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Abstract Larval dispersal either through ballooning or crawling results in a redistribution of the insect popula-

tion and infestations within and between plants. In addition, invasive species, such as the fall army-

worm (FAW), Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), and the exotic stemborer

Chilo partellus (Swinhoe) (Lepidoptera: Crambidae), may displace indigenous stemborers on maize

in Africa. To test whether larval dispersal activity may play a role in the displacement of indigenous

stemborers, larval dispersal was compared between FAW, C. partellus, and the indigenous species

Busseola fusca (Fuller) and Sesamia calamistis (Hampson) (both Lepidoptera: Noctuidae). Twenty

potted maize plants were infested with one batch of eggs either from stemborers (B. fusca, S. calamis-

tis, orC. partellus) or from FAW andmonitored in the greenhouse for ballooning activities. After egg

hatching, both ballooning and non-ballooning larvae were identified according to species and

counted. FAW neonate larvae had greater potential for ballooning off than stemborers, irrespective

of species. For each species, more females dispersed than males, and their survival rate was higher

than that of non-ballooning larvae. In addition, plant-to-plant larval movements were studied using

6.25-m2 plots of cagedmaize in a completely randomized design with five replicates. FAWwas found

to have wider dispersal and plant damage potential than any of the stemborer species. In conclusion,

in contrast to C. partellus, the invasive characteristic of FAW can be explained, in part, by its higher

larval dispersal activity compared to stemborers. This difference in larval dispersal might also be con-

sidered in sampling plans for monitoring pest density in the field.

Introduction

Insect dispersal is an important form of adaptation to

ensure survival in an environment with variable resources

and habitats (Bello, 1990; Price, 1997; Pannuti et al.,

2016). Most studies have focused on flight as a means of

dispersal (e.g., Landin, 1980; Osborne et al., 2002; Wyck-

huys & O’Neil, 2006). Other means of spreading involve

larvae crawling or ballooning off (Zalucki et al., 2002;

Pannuti et al., 2015, 2016; Rojas et al., 2018). However,

much less is known about their significance as a means of

dispersal.

Larval dispersal is common among species that lay eggs

in batches, such as lepidopterans (Zalucki et al., 2002;

Meagher &Nagoshi, 2004; Tiple et al., 2011). Adaptive dis-

persal enables larvae to switch feeding sites and to move

from impoverished food resources to new ones. It also

allows the larvae to escape enemies and to change location

within the plant (Pannuti et al., 2016). The larvae migrate

from the oviposition plant to adjacent plants either as bal-

looning larvae or as crawling older larvae (Zalucki et al.,

2002; Schoonhoven et al., 2005). Ballooning larvae can

migrate to other plants with the silk strand still attached to
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the original leaf. Sometimes several larvae spin off in a

row, hanging onto the same thread. They may also spin

off, and either continue on or climb back to the original

plant (Zalucki et al., 2002; Schoonhoven et al., 2005).

In sub-Saharan Africa, the stemborers Busseola fusca

(Fuller), Sesamia calamistis (Hampson) (both Lepi-

doptera: Noctuidae), and Chilo partellus (Swinhoe) (Lepi-

doptera: Crambidae) are the economically most

important lepidopteran pest species, severely limiting the

yield of maize as they continuously infest the crop

throughout its growth stages (Kfir et al., 2002; Oben et al.,

2015). They may occur as single species or as a community

of mixed species (Van Den Berg et al., 1991; Tefera, 2004;

Ong’amo et al., 2006; Kr€uger et al., 2008). Among these

stemborers, C. partellus is the only exotic species which

invaded eastern Africa in the 1930s (Kfir et al., 2002). This

species has competitively displaced B. fusca in the high-

lands of South Africa (Kfir, 1997). It has also displaced

Chilo orichalcociliellus Strand in the coastal region of

Kenya (Ofomata et al., 1999) and may gain an advantage

over B. fusca and S. calamistis in the utilization of maize

(Mwalusepo et al., 2015; Ntiri et al., 2016). Recently, the

fall armyworm (FAW), Spodoptera frugiperda (JE Smith)

