8 to 17 
UTC), while thermal inversions dominate at night (~18 to 7 
UTC). For instance, the mean daytime influence of elevation 
reaches as much as ~ −1 °C/100 m almost all year long and ~ 
+0.5 °C/100 m at night from spring to autumn. The apparent 

weaker intensity of nocturnal thermal inversions conceals a 
“mean effect,” due to the fact that nights are likely to pre-
sent altitudinal gradients of both signs, while positive ones 
(suggestive of inversions) remain very rare during the day.

For the remaining predictors, air temperatures increase 
systematically towards the city centre and where the frac-
tion covered by buildings also increases, especially at night 
(Fig. 11d, e). The largest influence of these two predictors is 
found from spring to autumn, also corresponding to their most 
frequent occurrence (Fig. 10d, e). While the fraction of build-
ings is more rarely selected as a nighttime predictor (Fig. 10e), 
it promotes much more intense warming than during the day 

Fig. 9  Frequency of occurrence of each MLR predictor (y-axis) over 
the diurnal cycle (x-axis) for each month for the period 2014–2021. 
The frequency of occurrence is defined as the ratio between the num-
ber of times each predictor is selected in the MLR models at a given 

hour of a given month for the period 2014–2021 (numerator) and the 
total number of predictors used for the same hour, month, and period 
(denominator). For each panel, the sum of each column is 100%
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(Fig. 11e). In contrast with urban predictors, vegetation pre-
dictors mostly contribute to decrease air temperatures at night 
(Fig. 11f–h). The only exception concerns low vegetation in 
the early morning and in late summer, which tends to favour 
warmer conditions. Such a warming effect of low vegetation 
(and, to a lesser extent, of field crops) during the early morning 
may relate to the fact that low vegetation is generally located 
over flat and open land with no cast shadows, which therefore 
warms quickly after sunrise.

This section demonstrates that the combined influence 
of topography and land cover on air temperature spatial pat-
terns is well organized over the annual and diurnal cycles in 
terms of both frequency of occurrence and thermal effect.

4  Conclusion and discussion

This paper examines the individual and combined influences 
of topography (elevation and landform: hump and valley 
magnitude), land cover (fraction covered by buildings, low 

vegetation, field crops, and forests and water), and urban 
morphology (distance from the city centre) on air tempera-
ture space-time variability measured by a dense in situ net-
work, in a middle-size city (Dijon, North-Eastern France) 
surrounded by contrasted topography. These descriptors are 
used as predictors in simple and multiple linear regression 
(SLR and MLR) models ran for each hour of the period 
2014–2021. Their individual influences are assessed through 
the SLR models and their combined influences through the 
MLR models. Both are examined along the annual and diur-
nal cycles in terms of area-averaged intensity (RMSE) and 
spatial pattern (R2 or R2-Adj) errors compared to observed 
air temperature, as well as the frequency of occurrence and 
thermal effects of the predictors objectively selected to build 
them.

The analysis of individual predictors reveals a com-
plementary influence of topography and land cover on air 
temperature space-time variability. Thus, accounting for 
the combined influence of topography and land cover in 
the MLR models significantly improves air temperature 

Fig. 10  Preferential occur-
rence of each predictor over 
the diurnal (x-axis) and annual 
(y-axis) cycles for the period 
2014–2021. The preferential 
occurrence is defined as the dif-
ference between the frequency 
of occurrence of each predictor 
and the equiprobable frequency 
of occurrence (see Section 2.3 
for details). A Chi-2 test is 
applied to detect whether or 
not the frequency of occur-
rence of each predictor deviates 
significantly from equiprobable 
occurrence
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area-averaged magnitude and spatial patterns compared to 
observations, especially during the day (~8 to 17 UTC) and 
early night (18–22 UTC).

