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Abstract: Coronavirus infections are neuroinvasive and can provoke injury to the central nervous
system (CNS) and long-term illness consequences. They may be associated with inflammatory
processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of
phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate
neurological complications and brain tissue damage has attracted strong ongoing interest in the
neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several
bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A–C, kaempferol, isorhamnetin, and
luteolin. They have various pharmacological and medicinal effects, including memory and cognitive
improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities,
impacts cognitive function and other illness conditions like those in long COVID. While preclinical
research on the antioxidant therapies for neuroprotection has shown promising results, clinical
translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life,
instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes
the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these
challenges. Various experimental techniques shed light on the molecular mechanisms underlying
the oxidative stress response in the nervous system and help comprehend the pathophysiology of
the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug
delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g.,
lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic
brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of
long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of
oxidative stress.

Keywords: Ginkgo biloba bioactive compounds; neuroinvasive coronavirus infection; neurological
long COVID; oxidative stress; neuroinflammation; anti-inflammatory and anti-apoptotic agents;
nanotherapy; nanoparticle therapeutic efficacy; in vivo and in vitro models

1. Introduction

Long COVID involves continuous, long-term manifestations of the residual dam-
ages and sequelae of coronavirus infection caused by human severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), a large positive-stranded enveloped RNA virus
that generally provokes respiratory diseases [1,2]. SARS-CoV-2 predominantly affects
the respiratory system but can also invade the nervous system and cause multiple neu-
rological disorders [3–5]. Patients at risk following COVID-19 infection may still exhibit
a range of long-term neurologic and psychiatric disorders (Figure 1) and may not fully
recover several months post-infection. These sequelae include mild symptoms, such as
headaches; extreme tiredness (fatigue); loss of smell, taste, or tactile sensing functions;
cognitive impairment; depression; delirium; and psychosis [5]. More severe documented
outcomes include cases of encephalitis, Guillain–Barre syndrome, and stroke [5]. These
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long-term neurological problems following SARS-CoV-2 infection have been described
as manifestations of post-COVID-19 syndrome, long COVID, long haulers, or the post-
acute sequelae of SARS-CoV-2 (PASC) [6,7]. A study performed in Italy found that 87.4%
(n = 179) of patients who recovered from COVID-19 still report the persistence of at least
one symptom, particularly fatigue and dyspnea [8]. Another work reported that the most
prevalent symptoms of patients in the 6 months following hospitalization were tiredness
(34%), memory/attention problems (31%), and sleep disturbances (30%). Neurological
abnormalities were found in 40% of patients who underwent a neurological examination,
including hyposmia (18.0%), cognitive impairments (17.5%), postural tremor (13.8%), and
mild motor/sensory deficits (7.6%) [9]. Moreover, postmortem studies have established
brain tissue edema and partial neuronal degeneration in deceased patients [10].
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Figure 1. Long COVID symptoms and prevalence of long-term COVID-19 neurological complications
in patients at risk following coronavirus infection. Results obtained from a global online survey.
The most frequent symptoms persisted after 3 and 12 months in 216 respondents from a cohort of
suspected and confirmed COVID-19 cases. Adapted with permission from [11]. Copyright {2022}
Science-HHS Public Access (PubMedCentral).

Due to their neuroinvasive nature, coronaviruses may invade the central nervous
system (CNS), causing inflammation and demyelination [12]. According to recent studies,
SARS-CoV-2 can reach the CNS in many different ways, including (i) the hematopoietic
pathway and subsequent blood–brain barrier (BBB) rupture, (ii) blood–cerebrospinal fluid
(B-CSF) distribution, (iii) transsynaptic viral spreading from the peripheral nerve, (iv) via
circumventricular organs (CVOs), and (v) olfactory bulb penetration due to the interaction
between the virus spike 1 (S1) protein and the angiotensin-converting enzyme 2 (ACE2)
receptor [3,13,14]. The latter is widely expressed in neurons, oligodendrocytes, and astro-
cytes throughout the brain. Additional evidence of these entry pathways has been obtained
using genome sequencing and via viral detection in the cerebrospinal fluid (CSF) of several
patients [15].
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Scientific literature points out three factors that favor the pathogenesis of long COVID:
neuroinflammation, thrombosis, and immunosuppression [16,17]. For neurological long
COVID sequelae, oxidative stress appears to be the major underlying mechanism. Concur-
rently, inflammation and thrombosis contribute to reactive oxygen species (ROS) reactiva-
tion, resulting in a vicious cycle of oxidative stress, inflammation, and disease progression.
According to in vitro studies, oxidative stress is a factor in NLRP3-mediated IL-1 release
by monocyte cells exposed to SARS-CoV-2 [17]. There is evidence that oxidative stress,
caused by an increase in ROS generation after hypoxia, leads to the apoptosis and cellular
death of dopamine-containing neurons (DCNs). As a result, Parkinson’s disease (PD) may
exacerbate as a severe neurodegenerative disorder [18].

Since oxidative stress is intertwined with the onset and pathogenesis of the post-
acute sequelae of SARS-CoV-2 infection, harnessing this pathway is a step toward finding
new therapeutic options in response to this healthcare challenge. Anti-inflammatory and
antioxidant agents may efficiently reduce the complications experienced by patients post-
COVID-19. In this context, phytochemicals, such as Ginkgo biloba leaf extract (EGb),
have demonstrated significant potential as antiviral agents targeting various stages of
the coronavirus life cycle [19,20]. The active constituents of EGb include flavonoids (e.g.,
quercetin, kaempferol, and isorhamnetin), biflavones (sciadopitysin and ginkgetin), terpene
trilactones (ginkgolides and bilobalide), and ginkgolic acids (alkylphenols); see Figure 2.
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with BioRender using information from [21,22]). Up and down arrows indicate the upregulation and
downregulation of relevant biomarkers, respectively.

It has been shown that EGb 761, a standardized extract that contains bilobalide, 24%
flavone glycosides (quercetin, kaempferol, and isorhamnetin), and 6% terpenes, increases
the synthesis of INF-γ, while reducing the release of pro-inflammatory cytokines in pe-
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ripheral blood leukocytes [22]. Docking simulations and inhibition kinetic studies have
demonstrated that ginkgolic acids and bioflavonoids derived from Ginkgo biloba exhibit
comparatively potent SARS-CoV-2 3CLpro inhibitory capabilities. Thus, several promising
leading compounds have been identified for the advancement of antiviral medication
research by targeting the 3CLpro enzyme [19]. However, there is currently limited scientific
literature on the possible use of EGb nanotherapy for managing long-term neurological
problems related to SARS-CoV-2 or an overview of several models to evaluate the ther-
apeutic outcome of EGb. Recent studies on Ginkgo biloba have examined the efficiency
of various EGb extracts against age-related disorders, including dementia, Alzheimer’s
disease, and mild cognitive impairment (MCI). These studies include those by Barbalho
et al., Singh et al., and Tomino et al. [23–25]. Al-Kuraishy et al., however, discussed the use
of EGb in managing COVID-19 severity but did not thoroughly review the effectiveness of
EGb nanotherapies [26].

This review gives a comprehensive overview of the potential uses of Ginkgo biloba as
an antiviral, anti-inflammatory, and antioxidant agent capable of regulating the neurological
complications of SARS-CoV-2 infection. We summarize the reported findings of in vivo
and in vitro models mimicking oxidative stress conditions and aiming at the discovery
of novel nanotherapeutics based on Ginkgo biloba ingredients. We hypothesize that the
presented results can be of interest to the neurotherapeutic management of long COVID.

2. Long-Term Neurological Damage and the Role of Oxidative Stress
2.1. Neuroinvasive and Neurotoxic Potential of Coronavirus Linked to Neurodegeneration

The CNS has been proven to be susceptible to viral infections [3,4,27,28]. A series
of recent studies have demonstrated the neuroinvasive potential of SARS-CoV-2, like the
previously established neurovirulence of human coronaviruses, such as SARS-CoV, MERS-
CoV, HcoV-229E, and HcoV-OC43 [28–32]. According to Boroujeni et al., COVID-19 impacts
the cerebral cortex of patients. This effect is characterized by activated microglia that
amplify the inflammatory activation of astrocytes and is accompanied by low glutathione
levels and upregulation of inflammation [33]. Palpagama et al. asserted that the activation
of glial cells is involved in the pathology of neurodegenerative disorders [34]. The elevated
number of such cells can be associated with neuroinflammation and brain tissue damage.

Other researchers have detected the presence of SARS-CoV-2 RNA in the cerebrospinal
fluid after the virus infects the patient’s CNS and causes meningitis and encephalitis [10,32,35,36].
Alternatively, evidence has revealed that 50% of patients with COVID-19 develop intestinal
inflammation [37–39]. These results support the gut-driven inflammation hypothesis of
Parkinson’s disease (PD) pathogenesis, which starts in the intestines and advances through
inflammation toward the CNS. The associated increased levels of α-synuclein initiate
aggregation in the gut and brain [40]. Magnetic resonance imaging (MRI) data have also
shown brain alteration in the cortical region (posterior gyrus rectus) that is associated
with olfaction. This fact suggests that SARS-CoV-2 can invade the brain through the
olfactory pathway and cause olfactory dysfunction, among other neurological disorders [41].
Additionally, olfaction-related brain changes in the posterior gyrus rectus of the brain have
been observed using magnetic resonance imaging (MRI) [41]. This finding suggests that
SARS-CoV-2 can enter the brain via the olfactory pathway and induce neurological diseases,
such as olfactory impairment and other neurological conditions.