(Lepidoptera: Noctuidae), invaded sub-Saharan Africa,

where it has seriously limited maize yields (Goergen et al.,

2016; Cock et al., 2017; Fotso Kuate et al., 2019). Recent

observations indicate that it closely interacts with maize

stemborer communities (Sokame et al., 2020) and might

also displace the stemborers. Among these species, the

females of B. fusca and S. calamistis lay their eggs between

the leaf sheath and the stem of the plant, protected against

environmental influences and natural enemies, whereas C.

partellus and S. frugiperda deposit eggs directly on leaf sur-

faces, which makes them disperse faster and more effi-

ciently between plants (Pitre et al., 1983; Polaszek, 1998).

The latter might explain their invasive characteristics com-

pared to indigenous pests.

In this context, larval dispersal by means of balloon-

ing off and crawling was compared between FAW, C.

partellus, and indigenous stemborers. In addition, the

consequences of ballooning off on fitness parameters,

such as larval and pupal survival, as well as develop-

ment time and sex ratio, were determined. As several

studies showed that stemborers and FAW display

aggregative behavior in maize fields not far from the

original oviposition site (Van Rensburg et al., 1987;

Ross & Ostlie, 1990; Van Den Berg et al., 1991; Cala-

tayud et al., 2014; Erasmus et al., 2016; Ndjomatchoua

et al., 2016; Pannuti et al., 2016), the movements of

larvae by both ballooning off and crawling between

adjacent plants and the plant damage inflicted were

studied in small cages.

Materials and methods

Plants and insects

All experiments were carried out at the Duduville campus

of the International Centre of Insect Physiology and Ecol-

ogy (icipe), Nairobi, Kenya. Maize plants used were hybrid

H513 (Simlaw Seeds, Nairobi, Kenya). For the ballooning

off experiment, plants were grown in plastic pots contain-

ing peat (12 cm high, 13 cm diameter, with a single maize

plant per pot) in a greenhouse, whereas for the plant-to-

plant movement experiment, plants were grown directly

in soil covered with a netted cage of 2.5 9 2.5 m at the

icipeDuduville campus. Mean temperatures were approxi-

mately 31 °C in the day and 17 °C in the night, with a

L12:D12 photoperiod. Plants aged between 4–6 weeks and

60–75 cm high were used for all experiments. This age was

found to be the plant’s growth stage used by both stembor-

ers and FAW females for oviposition (Holloway, 1998;

Polaszek, 1998; Goergen et al., 2016; Cock et al., 2017).

The pupae of B. fusca, C. partellus, S. calamistis, and S.

frugiperda were obtained from colonies reared at the Ani-

mal Rearing and ContainmentUnit (ARCU) at icipe, Nair-

obi, Kenya. Colonies were rejuvenated twice a year with

field-collected larvae. Pupae were sexed, and males and

females were kept separately in plastic containers

(21 9 15 9 8 cm) until adult emergence. A cotton pad

moistened with water was placed inside the container to

maintain relative humidity >80%. The insects were kept in

a rearing room at 25 � 0.05 °C, 58.5 � 0.4% r.h., and

L12:D12 photoperiod.

For each species, emerged adult males and females were

released in amating cage (40 9 40 9 63 cm), at the onset

of the scotophase. Themating status was checked at hourly

intervals until the end of the scotophase. Pairs of mating

moths were collected in plastic jars (8 cm high, 5 cm

diameter). From these pairs, the gravid females were indi-

vidually released in the aforementioned mating cages the

following night, with each containing one potted maize

plant. Egg deposition was checked the following day. For

each species, each potted plant with one batch of eggs con-

taining a similar number of eggs per batch was used in the

following two experiments.