Topography influences air temperature throughout the 
year for elevation, in the early morning from March to Octo-
ber for hump magnitude, and at nighttime (18 to 7 UTC) 
from July to October for valley magnitudes. Topography 
is associated with almost systematic temperature decrease 
with elevation during the day and frequent (up to 30% of the 
time) nighttime thermal inversions. Such a diurnal reversal 
in the altitudinal gradients corroborates previous studies on 
urban environments with contrasted topography (Nkemdirim 
1980; Goldreich 1984; Bokwa et al. 2015). Yet, in our case, 
there are only a few sensors located beyond 300 m above 
sea level. Altitudinal gradients could be refined by adding 
new sensors and testing non-linear statistical models. SLR 

models driven by elevation perform much better at daytime 
than during the night (Figs. 4a and 5a). This suggests that 
the effect of topography on the spatial patterns of nighttime 
air temperature is either weak or, more probably, non-linear 
(e.g. Frei 2014).

Impervious surfaces are more influential in summer and 
early fall, especially in the late afternoon for the fraction 
covered by buildings and in the early night for the distance 
from the city centre. They contribute to increase air tempera-
ture towards the city centre or where the fraction covered by 
buildings is large. Vegetation has a cooling effect at night 
with complementary influences of the three vegetation cat-
egories over the annual cycle (low vegetation: late fall and 
winter; fields crops: spring and early summer; forests and 
water: summer and early fall). The only exception concerns 
low vegetation at sunrise during summer, which contributes 

Fig. 11  Mean MLR-derived 
regression coefficients associ-
ated with each predictor over 
the diurnal (x-axis) and annual 
(y-axis) cycles for the period 
2014–2021. The mean regres-
sion coefficients are shown only 
when they deviate significantly 
from zero at the 99% confidence 
level according to a Student’s 
t test
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to increase air temperatures in our MLR models. However, 
we have limited confidence in this warming effect, since 
observations associated with a large fraction of low vegeta-
tion are mostly located at the foot of hill slopes oriented 
from north-east to south-west and are thus well exposed to 
insolation at sunrise. Our results appear in line with previ-
ous works on the drivers of UHIs (e.g. Eliasson 1996; Sun 
et al. 2009; Sun 2011; Heusinkveld et al. 2014; Song et al. 
2014; Stewart 2019).

These SLR and MLR models are not perfect by any 
means. They struggle in capturing air temperature patterns 
at night and early in the morning when observed air tem-
perature tends to be noisy spatially. Such difficulties are also 
found in other cities using different statistical models (e.g. 
Nikoloudakis et al. 2020). More sophisticated approaches 
(e.g. Szymanowski and Kryza 2009; Ho et al. 2014; Schnei-
der Dos Santos 2020) do not always lead to improved perfor-
mance. For instance, Gardes et al. (2020) found very slight 
improvements with the Random Forest algorithm compared 
to MLR in predicting UHI over 42 French cities. The predic-
tors themselves remain the most critical levers for improve-
ment. The fact that the predictors used are constant in time 
does not seem to be a major source of error, as suggested, 
for example, by realistic annual cycle in the frequency of 
occurrence of the three vegetation categories compared to 
the observed vegetative cycle in Burgundy. The main source 
of improvement would be the inclusion of physically-based 
descriptors, such as sensible and latent heat fluxes, insolation 
or cloudiness, atmospheric stability and circulation, and soil 
moisture. Including such physical processes in our statisti-
cal models would require observations or reanalyzes for the 
entire 2014–2021 period at a sufficiently high resolution to 
account for spatial heterogeneity within the study area. The 
state of available data is not yet quite there, making it diffi-
cult to account for physical processes at this time. However, 
mesoscale simulations coupled with an urban canopy model, 
such as the Meso-NH–TEB model (Schoetter et al. 2020), 
would definitely help understanding the role of radiative 
fluxes, wind (both horizontal and vertical), and building-
induced roughness on the space-time variability of the urban 
boundary layer and air temperature patterns. Similarly, we 
did not include the sky view factor at this stage to focus 
on mesoscale drivers of temperature patterns. Yet, this may 
help improve the SLR/MLR skill in capturing air tempera-
ture spatial variability associated with UHI (Dirksen et al. 
2019) and during the early morning, even though its physical 
meaning is questionable at mesoscale.

Our SLR/MLR framework applied to a ~10-year-long 
period proves to be a low-cost, efficient, and replicable way 
to understand the individual and combined influences of 
topography and land cover on air temperature space-time 
variability. While applied here to an urban environment, 
it can easily be transposed to other environments, such as 

viticultural environment to understand the high space-time 
variability in air temperature during spring frost events.
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