It is hypothesized that the neuroinvasive potential of SARS-CoV-2 plays a subordinate
role in the pathogenesis of long COVID [4,42–44]. The virus enters the CNS and the
PNS via the engagement of hematogenous or transsynaptic pathways (through the nasal
cavity or the bloodstream) and triggers neuroinflammation [45]. As shown in Figure 3,
SARS-CoV-2 invades the host cells by binding to the ACE2 receptor with its spike (S)
protein and then priming with the S protein through the activities of the transmembrane
protease, serine 2 (TMPRSS2) [46]. ACE2 is highly expressed in the brain of humans and
animals, notably in some brain locations, such as the choroid plexus and paraventricular
nuclei of the thalamus and in non-neuron cells (mainly astrocytes and oligodendrocytes)



Pharmaceutics 2023, 15, 1562 5 of 34

as well as various vessel calibers in the frontal cortex [47]. The presence of ACE2 in
primary human brain microvascular endothelial cells (hBMVECs) alleviates the ability of
SARS-CoV-2 to compromise the activity of the BBB [47,48]. Coronavirus infections are
primarily associated with cytokine production, inflammation, and apoptosis in accordance
with the pathophysiological process of oxidative stress [49].

Pharmaceutics 2023, 15, x FOR PEER REVIEW 5 of 37 
 

 

protease, serine 2 (TMPRSS2) [46]. ACE2 is highly expressed in the brain of humans and 
animals, notably in some brain locations, such as the choroid plexus and paraventricular 
nuclei of the thalamus and in non-neuron cells (mainly astrocytes and oligodendrocytes) 
as well as various vessel calibers in the frontal cortex [47]. The presence of ACE2 in pri-
mary human brain microvascular endothelial cells (hBMVECs) alleviates the ability of 
SARS-CoV-2 to compromise the activity of the BBB [47,48]. Coronavirus infections are 
primarily associated with cytokine production, inflammation, and apoptosis in accord-
ance with the pathophysiological process of oxidative stress [49]. 

 
Figure 3. The hypothesized mechanism of coronavirus-induced neuronal damage via oxidative 
stress and mitochondria dysfunction. SARS-CoV-2 infection occurs when TMPRSS2 primes the 
spike proteins for proteolysis, allowing the binding to ACE2. The affinity interaction triggers the 
binding of Ang II to the angiotensin type 1 receptor (AT1R), activating NADPH oxidase. This leads 
to mitochondrial electron transport chain (ETC) damage via the release of oxidative and nitrosative 
species, subsequently increasing the formation of mitochondrial reactive oxygen species (mtROS). 
The signaling pathways mediated by mtROS trigger the production of inflammatory cytokines, 
which can compromise the blood–brain barrier, thus resulting in neuronal damage. Additionally, 
mtROS cause nuclear and mitochondrial damage, which prolongs mitochondrial dysfunction and 
encourages inflammatory senescence (created with BioRender). 

2.2. Oxidative Stress and Redox Signaling, Players in SARS-CoV-2 Neurological Damage 
It has been shown that Parkinson’s disease and SARS-CoV-2 infection cause similar 

oxidative stress and the activation of nuclear factor kappa B (NF-κB) [18,50,51]. In addi-
tion, activating pro-inflammatory mediators, such as IL-1 and IL-6, can lead to amyloid 
beta (Aβ) deposition and accumulation, thus establishing a link between neuroinflamma-
tion and Alzheimer’s disease [14,52,53]. 

Figure 3. The hypothesized mechanism of coronavirus-induced neuronal damage via oxidative
stress and mitochondria dysfunction. SARS-CoV-2 infection occurs when TMPRSS2 primes the
spike proteins for proteolysis, allowing the binding to ACE2. The affinity interaction triggers the
binding of Ang II to the angiotensin type 1 receptor (AT1R), activating NADPH oxidase. This leads
to mitochondrial electron transport chain (ETC) damage via the release of oxidative and nitrosative
species, subsequently increasing the formation of mitochondrial reactive oxygen species (mtROS).
The signaling pathways mediated by mtROS trigger the production of inflammatory cytokines, which
can compromise the blood–brain barrier, thus resulting in neuronal damage. Additionally, mtROS
cause nuclear and mitochondrial damage, which prolongs mitochondrial dysfunction and encourages
inflammatory senescence (created with BioRender).

2.2. Oxidative Stress and Redox Signaling, Players in SARS-CoV-2 Neurological Damage

It has been shown that Parkinson’s disease and SARS-CoV-2 infection cause similar
oxidative stress and the activation of nuclear factor kappa B (NF-κB) [18,50,51]. In addition,
activating pro-inflammatory mediators, such as IL-1 and IL-6, can lead to amyloid beta
(Aβ) deposition and accumulation, thus establishing a link between neuroinflammation
and Alzheimer’s disease [14,52,53].

It has been demonstrated that the receptor-binding domain (RBD) of the SARS-CoV-2
spike 1 (S1) protein binds to Aβ and tau proteins and causes their aggregation [54]. Addi-
tionally, SARS-CoV-2 infection has been linked to hypoxia and decreased oxygen levels [53].
The mitochondria of brain cells may undergo a rise in anaerobic metabolism due to this
process, which can increase the levels of lactic acid, lipid peroxides, and oxygen-free radi-
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cals and deplete the antioxidant system. Consequently, the BBB is compromised, which
may result in CNS complications. [36,49].

In regard to the role of oxidative stress in chronic diseases, Aranda-Rivera et al.
highlighted the importance of nuclear factor erythroid 2–related factor 2 (Nrf2), a ubiquitous
protein (containing 605 amino acids) that can modulate cellular oxidative stress [55]. During
oxidative stress, Keap1 undergoes conformational change due to the oxidation of residues Cys
226, Cys 613, and Cys 624 by electrophiles and oxidants [56]. This mechanism enables Nrf2 to
escape ubiquitination, leading to its release into the nucleus and regulating the expression of a
number of antioxidant and detoxifying enzymes, such as glutamate-cysteine ligase modifier
(GCLM) subunits, heme oxygenase, NAD(P)H quinone dehydrogenase 1 (NQO1), glutathione
S-transferase, and glutathione peroxidase [57,58].

It should also be emphasized that viral infections, such as SARS-CoV-2, have adverse
effects on antioxidant systems and have been linked to phenomena involving the inhibition
of Nrf2 and activation of the NF-kB pathway in favor of inflammation and oxidative stress.
Olagnier et al. showed that during SARS-CoV-2 infection, the Nrf2 pathway is repressed,
leading to the downregulation of heme oxygenase 1 (HO-1) and NQO1 [59]. Therefore,
several antioxidant enzymes that guard against oxidative stress, including glutathione
peroxide, peroxiredoxin, thioredoxin reductase, and thioredoxin, are affected.

Numerous studies have shown that the phosphatidylinositol 3-kinase (PI3K)/AKT
signaling pathway controls oxidative stress by activating the transcription factor FOXO3
and initiating the transcription of antioxidant proteins, such as SOD-2, peroxiredoxins
(PRDXs) 3 and 5, which are found in the mitochondria, and catalase, which is found in the
peroxisomes [60–62]. Peroxisome-proliferator-activated receptor coactivator 1 (PGC-1), the
master biogenesis regulator that promotes the transcription of antioxidant enzymes, inter-
acts with the FOXO3 transcription factor to control oxidative stress in the mitochondria [61].
However, research has revealed that the ability of PGC-1 to promote gluconeogenesis and
fatty acid oxidation is inhibited by protein kinase Akt2/protein kinase B (PKB), which acts
as an intermediary trigger of phosphorylation and inhibition [62].

NF-κB is another transcription factor that regulates stress responses. It is activated by
the phosphorylation of I-κB, thanks to the I-κB kinase (IKK) complex. In vitro studies by
Wu et al. have reported that sustained exposure of human lens epithelial cells (HLECs) to
increasing doses of H2O2 (50–100 µM) for 4 h attenuates the TNFα-induced degradation of
I-κB, accompanied by the activation of NF-κB and proteasome activity by 50–80% [63]. The
obtained data have also indicated that the activation of NF-κB is an essential phenomenon
that enables cells to recover from oxidative stress.