Ballooning activity

For each species, 20 pottedmaize plants with one egg batch

each were placed in the greenhouse at 26 � 2.5 °C and

65–70% r.h. The potted plants were placed 1 m apart to

avoid leaf overlap from different plants. Five (B. fusca and

S. calamistis) or 3 days (C. partellus and S. frugiperda) after

oviposition, the plants were checked early each day for

hatching eggs. At eclosion, the newly hatched larvae were

observed for ballooning activity every 5–10 min during
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the 1st h, and every 20 min during the 2nd and 3rd h. All

larvae that left the maize plants by hanging on silk threads

were collected and individually put on an artificial diet in a

glass vial (7.5 9 2.5 cm). After 3 h, the experiments were

stopped, when most of the larvae had entered the plant via

the whorl or leaf sheath or had left the plant on silk

threads. The plants were dissected, and the non-ballooning

larvae were recorded from each plant. The egg batch was

removed from the dissected plant, and the total number of

eggs (hatched or not) on each plant was recorded in order

to estimate the egg-hatching rate. The larvae found on the

ground around each potted plant were removed and were

considered as having left or dropped off the plant without

spinning off. These larvae, in addition to dead larvae,

which were not collected, were not taken into account in

the analysis and were very few in number, representing

only (mean � SE, n = 20) 3.83 � 0.71% for B. fusca,

4.50 � 0.87% for S. calamistis, 3.37 � 0.58% for C.

partellus, and 9.27 � 1.01% for FAW of the total collected

larvae from the total eggs hatched.

For each egg batch and species, ballooning and non-bal-

looning larvae were kept separately on artificial diet in the

laboratory rearing room (at 25 � 2 °C, 60 � 10% r.h.,

and L12:D12 photoperiod) until pupation to estimate lar-

val development time. Pupae were sexed according to the

method described by Underwood (1994). They were kept

in separate plastic containers (16 9 10 cm) with perfo-

rated plastic lids until adult emergence to estimate pupal

development time. Larval or pupal survival for each spe-

cies was calculated by dividing the number of larvae that

pupated or pupae that emerged by the number of the total

larvae or pupae recorded for a given species, respectively.

Larval movement between adjacent plants via ballooning or crawling
off

The study was conducted with a completely randomized

design. For each species, there were five replicates, each

consisting of a caged 6.25-m2 plot in the icipe campus field.

Thermo-photoperiod was approximately L12(31 °C):D12
(17 °C). Each cage was 2.5 m wide, 2.5 m long, and 2 m

high, supported with polyvinyl chloride (PVC) pipes

(3 cm diameter) and covered with a white insect net

(mesh 16, or holes of 1.19 mm). Maize was planted

directly in the soil in the icipe campus field in two concen-

tric circles, as shown in Figure 1. Two seeds were planted

per hole but reduced to one plant 1 week after germina-

tion. Following the results from dispersal of stemborer and

FAW larvae by Erasmus et al. (2016), Ndjomatchoua et al.

(2016), Pannuti et al. (2016), Ross & Ostlie (1990), Van

Den Berg et al. (1991), and Van Rensburg et al. (1987),

two concentric circles with a radius of 40 and 80 cm were

chosen (Figure 1). The plots were irrigated as required

with a lateral overhead irrigation system. When the plants

were 4–6 weeks old (the same age as described above for

the potted plants), one potted maize plant with one egg

batch obtained as described above was placed in the centre

of the circles. After 1 week, the egg batch was removed

from the plant, all eggs (hatched and non-hatched) were

counted under a stereo microscope, and the hatching rate

was calculated. Three weeks later, each plant was assessed

for leaf damage and larval density. Leaf damage was evalu-

ated using the damage scale described by Prasad et al.