2.3. In Vivo and In Vitro Models of Oxidative Stress

Over the years, various oxidative stress models have been developed to study the
pathogenesis of neurodegenerative disorders and discover new strategies for developing
therapeutic agents. Such experimental techniques include the use of lipid peroxidation
products, endogenous antioxidant depletion, mitochondrial respiratory chain inhibitors,
neurotoxic agents (e.g., rotenone and N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)),
and ischemic brain damage models [51]. The proposed in vitro cellular models and in vivo
animal models have shed light on the molecular mechanisms underlying oxidative stress
responses in the nervous system, such as cell survival and cell death. Among neurotoxic
chemical agents, 6-hydroxydopamine (6-OHDA) has been used to induce neurotoxicity in
the dopaminergic nigrostriatal system by inhibiting the mitochondrial electron transport
chain of complexes I and IV and accelerating neuronal degeneration [64–66].

6-OHDA has been regarded as an endogenous toxic factor in the pathogenesis of
PD. The neurotoxin 6-OHDA induces excessive production and accumulation of ROS
and, therefore, oxidative stress. In fact, 6-OHDA induces caspase-3 activation in the cells
mediated by the Fas or mitochondrial pathways [67]. Indeed, it has been demonstrated
that MTPT/6-OHDA-induced NF-κB activation in SH-SY5Y neuroblastoma cells triggers
caspase-3 activation, which results in the death of DCNs via the NF-κB pathway [68–70].
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In vitro studies have evaluated the toxic effects of 6-OHDA in dopaminergic (DArgic)
cell cultures. For instance, Vestuto et al. used human neuroblastoma SH-SY5Y cells
to assess the neuroprotective effect of cocoa extract (purified fractions) in a 6-OHDA-
induced PD cellular model [71]. Similarly, Chansiw et al. reported the protective effect of
1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methyl pyridine-4-one (CM1) coupled with green
tea extract (GTE) on iron-induced oxidative stress in SH-SY5Y cells [72]. In a separate study,
Chen et al. evaluated the protective effect of EGCG against 6-OHDA-induced neurotoxicity
by using N27 dopaminergic neurons [73].

The advantages of cellular systems for studying oxidative stress are their low cost,
adaptability, modularity, reproducibility, compatibility with high-throughput screening,
and interest in cell mechanical investigations without systemic interferences. Other studies
have demonstrated that hypoxia can increase cells’ susceptibility to oxidative stress. The
hypoxia-reoxygenation model is a relevant in vitro model of oxidative stress, given that
cellular hypoxia appears to be a crucial signal that activates transcriptional regulators,
specifically hypoxia-inducible factor-1 (HIF-1) [74], nuclear factor kappa B (NF-κB) [75],
activator protein 1 (AP-1) [76,77], and some mitogen-activated protein kinase (MAPK)
signaling pathways, and induces cell death and necrosis [76,77].

Genetically derived models of neurodegenerative diseases are gaining considerable
interest because they are excellent surrogates, providing intrinsic validity to genetically
based models of degenerative disorders [78]. Scientific investigations have reported that
knockout of genes, including PINK1, DJ-1, LRRK2, and LRRK1, in rats leads to age-
dependent neurodegeneration of the dopaminergic neurons of PD [78–80]. Moreover,
mutation in the copper-zinc superoxide dismutase 1 (SOD1) gene has been associated
with ALS, while the alteration of MAPT genes or progranulin is linked to frontotemporal
dementia (FTD) [81]. Other studies have highlighted that mutations in amyloid precursor
protein (APP), presenilin 1, and presenilin 2 (PSEN1/2) are the main causes of autosomal
dominant early-onset AD [82,83].

It has been documented that invertebrates can also mimic endogenous-generated ROS.
Such a model has been widely implemented in Drosophila melanogaster and Caenorhabditis
elegans (C. elegans) [84,85]. The initial longevity mutant, known as age-1, which contains
increased levels of both SOD1 and catalase, is arguably the best-studied mutant in the
nematode C. elegans. The age-1 mutant exhibits more significant levels of both SOD1
and catalase enzymes because this gene, which encodes for phosphatidylinositol-3 kinase,
confers a longer lifetime phenotype when silenced, along with improved resilience to
several forms of stress [85–87].

The aforementioned findings indicate that oxidative-stress-based pharmaceutical
therapies can slow aging and degeneration, as summarized in Table 1. Therefore, the
developed in vivo and in vitro models of oxidative stress can be of interest for evaluating
the efficacy of nanotherapeutic management of long COVID conditions.

Table 1. Stimuli that trigger oxidative stress in cells or in the CNS, similar to the SARS-CoV-2 action.

Stimuli Model/Species Disease Model Administration/Protocol Mechanism of Oxidative Stress Ref.

N-methyl-
4-phenyl-
1,2,3,6-tetrahy
dropyridine
(MPTP)

Male C57BL/
6 mice (20–25 g)

PD,
neurodegeneration

Intraperitoneal injection
of MPTP (20 mg/kg),
two times at 4 h intervals
daily for 5 days, followed
by oral administration of
Sophora tomentosa
(25 mg/kg, 50 mg/kg,
and 100 mg/kg) for
15 consecutive days until
behavioral tests

• MPTP is taken up by astrocytes or
serotonergic neurons, where it is
metabolized into 1-methyl-4-pyridinium
(MPP+) by monoamine oxidase B.
Subsequent uptake of MPP+ via
dopamine, serotonin, and
norepinephrine transporters induces
oxidative stress by inhibiting complex I
of the respiratory chain.

• Selectively destroys the nigrostriatal
dopaminergic pathway and thus is
widely used as a PD model.

• Upregulates levels of MDA, α-synuclein
overexpression, and GSK-3β
phosphorylation in the mouse striatum.

[88]
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Table 1. Cont.

Stimuli Model/Species Disease Model Administration/Protocol Mechanism of Oxidative Stress Ref.

Rotenone

Rotenone-
induced
Sprague–Dawley
and Lewis rats

PD

Infusion of a 2–3 mg/kg
dose of rotenone per day
via a jugular vein cannula
attached to a subcutaneous
osmotic minipump

• Inhibits of complex I and degenerates
the nigrostriatal dopaminergic pathway
associated with hypokinesia and rigidity.

[89]

Paraquat (N, N′-
dimethyl-4-4′-
bipiridinium)

Human
neuroblastoma
SH-SY5Y cells

PD Treated with paraquat
(0.5 mM PQ) for 48 h

• Increases superoxide levels and neuronal
cell death.

• Decreases dopamine levels in the
substantia nigra and increases
α-synuclein expression.

• Decreases protein levels of Nrf2, γGCS
levels, and intracellular GSH levels.

[90]

Hydrogen
peroxide
(H2O2)

SH-SY5Y cells
PD, AD,
Huntington’s
disease

Incubation with varying
concentrations of H2O2
(0 to 250 µM) for 30 min,
followed by evaluation of
cell viability

• Loss of viability <5% at concentrations
up to 250 µM H2O2.

• Cell membrane and DNA damage
accompanied by decreased SOD activity
but increased GPX activity in cells
treated with >50 µM concentration
of H2O2.

[91,92]

6-hydroxy
dopamine
(6-OHDA)

SH-SY5Y cells PD, AD, and
dementia

Cells incubated with
200 µM of 6-OHDA for
24 h with or without
hyperoxide or
NAC pretreatment

• Inhibits both complexes I and IV of the
respiratory chain and leads to the
generation of superoxide, hydrogen
peroxide, and hydroxyl radicals.

[93]

Glutamate
analog;
homocysteate
quisqualate
ibotenate

Neuronal
hybridoma cell
line, N18-RE-105
mouse
neuroblastoma
cells

ALS, AD,
dementia, PD,
multiple sclerosis
(MS)

Continuous exposure of
cells to
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Mycotoxin 3-
nitropropionic
acid
(3-NP)

Male Wistar rats
(300–350 g)

Huntington
disease

Intraperitoneal
administration of 3-NP
(10 mg/kg)

• Irreversibly inhibits the Krebs cycle and
complex II of the respiratory chain.

• Promotes the generation of hydroxyl
radicals, leading to neuronal death.

• Induces motor dysfunction.

[96]

Buthionine
sulfoximine
(BSO)

Hippocampus-
derived
immortalized cell
line (HT22)

Chronic
psychological
stress

Treatment with 1 mM
BSO for 14 h

• Binds to glutathione synthetase to
inhibit glutathione production. [97]

Tunicamycin SH-SY5Y cells Endoplasmic
reticulum stress

Incubation with 1 µM
tunicamycin

• Intracellular accumulation of aggregates
of misfolded protein.

[98]

RNAi Drosophila Oxidative
damage

Knockdown of SOD2
using the Gal4/UAS
system to express SOD2
inverted repeat (Sod2-IR)
transgenes

• Degrades mRNA related to the
expression of a specific antioxidant.

• Increases caspase activity, decreases
mitochondrial content, and reduces ATP
levels.

[99]

3. Ginkgo Biloba Extract (EGb) for Neuroprotection and Potential Regeneration from
Long COVID Syndrome
3.1. Ginkgo Biloba Antioxidative and Anti-Inflammatory Effects

Ginkgo biloba (GB) is one of the medicinal plants that ameliorate capillary blood
circulation, provide brain oxygenation, and thus improve age-related disorders. The
ginkgo tree is monotypic and belongs to the class Ginkgoopsida, considered the oldest tree
alive in the world (ginkgo species are from the Permian period, around 286–248 million
years ago) [23]. The currently available herbal medicines based on Ginkgo biloba extract
(EGb) are Tebonin® and Tanakan®, which are mostly standardized on ginkgo flavone
glycosides and terpene lactones—EGb 761® [26]. The standardized extract of Ginkgo
biloba leaves includes 6% terpenoids, of which 3.1% are ginkgolides A, B, C, and J and
2.9% are bilobalide. It contains 24% flavonoid glycosides, including quercetin, kaempferol,
and isorhamnetin, and 5–10% organic acids (Figure 2) [100]. Ginkgo biloba leaf extract is
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mentioned in the British Herbal Compendium as a treatment for mild-to-severe dementia,
including Alzheimer’s disease, and for the treatment of neurological symptoms attributed
to loss of concentration and poor memory, confusion, depression, anxiety, vertigo, tinnitus,
and headache [101].

The neuroprotective effect of EGb 761 extract has been examined in a rat model of
cerebral injury following ischemia/reperfusion (I/R). The treatment resulted in a decrease
in MDA levels, the downregulation of pro-inflammatory cytokines (TNF-α and IL-1β), and
an increase in the expression of anti-inflammatory cytokines (IL-10) and enzymatic SOD
and myeloperoxidase (MPO) activities, which can control neurological impairments [102].
It can be suggested that the beneficial effects of EGb on cerebral ischemia/reperfusion I/R
injury result from the reduction in oxidative stress due to the inhibition of nitric oxide
production and inflammation induced by I/R [102].

Kaempferol is one of the most important constituents of Ginkgo biloba, and its action
accounts for the upregulation of the glutamate-cysteine ligase catalytic (GCLC) subunit, brain-
derived neurotrophic factor (BDNF), B-cell lymphoma protein 2 (Bcl-2), and GSH [103–105].
Kaempferol inhibits ROS generation by scavenging free radicals and efficiently protects neu-
ronal cells from oxidative injury. Additionally, it inhibits the production of pro-apoptotic
proteins, including Bax and caspase-3, and modulates the downregulation of the NF-κB
pathway to exert anti-apoptotic effects [106]. A study by Zhou et al. showed that kaempferol
can inhibit mitochondrial membrane transition (mPTP) opening and suppresses the release
of cytochrome C via GSK-3β inhibition [107]. Kaempferol is also involved in the inhibi-
tion of serotonin breakdown by monoamine oxidase, reduces neurotoxicity induced by
3-nitropropionic acid (3-NP), and induces the upregulation of heme oxygenase 1
(HMOX-1) [108].

Quercetin, bilobalide, and isorhamnetin are other essential compounds in Ginkgo
biloba extracts. Bilobalide decreases the expression of reactive species induced through
H2O2, thus inhibiting ER stress [109]. It can also suppress pro-inflammatory activation,
NF-κB, and COX-2 activities [110]. Studies have reported the beneficial effects of bilob-
alide in the upregulation of c-myc and p53 proteins, inhibition of the degradation of
membrane phospholipids, and increased cellular proliferation of neurons in the hippocam-
pus [109,111,112]. According to Wang et al., pretreatment with bilobalide substantially
reduced COX-2, iNOS, and phosphorylated p65 in sepsis-induced CLP mouse models,
while inducing I-kB activation in the lungs [111]. Additionally, bilobalide reduced oxida-
tive stress by increasing HO-1 expression in lung tissues and antioxidative enzyme genes,
including catalase, MnSOD, CuZnSOD, and GPx-1 [111]. Moreover, bilobalide and EGb50
can modulate the expression of TLR4, NF-B, and MyD88, preventing the onset of acute
lung injury (ALI) [111,113,114]. Ginkgo biloba components may therefore prevent the onset
of ALI and the cytokine storm syndrome in COVID-19 by inhibiting pro-inflammatory
signaling via the NF-κB and TLR4 signaling pathways. A study showed that the adminis-
tration of EGb50 substantially lowers TNF- and IL-1 levels and prevents the related signal
transduction through the p38 MAPK and NF-B p65 pathways in LPS-stimulated microglial
cells [115]. In a separate study, EGb50 demonstrated a potential anti-inflammatory action by
suppressing NLRP3-inflammasome-induced microglial activation [116]. For comparison,
isorhamnetin has been linked with the inhibition of apoptosis and the suppression of DNA
fragmentation [117].

In an enzymatic inhibition assay, it was established that ginkgolide A can act as an
irreversible inhibitor against SARS-CoV-2 papain-like protease (PLpro) at a nontoxic dose
of 1.79 µM [20]. Similarly, quercetin, the primary EGb flavonoid component, inhibits SARS-
CoV-2 3-chymotrypsin-like protease (3CLpro) and PLpro, with a corresponding docking
energy of 6.25–4.62 kcal/mol, preventing SARS-CoV-2 replication [118].

In a recent study, Liu et al. compared the antioxidant capacity of various Ginkgo
biloba extracts by evaluating the mechanisms of ginkgolides A (GA), B (GB), K (GK), and
bilobalide (BB) against oxidative stress caused by transient focal cerebral ischemia [119].
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In vivo studies have been performed in a developed middle cerebral artery occlusion
(MCAO) model of cerebral ischemic injury using male SD rats, followed by reperfusion and
Ginkgo biloba treatments [119]. Neuroblastoma cells (SH-SY5Y) were subjected to oxygen-
glucose deprivation (OGD) for 4 h, followed by 6 h of reoxygenation using ginkgolides
and bilobalide. The in vitro experimental findings revealed that GA, GB, GK, and BB sig-
nificantly reduce ROS and increase SOD activities and protein levels, including HO-1 and
Nqo1. Additionally, p-Akt and p-Nrf2 levels considerably increased following ginkgolide
and BB treatments, with GB demonstrating greater efficacy than GA and GK. These up-
regulations could be reduced in a dose-dependent manner by LY294002, a PI3K inhibitor.
The triphenyl tetrazolium chloride (TTC) staining performed demonstrated that GB sig-
nificantly reduced the infarct volume ratios in MCAO rats in a dose-dependent manner
(Figure 4a). Additionally, GB markedly increased the amounts of the proteins HO-1, Nqo1,
SOD, p-Akt, p-Nrf2, and Nrf2 through the modulation of the Akt/Nrf2 signaling pathway,
shielding neurons from oxidative-stress-related damage (Figure 4b) [119].
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Figure 4. Effects of Ginkgo biloba on infarct volume and expression of proteins associated with an-
tioxidant effects in middle cerebral artery occlusion (MCAO) rat models. (A) MCAO rats were treated
with various GB doses for 72 h, followed by triphenyl tetrazolium chloride (TTC) staining and statis-
tical analysis of the cerebral infarct area. The results revealed a significant reduction in infarct volume
ratios after GB treatments in a dose-dependent manner. (B) Results of Western blot analysis and semi-
quantitative measurements of the levels of HO-1, Nqo1, and SOD1 proteins in the ischemic penumbra
region of MCAO rats treated with various doses of Ginkgo biloba for 24 h. Antioxidant-related pro-
teins in the MCAO group drastically decreased after cerebral ischemic injury compared to the normal
group, while rats treated with various concentrations of GB showed a marked increase in the expres-
sion of HO-1, Nqo1, and SOD1. Data represented as the mean ± SD from eight rats of each group.
(# p < 0.05, ## p < 0.01, and ### p < 0.001 vs. the sham group; * p < 0.05 and *** p < 0.001 vs. the
I/R group). Adapted with permission from [119]. Copyright {2019} Science-HHS Public Access
(PubMedCentral).
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Table 2 summarizes the chemical structures of the active constituents identified in
Ginkgo biloba extracts and their reported biological activities of potential interest to recov-
ery from neurological long COVID syndrome.

Table 2. Chemical structures of bioactive compounds extracted from Ginkgo biloba sources and their
effects on neurological disorders linked to COVID-19.

Compound Sources Activity/Mechanism Ref.
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3.2. Neuroprotective, Anti-Apoptotic, and Anxiolytic Drug Effects of EGb

Results from microarray experiments have established the neuroprotective effect
of Egb 761 against ischemic-induced neuronal injury [139]. The data revealed that the
upregulation of Bcl-2 protein may be mediated by the activation of cAMP-response-
element-binding protein (CREB) [139]. EGb 761 increases CREB phosphorylation via
the activation of PI3K/Akt and extracellular-signal-regulated kinase (ERK) signaling path-
ways [140]. The consequently released BNDF protects the neurons against ischemia. More-
over, Tchantchou et al. affirmed that EGb 761 can reduce Aβ oligomerization and promote
neurogenesis by the phosphorylation of CREB. This was evidenced by enhanced cell
proliferation in the hippocampus of TgAPP/PS1 mice [141]. Overall, these studies have
demonstrated that flavonoids, the primary active constituents of EGb 761, may upregulate
the CREB–BDNF pathway and therefore exert neuroprotection.

Combination therapy of EGb 761 with bone-marrow-derived mesenchymal stem cells
(BMSCs) has shown a synergistic effect in animals with autoimmune encephalomyelitis.
The therapeutic mechanism involves the inhibition of pro-inflammatory cytokines, de-
myelination, and protection axons and neurons [142]. Other studies have documented that
GA prevents p-Tau deposition and thus protects cells from toxicity associated with Tau
hyperphosphorylation. Interestingly, the degree of dementia is closely correlated with the
production of hyperphosphorylated Tau aggregates, making EGb 761 crucial to counteract
the neurodegenerative process [143].

Ginkgo biloba extracts, mainly flavonoids and ginkgolides, exert inhibitory effects
on acetylcholinesterase activity. In fact, cholinergic agonists can reduce inflammation by
blocking inflammatory signals, particularly the ubiquitous nuclear protein HMGB1 that is
released by dying cells or activated innate immunity cells to promote inflammation [144].
It has been suggested that nicotinic receptors nAChRs may control the expression of
ACE2 and serve as a binding receptor for S1 protein, leading to an inflammatory response.
However, EGb may counteract the central inhibitory and anti-inflammatory effects of
GABAergic neurons, leading to increased cortical neuronal activity and an increased risk
of convulsion [145,146]. However, meta-analysis research has proven that there is no
convulsion risk associated with the anxiolytic action of EGb, which is mediated through
the regulation of GABAergic neurons [147]. In patients with dementia, EGb 761® has
shown promise in alleviating comorbid neurosensory symptoms and improving memory
deficits [147].
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In another study, EGb 761 showed neuroprotective effects against oxidative-stress-
induced apoptotic cell death by inhibiting apoptosis in a p53-dependent pathway, pre-
venting mitochondrial membrane damage, reducing the release of cytochrome C from
the mitochondria, upregulating the anti-apoptotic protein Bcl-2, and inhibiting PARP
cleavage [148]. The anti-apoptotic effects are schematically presented in Figure 5.
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(Symfona® forte) at a dose of 120 mg/twice daily for at least 6 months may improve dual-
task-related gait performance in patients with MCI [150]. Moreover, extensive work by 
Kuo et al. found that GA exhibits a strong therapeutic promise, like memantine, for 
treating AD by blocking NMDA and AMPA receptors. GA also suppresses c-Jun N-
terminal kinase (JNK) activation at different doses (1–200 μM) in Aβ-induced neuronal 
depolarization in mice (Figure 5) [151]. 

In parallel, Yu et al. demonstrated the neuroprotective effect of Ginkgo biloba 
dropping pills (GBDP) in the amelioration of PD [152]. In that study, the pharmacological 
effects of GBDP and EGb 761 were exploited in both in vivo and in vitro models of PD. 

Figure 5. Schematic representation of the anti-apoptotic and anti-inflammatory effects of Ginkgo
biloba extract (EGb) and its constituents. (1) Inhibition of ROS and suppression of the expression of
pro-inflammatory mediators (e.g., COX-2 and NO) and pro-inflammatory cytokines (TNF-α, IL-6,
and IL-1β) via the NF-κB signaling pathway. EGb can also inhibit the STAT 1/3 pathway. (2) Blocking
of iNOS expression through a reduction in NO levels. (3) Inhibition of LPS-induced inflammatory re-
sponse. (4) Prevention of mitochondrial oxidative stress by promoting the expression of anti-apoptotic
proteins. (5) Inhibition of TLR4-NF-κB signaling through the PI3K/Akt pathway. (6) Prevention of the
intracellular accumulation of p-Tau and cellular protection from Tau-hyperphosphorylation-related
toxicity. (7) Blocking signaling pathways that involve CDK5, p38 MAPK, and GSK-3β. (8) Inhibition
of NMDA and AMPA receptors, preventing the phosphorylation of c-Jun N-terminal kinase (JNK).
(Created with BioRender).

The work of Wang et al. showed that EGb may be used to increase cerebral blood flow
and cognitive function by co-administration with 75 mg of aspirin toward the treatment
of vascular cognitive impairment of non-dementia [149]. In a randomized, double-blind
exploratory study, the authors demonstrated that administration of EGb (Symfona® forte)
at a dose of 120 mg/twice daily for at least 6 months may improve dual-task-related
gait performance in patients with MCI [150]. Moreover, extensive work by Kuo et al.
found that GA exhibits a strong therapeutic promise, like memantine, for treating AD by
blocking NMDA and AMPA receptors. GA also suppresses c-Jun N-terminal kinase (JNK)
activation at different doses (1–200 µM) in Aβ-induced neuronal depolarization in mice
(Figure 5) [151].
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In parallel, Yu et al. demonstrated the neuroprotective effect of Ginkgo biloba drop-
ping pills (GBDP) in the amelioration of PD [152]. In that study, the pharmacological effects
of GBDP and EGb 761 were exploited in both in vivo and in vitro models of PD. Following
GBDP and EGb 761 treatments, the viability of DA neurons in zebrafish was assessed via
tyrosine hydroxylase immunostaining. Dopaminergic neurons in zebrafish were signifi-
cantly lost after exposure to 400 mM 6-OHDA for 48 h. Nevertheless, administration of
250 or 500 mg/mL of GBDP or 250 mg/mL of EGb 761 rescued the death of dopamin-
ergic neurons induced with 6-OHDA. No protection was observed with further GBDP
and EGb 761 dosages (Figure 6A,B). Moreover, GBDP reduced cognitive impairment
and neuronal damage in MPTP-induced PD mice and reversed the effect of 6-OHDA-
induced dopaminergic neuronal loss in zebrafish (Figure 6C). In vitro findings revealed
that the neuroprotective effects of GBDP can be mediated through the Akt/GSK3β pathway
(Figure 6D,E) [152].
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Figure 6. Representative images of dopaminergic neurons in the zebrafish brain, acquired using
TH immunostaining. (A) Ginkgo biloba dropping pills (GBDP) prevented the loss of dopaminergic
neurons induced by 6-OHDA. The red arrow shows dopaminergic neurons in the zebrafish brain.
(B) The area of the dopaminergic neurons calculated for each group. ### p < 0.0001 vs. the control
group; * p < 0.05 and ** p < 0.001 vs. the 6-OHDA group (n = 10 per group). (C) HE staining of
brain sections of an MPTP-induced mouse model of Parkinson’s disease. The black arrow indicates
significant diminished and loose nerve fiber components, which are lightly stained, while the yellow
arrow shows intensive staining of the nuclei of several atrophied cells. Glial cells exhibited modest
hyperplasia, as shown by the green arrow. (D,E) In MPP-treated human SH-SY5Y cells, GBDP admin-
istration reduced the Bax/Bcl-2 ratio and elevated Akt/GSK3β. ### p < 0.0001 vs. the MPP+ group.
Adapted with permission from [152]. Copyright {2021} Science-HHS Public Access (PubMedCentral).

Table 3 summarizes the reported neuroprotective effects of EGb.
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Table 3. In vivo and in vitro evaluation of bioactive constituents of Ginkgo biloba and their neuro-
protective role under neurodegenerative conditions.

Ginkgo biloba
Constituents

Neurological
Condition Model Outcome Ref.

EGb 761
Age-associated
mitochondrial
dysfunction

SAMP8 mice, oral
administration

• Protection against mitochondrial
dysfunction in platelets of young and
old mice

• Reduction in ROS-induced apoptosis

[153,154]

Ginkgetin and
bilobalide PD MPTP-induced mice,

oral administration

• Eliminated neuroinflammation via
decreasing TNF-α levels

• Increased levels of BDNF in the
substantia nigra pars compacta

• Decreased levels of intracellular ROS
and maintained mitochondrial
membrane potential

• Inhibited cell apoptosis via caspase-3
and Bcl2/Bax pathways

• Increased tyrosine hydroxylase
expression in the substantia nigra and
SOD activity in the striatum

• Chelated iron ions, downregulated
L-ferritin, and upregulated transferrin
receptor 1

[155,156]

Ginkgo biloba
extract (EGb
LI 1370)

AD

SH-SY5Y cells
expressing amyloid
precursor protein
(APP)

• Decreased oxidative stress
• Ameliorated oxidative phosphorylation

and restored Aβ-induced deficits
• Improved oxygen consumption and

upregulation of mitochondrial DNA

[157]

Ginkgo biloba
supplements
(GBS)

PD
Rotenone-induced
Swiss mice, oral
administration

• Inhibited striatal dopaminergic
neurodegeneration and α-synuclein
immunoreactivity

• Suppressed executioner caspase-3 and
upregulated Nrf2 pathway

• Decreased neurodegeneration of somata
size and dendritic spine of
striatal neurons

[158]

Ginkgo biloba
dropping pill
(GBDP)

PD

In vivo:
6-OHDA-induced
zebrafish
MPTP-induced male
C57BL/6 mice, oral
administration
In vitro:
MPP+-induced
SH-SY5Y cells

• Protection of dopaminergic neurons
against 6-OHDA and MPTP-induced
neurotoxicity mediated by the
Akt/GSK3β signaling pathway

• Reduced cognitive impairments and
neuronal damage

[152]

Ginkgo biloba
tablets

Vascular
cognitive
impairment of
non-dementia
(VCIND)

Randomized clinical
study of 80 patients
with VCIND

• Significant improvement in the Montreal
Cognitive Assessment (MoCA) score

• Increased blood flow velocity of the
anterior cerebral artery

[159]

EGb (Symfona®

forte 120 mg)

Mild cognitive
impairment
(MCI)

Randomized,
double-blind, placebo
exploratory study in
50–85-year-old patients
with MCI and
associated
dual-task-related gait
impairment

• Increased dual-task-related performance
in the intervention group

• EGb-associated numerical
non-significant trends found after
6 months for dual-task-related gait
velocity and stride time variability

[150]



Pharmaceutics 2023, 15, 1562 16 of 34

Table 3. Cont.

Ginkgo biloba
Constituents

Neurological
Condition Model Outcome Ref.

EGb 761 Huntington’s
disease

3-NP-induced rats, I.P.
injection

• Downregulation of striatal Bax
• Upregulation of striatal Bcl-xl

expression level
[105,160]

Kaempferol and
luteolin AD

Transgenic drosophila
expressing wild-type
human Aβ42

• Improved memory
• Reduced oxidative stress and

acetylcholinesterase activity
• Inhibition of Aβ42 plaque formation

after binding to Aβ42
• Inhibition of AChE
• Increased GHS content

[137,161]

Bilobalide
Cerebral ischemia
and reperfusion
(I/R) injury

MCAO male
Sprague–Dawley rats

• Significantly decreased infarct volume,
brain edema, MDA, nitric oxide, TNF-α,
and IL-1β

• Increased SOD activity
• Downregulated p-JNK1/2 and p-p38

MAPK expression

[162]

Isorhamnetin
Ischemia-induced
cerebral vascular
degeneration

Human brain
microvascular
endothelial cells
(HBMECs)

• Reduced activation of the extrinsic
apoptotic pathway by decreasing
caspase-3 and caspase-8

• Inhibition of FAS/FASL expression and
suppressed NF-κB nuclear translocation

[163]

EGb 761 Ischemic brain
injury

MCAO male
Sprague–Dawley rats • Decreased parvalbumin expression [164]

Ginkgolide B (GB)
Vascular
dementia (VD),
hypoxic injury

In vivo: BCCAO rats,
intraperitoneal
injection
In vitro:
Oxygen-glucose
deprivation (OGD) in
SH-SY5Y cells, primary
hippocampal neurons
subjected to chemical
hypoxia (0.7 mM CoCl2)

• Reduced TLR4/NF-κB-mediated
neuroinflammation

• Regulated Ca2+ influx and homeostasis
• Decreased number of apoptotic cells in

different areas of the hippocampus
• Improved antioxidant defense system

(SOD, GSH, CAT)
• Decreased concentration of

malondialdehyde (MDA) in the rat
hippocampus

[165–167]

3.3. Bioavailability and Safety of EGb

Acute toxicity studies have shown that EGb has a lethal dose (LD50) of 1.1 g/kg,
1.9 g/kg, and 7.73 g/kg in mice and 1.1 g/kg, 2.1 g/kg, and >10 g/kg in rats when
administered intravenously, intraperitoneally, and orally, respectively [168,169]. In the
older population, EGb is frequently used in the management of type 2 diabetes (T2DM),
hypertension, or rheumatism. However, the interaction of EGb with other drug candidates
can lead to bleeding. In a retrospective case series study, a 73-year-old man who had
been taking 75 mg of a ginkgo supplement for 6 months as an aid to improve his memory
deficits experienced episodes of spontaneous bleeding. The supplement included 27%
ginkgo flavone glycosides and 10% terpene lactones [170]. A case report revealed that a
38-year-old lady who had been taking thiamine and Ginkgo biloba extract (240 mg/day)
for 4 years experienced a brain hemorrhage [171]. Another study documented the case
of a 70-year-old man with spontaneous iris bleeding (hyphema). This clinical occurrence
took place 1 week after the patient started taking Ginkoba, a different natural Ginkgo
biloba supplement (40 mg twice a day), in combination with 325 mg of aspirin every day.
Ginkoba was withdrawn from therapy after monitoring the case for 3 months, and no
further bleeding incidents were observed. Thus, it was proposed that the bleeding was
caused by interactions between aspirin and gingko biloba extracts [172].
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From the examples cited, research connecting Ginkgo biloba therapy with bleeding
risk includes case reports. In addition, comprehensive analyses of randomized controlled
studies have not identified any elevated risk of bleeding in patients using Ginkgo biloba
extracts [173,174]. For example, in a prospective, double-blind, randomized, placebo-
controlled trial, the administration of EGb 761 to young, healthy male volunteers at three
different doses (120, 240, and 480 mg/day) had no effect on platelet function or coagula-
tion [175]. Moreover, it has been reported that EGb 761 at a dosage of 120 mg/day inhibits
platelet aggregation and thromboxane B2 synthesis [176]. In general, there is inconclu-
sive evidence that Ginkgo biloba extracts are associated with bleeding. However, further
research is necessary to resolve these controversies.

4. Perspectives for Use of Ginkgo Biloba in Nanotherapies of Neurological Disorders

Although preclinical studies of antioxidants to improve neuronal dysfunction have
shown encouraging results, the outcomes of clinical trials have not always been conclusive.
In general, antioxidant compounds have mainly suppressed clinical symptoms but are un-
able to halt or reverse disease progression [177]. In the absence of delivery systems, Ginkgo
biloba (120 mg daily dosage) did not improve patient performance in neuropsychological
tests of memory, attention, or speech during a 6-week, placebo-controlled, double-blind
clinical study including 219 individuals [178]. Similarly, a feasibility investigation by
Dodge et al. reported no difference in episodic memory deterioration in patients who
received 240 mg/day of Ginkgo biloba or a placebo during an average follow-up period
of 3.5 years [179]. The clinical translation of free antioxidant drugs may be hampered by
several issues related to drug delivery efficacy. These problems include low drug bioavail-
ability, low permeability through the CNS, limited half-life, and toxicity [180] (Figure 7).
Significant efforts have been made to increase the clinical efficacy of both natural and
synthetic antioxidants by using drug delivery systems to overcome their drawbacks. For ex-
ample, investigations of drug conjugates, complexes, and nanocarriers of various polymeric
materials have been performed [181–183].
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4.1. Intranasal Administration and Biodistribution of Nanoparticulate Carriers

Delivering nanomedicines to the brain to treat CNS disorders is a major advantage
of circumventing the BBB and reducing systemic exposure. Intranasal administration has
attracted attention as a potential delivery mechanism to the brain for neuroprotection. The
intranasal delivery method has been proposed for the treatment of CNS disorders (e.g.,
migraine, sleep disorders, brain tumors, multiple sclerosis, PD, and AD), thanks to its
non-invasiveness and high patient compliance [184,186–188]. Because the olfactory mucosa
is in direct contact with the CNS, intranasal delivery of small and large molecules can
successfully target the brain. This prevents the accumulation of drug molecules in vital
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organs, such as the liver, spleen, and kidney, which would lessen systemic adverse effects.
Alternative delivery routes are via the lymphatic and vascular systems [189,190].

Nanotechnology has considerable potential for delivering therapeutic compounds to
the brain through different mechanisms that allow blood–brain barrier passage. Nanoparti-
cles (NPs) can improve drug solubility, increase the residence time of the active compounds
at the target site, enhance their mucosal permeation and cellular internalization, regulate the
release of encapsulated drugs, and lessen systemic side effects by limiting the distribution
to non-targeted areas [189].

Wen et al. proposed nasal nanotherapy targeted to the brain with decreased im-
munogenicity with a drug delivery system. PEG–PLGA nanoparticles were modified
with conventional lectin by combining a synthetic OL–conjugate PEG–PLGA (OL–PEG–
PLGA) with PEG–PLGA [191]. For nanotherapy, odorranalectin (OL)-modified NPs were
fabricated via the double-emulsion technique. A hemagglutination test was conducted
to validate the biorecognitive activity of OL on the surface of the NPs. The results in
Figure 8 show that OL-conjugated NPs possess hemagglutinating activity and demonstrate
improved bioactivity. The nose-to-brain transport properties of the OL-conjugated NPs
were examined using an in vivo fluorescent imaging approach with DiR dye as a tracer.
The nanocarriers were co-administered with urocortin peptide via the intranasal route.
The therapeutic efficacy of hemiparkinsonian rats was assessed using a rotation behavior
test, a tyrosine hydroxylase test, and a neurotransmitter determination test. The obtained
data suggested that the intranasal delivery of functionalized NPs to the brain enhances the
therapeutic efficacy of nanodrugs in PD models [191].
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Figure 8. Delivery of odorranalectin (OL)-conjugated NPs to the brain monitored with an in vivo
imaging system. (A) Fluorescence images of the upper half-body of the mouse overlaid on X-ray
images, following intranasal administration of DiR-labeled NPs and OL-conjugated NPs at different
time points. (B) Semi-quantitative results of the fluorescence intensity in the brain region. * p < 0.05,
significantly different. (C) Fluorescence images of major organs overlaid on white-light images at 8 h
after intranasal administration of DiR-loaded NPs and OL-conjugated NPs to mice. Copyright © 2011
Elsevier B.V. All rights reserved, with permission from Elsevier [191].
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4.2. Ginkgo-Biloba-Based Nanotherapy for Neuroprotection and Regeneration from SARS-CoV-2
Neurological Damage

In a recent study, Ginkgo-biloba-extract-loaded chitosan nanoparticles (Gb–CsNPs)
were synthesized via an ionic gelation method. The outcomes revealed that the average size
of the Gb–CsNPs was 104.4 nm, with a zeta potential of 29.3 mV and a polydispersity index
(PDI) of 0.09. The encapsulation efficacy and drug-loading capacity were 40% and 97.4%,
respectively. The neuroprotective efficacy of the Gb–CsNPs was examined in an oxidative-
stress-induced cellular model (SH-SY5Y). The results showed increased cell survival from
60% to 92.3%, proving the NPs’ efficacy and biocompatibility [192]. Additionally, the
encapsulation of EGb in chitosan NPs improved its neuroprotective properties [192].

Wang et al. developed Ginkgo biloba extract nanoparticles to enhance the oral bioavail-
ability of GBE in Sprague–Dawley rats at a dosage of 40 mg kg−1. The Cmax value of
the flavonoids in raw GBE and GBE nanoparticles was reported to be 2.949 lg mL−1 at
0.5 h and 4.302 lg mL−1 in 0.333 h, respectively [193]. In a separate study, Zhao et al.
demonstrated the ability of GBE NPs to transport across barriers, including the chorion,
the GI barrier, the BRB, and the BBB. GBE was encapsulated by using poly(ethylene glycol)-
co-poly(ε-caprolactone) (PEG–PCL) nanoparticles. The developed nanoparticles facilitated
the sustained release and enhanced brain uptake of GBE in the plasma of treated animals
to treat PD [194].

Additionally, the delivery of quercetin across the BBB was achieved by using SLNs
via intravenous administration to improve the therapeutic efficacy of this molecule [195].
The high-pressure homogenization procedure was used to successfully formulate SLNs
loaded with Ginkgo biloba extract. The SLNs exhibited an appropriate particle size and
shape, sustained the release profile, and improved the loading efficiency of the active
substance [196].

In contrast, Xu et al. used an aqueous extract of Ginkgo biloba leaves to synthesize
AgNPs with a mean particle size of 40.2 ± 1.2 nm, a polydispersity index of 0.091 ± 0.011,
and a zeta potential of −34.56 mV [197]. In vitro results showed that EGb–AgNP treatment
significantly increases intracellular ROS levels, facilitates cytochrome C release from the
mitochondria into the cytosol, and facilitates caspase-9 and caspase-3 cleavage. This
indicated that EGb–AgNPs can induce the activation of caspase-dependent mitochondrial
apoptotic pathways, which are significant for various therapeutic applications [197].

As a potential nanotherapy for Parkinson’s disease (PD), Wang et al. synthesized
biodegradable poly(ethylene glycol)-b-poly(trimethylene carbonate) nanoparticles (PPNPs)
to deliver ginkgolide B. This enhanced the accumulation of bioactive molecules in the blood
and brain [198]. The fabricated GB–PPNPs effectively promoted the sustained release of
ginkgolide B for 48 h. Moreover, the GB–PPNPs at various concentrations (50, 100, 200,
and 400 µg/mL) prevented the neurotoxicity induced by MPP+ and protected zebrafish
embryos or larvae, while decreasing the level of MDA protein expression in GB–PPNP-
treated mice compared to MPTP-treated mice (Figure 9). Further research revealed that
mice treated with GB–PPNPs had higher levels of SOD and GSH-Px than mice treated
with MPTP. Additionally, GB–PPNPs elevated the concentration of DOPAC (10.66 ± 1.12,
1.65 ± 0.18 µg/g) and HVA (5.17 ± 0.60 µg/g). These values were significantly higher than
those observed in the disease group [198].
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Figure 9. In vivo toxicity analysis of ginkgolide-B-loaded GB–PPNPs in zebrafish embryo and MPTP-
induced murine model of PD. (A) Zebrafish embryos were treated with different concentrations of
GB–PPNPs (50, 100, 200, and 400 µg/mL), and at 96 hpf, the embryo morphology was visualized via
microscopy. The survival rates, hatching rates, heart rates, and zebrafish body length were calculated.
Scale bar: 500 µm. (C–H) Impact of GB–PPNPs on the striatum with determined levels of (A) MDA,
(B) SOD, (C) GSH-Px (means ± SD, n = 4), (D) dopamine, (E) DOPAC, and (F) HVA (n = 7). * p < 0.05
and ** p < 0.01 correspond to different treatments vs. MPTP. # p < 0.05 and ## p < 0.01 correspond
to GB–PPNPs vs. GB. Adapted with permission from [198]. Copyright {2022} Science-HHS Public
Access (PubMedCentral).

4.3. Green Synthesis of Ginkgo Biloba nanoEGb

Ginkgo biloba is synthesized as nanoEGb using a variety of nanocarriers, such as
liposomes, polymers, cyclodextrins, micelles, and carbon-based nanoconjugates, to address
its limited water solubility and poor bioavailability and improve its half-life and retention
time (Table 4) [199]. The poor bioavailability of EGb has been associated with the presence
of diterpenoid molecules, particularly in ginkgolides A, B, and C [199]. The biosynthesis of
Ginkgo biloba leaves has been realized using gold nanoparticles (AuNPs), Fe3O4 magnetic
nanoparticles (MNPs), and silver nanoparticles (AgNPs) [197,200,201]. This technique was
demonstrated by Elshazly et al., who developed AgNPs using Ginkgo biloba extract. The
nanoparticles exhibited a mean particle size ranging from 5.46 to 19.40 nm and an average
diameter of 11.81 nm. In vitro experiments demonstrated that AgNPs have a moderate
inhibition against MERS-CoV and HCoV-229E, which share similar sequence homology
with SARS-CoV-2 [202]. Figure 10 demonstrates the potential uptake mechanism of an EGb
nano-conjugate via transcytosis.
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Table 4. Preparation, characterization, and evaluation of active constituents of Ginkgo-biloba-based nanoparticles for treatment of neurological damages linked to
COVID-19.

Molecule Nanocarrier Technique ζ-Potential,
mV Size, nm PDI DL% EE% Morphology Pathology Ref.

Ginkgolide B GB–PPNPs Antisolvent
precipitation −10.37 ± 0.56 77.58 ± 0.77 0.124 ±

0.018 19.43% 92.08 Spherical PD [198]

Quercetin QNPs Antisolvent
precipitation — <1000 0.734 — — — AD [203]

Quercetin QT–SPION
conjugates

Co-precipitation
technique — 30–50 — — — Spherical AD [204]

Ginkgo biloba
extract EGb niosomes

Freeze-drying and
spray-drying
methods

Noisome
suspension,
−0.1 ± 1.7
Freeze-drying,
−11.6 ± 4.3
Spray-drying,
−33.6 ± 1.6

141.3 ± 11.9
661.3 ± 78.6
680.2 ± 90.0

— —
50.0 ± 1.9
50.1 ± 1.0
77.5 ± 1.0

Spherical and
smooth
surface

Improving oral
bioavailability [205]

Kaempferol

Kaempferol-
loaded
nanoparticles
(KFP–NPs)

Quasi-emulsion
methods −28.5 to −7.5 201 ± 0.45 0.12 to 0.95 11.34 to

15.06 30.14 to 46.72
Solid sphere
with a smooth
surface

Hepatoprotective
and antioxidant
effects

[206]

Luteolin

Luteolin-
loaded
chitosomes
(LUT–CHS)

Ethanol injection 37.4 ± 2.13 412.8 ± 3.28 0.378 ± 0.07 — 86.6 ± 2.05

Spherical
vesicular
system with a
phospholipid
bilayer
membrane

Cognitive
dysfunction in
Alzheimer’s disease
(AD)

[207]

Ginkgo biloba

EGb-loaded
solid lipid
nanoparticles
(SLNs)

High-pressure
homogenization −12.6 to −28 104 to 621 < 0.5 — 79 to 89

Spherical,
smooth, and
rounded
surface

Cytotoxicity and
antibacterial
activities

[196]

Isorhamnetin
Isorhamnetin-
PLGA
NPs

Double-emulsion
solvent evaporation — 255 to 342 — — — — — [208]
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Table 4. Cont.

Ginkgo biloba
extract

Gb-extract
-loaded
chitosan
nanoparticles
(Gb–CsNPs)

Ionic gelation 29.3 104.4 0.09 40 97.4
Smooth and
spherical
morphology

Oxidative stress [192]

Silver
nanoparticles
(AgNPs)

Biogenic synthesis −74.2 ± 2.45 5.46 to 19.40 — — —
Agglomerated
spherical
shapes

Antiviral activities
against MERS-CoV
and HCoV-229E

[202]

Self-
emulsifying
drug delivery
systems
(SEEDS)

Self-emulsification — ~100 — — — — Improving oral
absorption [209]

EGb-loaded
nanospheres Nanoprecipitation — 100 to 200 0.428 to

0.478 — —

Oval or
spherical
shape with a
smooth
surface

In vitro release
kinetics [210]
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Figure 10. Antioxidant-based nanotherapy via green synthesis of nanoparticles. The scheme il-
lustrates the benefits of delivering Ginkgo biloba biogenic metallic NPs to increase their half-life,
capacity to penetrate the BBB, bioavailability, and sustained effect, thus neutralizing oxidative stress
in neurological disorders (created with BioRender).

4.4. Characterization Techniques for Nanotherapeutics

For the development of nanotherapeutics, nanoparticles are characterized using dif-
ferent techniques [198–213]. Sufficient knowledge of the safety, efficacy, and quality of
nanotherapies is required to enable easy translation toward clinical applications [211].
Various techniques are used to characterize the size, charge, morphology, drug encap-
sulation efficiency, drug loading, toxicity, etc., including dynamic light scattering (DLS),
nanoparticle tracking analysis (NTA), UV–VIS spectrometry, transmission electron mi-
croscopy (TEM), scanning electron microscopy (SEM), and cytotoxicity assessment via
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydro-
genase (LDH) assays (Table 5) [212,213].

Table 5. Nanospecific characteristics and physico-chemical properties of drug-loaded nanoparticles,
which are considered relevant for the preclinical characterization of nanomedicines/nanotherapeutics
formulated in aqueous media.

Nanospecific Characteristics Test Method

Size/size distribution DLS

Physical form/shape/morphology TEM, cryo-TEM

Surface charge Zeta potential, electrophoretic mobility (EPM)

Aggregation behaviour DLS
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Table 5. Cont.

Nanospecific Characteristics Test Method

Stability and uniformity DLS, UV–VIS spectroscopy

Density/weight/volume fraction of nanomaterial
dispersed in the medium Ultracentrifugation, densitometry

Drug encapsulation UV–VIS spectrometry, high-performance liquid chromatography (HPLC)

Presence of targeting moieties
Kinetic turbidity assays,

Spectroscopic assays (UV–VIS, circular dichroism), surface plasmon
resonance (SPR) binding assays

Toxicity Cytotoxicity assessment using MTT and LDH assays

Biocompatibility Immunological response,
hemolytic properties

Structural and functional properties

TEM, SEM, small-angle X-ray scattering (SAXS), NTA, high-resolution
transmission electron microscopy (HRTEM), atomic force microscopy

(AFM), extended X-ray absorption fine structure (EXAFS), ferromagnetic
resonance (FMR), DSC, differential centrifugal sedimentation (DCS),
inductively coupled plasma atomic emission spectroscopy (ICP-MS),

UV–VIS, matrix-assisted laser desorption/ionization (MALDI), nuclear
magnetic resonance (NMR), superparamagnetic relaxometry, tunable

resistive pulse sensing (TRPS)

5. Conclusions

It is indispensable to continue studying the mechanisms that underlie the pathophys-
iological process of SARS-CoV-2 infection. This will enable researchers to uncover the
therapeutic targets that may be used for their management. According to this review, it
may be suggested that Ginkgo biloba has potential positive effects, including anxiolytic,
antineurotoxic, anti-inflammatory and anti-apoptotic functions, and has been explored
in treating neurological disorders, particularly AD, PD, and dementia. Nevertheless,
further studies are needed to corroborate the activity and mechanisms of action of this
phytochemical since it could constitute an alternative for the treatment of vascular and
degenerative diseases. Nanotechnology-based drug delivery systems could be an approach
to address the limitations of antioxidant compounds, which include insufficient dosing,
limited bioavailability, restricted transport to the CNS, transient retention, and low antioxi-
dant capacity to completely scavenge the effect of ROS. The development of experimental
techniques to mimic ROS has made it possible to study oxidative stress in the CNS. These
methods will be fundamental for future discoveries related to the role of oxidative stress in
neurological diseases.
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Abbreviations

3-NP—3-nitropropionic acid; 6-OHDA—6-hydroxydopamine; 8-OHG—8 hydroxyguanosine;
ACE2—angiotensin-converting enzyme 2; AKT—protein kinase B; ALI—acute lung injury; ALS—
amyotrophic lateral sclerosis; AMPA—α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid;
ARE—antioxidant response element; AT1R—angiotensin II receptor type 1; Aβ—amyloid beta;
BBB—blood–brain barrier; BCL2—B-cell lymphoma-2; B-CSF—blood–cerebrospinal fluid; BDNF—
brain-derived neurotrophic factor; cAMP—cyclic adenosine monophosphate; CAT—catalase; CDK5—
cyclin-dependent kinase 5; CNS—central nervous system; COX2—cyclooxygenase-2; CREB—cAMP-
response-element-binding protein; CVO—circumventricular organ; DCN—dopaminergic neuron;
ECT—electron transport chain; EGb—Ginkgo biloba extract; EGCG—epigallocatechin gallate; eNOS—
endothelial nitric oxide synthase; ER—endoplasmic reticulum; ERK—extracellular-signal-regulated
kinase; FOXO3—forkhead box O3; GA—ginkgolide A; GCLC—glutamate-cysteine ligase catalytic
subunit; GCLM—glutamate cysteine ligase modifier; GPx—glutathione peroxidase; GSH—glutathione;
GSK-3β—glycogen synthase kinase-3 beta; hBMVEC—human brain microvascular endothelial cell;
HIF-1—hypoxia inducible factor 1; HMOX1—heme oxygenase 1; hNPC—human neural progenitor
cell; HO-1—heme oxygenase; I-Kβ—Ikappa B kinase; IL-1β—interleukin 1 beta; JNK—c-Jun N-terminal
kinase; LPS—lipopolysaccharide; LRRK2—leucine-rich repeat kinase 2; MAM—mitochondria-associated
endoplasmic reticulum membrane; MAPK—mitogen-activated protein kinase; MAPT—microtubule-
associated protein tau; MCAO—middle cerebral artery occlusion; MDA—malondialdehyde; MERS-
CoV—Middle East respiratory syndrome coronavirus; MPO—myeloperoxidase; MRI—magnetic
resonance imaging; MtKATP—ATP-sensitive potassium channels of the inner mitochondrial mem-
brane; mtROS—mitochondrial reactive oxygen species; mTOR—mechanistic target of rapamycin;
MTPT—1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MYD88—myeloid differentiation primary
response 88; nAChR—nicotinic acetylcholine receptor; NADPH—nicotinamide adenine dinucleotide
phosphate; NF-κB—nuclear factor kappa B; NLRP3—NOD-like receptor proteins 3; NMDA—N-
methyl-D-aspartic acid; NOX—NADPH oxidase; NQO1—NAD(P)H quinone dehydrogenase 1;
Nrf2—nuclear factor erythroid 2–related factor 2; PARP—poly (ADP-ribose) polymerase; PD—
Parkinson’s disease; PGC-1α—peroxisome proliferator activated receptor gamma coactivator 1 al-
pha; PI3K—phosphoinositide 3-kinase; PINK1—PTEN-induced kinase 1; PKB—protein kinase B;
PRDX3—peroxiredoxin 3; PSEN1—presenilin 1; PTEN—phosphatase and tensin homolog; RBD—
receptor-binding domain; ROS—reactive oxygen species; SARS-CoV-2—severe acute respiratory
syndrome coronavirus 2; SOD2—superoxide dismutase 2; STAT3—signal transducer and activator of
transcription 3; TLR4—toll-like receptor 4; TNF-α—tumor necrosis factor alpha; TXA2—thromboxane
A2; γGCS—gamma glutamylcysteine synthetase; ∆Ψm—mitochondrial membrane potential
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A. The Use of Ginkgo Biloba L. as a Neuroprotective Agent in the Alzheimer’s Disease. Front. Pharmacol. 2021, 12, 775034.
[CrossRef]

101. Bradley, P.R. (Ed.) British Herbal Compendium: A Handbook of Scientific Information on Widely Used Plant Drugs; British Herbal
Medicine Association: Bournemouth, UK, 1992.

102. Yang, Y.; Liu, P.; Chen, L.; Liu, Z.; Zhang, H.; Wang, J.; Sun, X.; Zhong, W.; Wang, N.; Tian, K.; et al. Therapeutic Effect of Ginkgo
Biloba Polysaccharide in Rats with Focal Cerebral Ischemia/Reperfusion (I/R) Injury. Carbohydr. Polym. 2013, 98, 1383–1388.
[CrossRef]

103. Achete de Souza, G.; de Marqui, S.V.; Matias, J.N.; Guiguer, E.L.; Barbalho, S.M. Effects of Ginkgo Biloba on Diseases Related to
Oxidative Stress. Planta Med. 2020, 86, 376–386. [CrossRef]
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