(2011): 1 = no visible leaf injury or a small number of pin/

shot-hole types of injury on a few leaves; 2 = small

amount of shot-hole type lesions on a few leaves;

3 = shot-hole type injury on several leaves; 4 = several

leaves with shot-holes and elongated lesions; 5 = several

leaves with elongated lesions of ca. 2.5 cm; 6 = several

leaves with elongated lesions of >2.5 cm; 7 = long lesions

on about half of the leaves; 8 = long lesions on about two-

thirds of the leaves; and 9 = most leaves with long lesions

based on the type and amount of feeding. Infestation inci-

dence was expressed as the percentage of plants damaged

in each plot. Finally, the plants were uprooted and dis-

sected to estimate larval density per plant.

Data analysis

The proportion of ballooning larvae, sex ratio, survival

rate, hatching rate, and infestation incidence were analyzed

with a generalized linear model (GLM) with the binomial

error distribution due to the binary nature of these

Figure 1 Crop geometric of themaize plot. The central dot

represents the initial point of infestation in the plot. Fivemaize

plants were planted in an inner circle with 40 cm radius and 10

maize plants in an outer circle with 80 cm radius from the initial

point of infestation.
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parameters (ballooning vs. non-ballooning, female vs.

male, survival vs. mortality, hatched vs. non-hatched, and

infested vs. uninfested) (Warton & Hui, 2011). Larval and

pupal development time and the number of eggs per batch

were analyzed with GLM with the Poisson error distribu-

tion, whereas the number of larvae per plant and leaf dam-

age scoring were analyzed with GLM with a negative

binomial error distribution due to the nature of the count

data and the goodness of fit model. Means were separated

with Tukey’s multiple comparison tests, performed in the

R package ‘lsmeans’ (Lenth, 2016). FAW and the stem-

borer species were taken as explicative variables in addition

to the distance from the point of infestation in the

between-plant dispersal experiment. All analyses were car-

ried out in R v.3.5.1 (R Core Team, 2018) and a = 0.05.

Results

Numbers of eggs per batch and eggs hatching rates of FAWand maize
stemborers

The mean (� SE; n = 25) number of eggs per batch

obtained in this study was 64.6 � 4.1 for B. fusca,

60.1 � 4.6 for S. calamistis, 59.4 � 4.4 for C. partellus,

and 63.1 � 4.0 for FAW with hatching rates of 91 � 1.6,

95 � 0.83, 95 � 0.64, and 92 � 0.89%, respectively.

Between species, the number of eggs per batch and the

number of eggs hatched per batch were not significantly

different (GLM: LR = 7.42, P = 0.06; LR = 2.72,

P = 0.43, respectively). Therefore, the number of eggs per

batch and egg-hatching rate were not the factors which

could influence all larval movements evaluated in this

study.

Ballooning activity

The three stemborers exhibited similar ballooning rates

but they were lower than those of FAW (LR = 99.69,

P<0.0001; Figure 2). About 50% of the FAW larvae bal-

looned off the plant compared with only 30% of the stem-

borers.

For either ballooning or non-ballooning larvae, there

was no significant difference of larval and pupal survival

between species (Table 1). However, within each species,

the larvae and pupae coming from ballooning larvae

exhibited higher survival rates as compared to those from

non-ballooning larvae. For the development time of both

larvae and pupae, there was no significant difference

between ballooning and non-ballooning larvae regardless

of the pest species. However, for both ballooning and non-

ballooning FAW larvae development time was shorter

than in the stemborer species (Table 1).

Regardless of the species, the ballooning larvae that

pupated produced a higher percentage of females than the

non-ballooning larvae (B. fusca: LR = 124.6; S. calamistis:

LR = 17.2; C. partellus: LR = 16.1; FAW: LR = 25.4, all

P<0.0001; Figure 3). However, there were no differences

for ballooning (LR = 0.43, P = 0.93) and non-ballooning

(LR = 0.10, P = 0.99) larvae between insect species (Fig-

ure 3).

Larval movement between plants

Fall armyworm had a significantly higher number of plants

infested and larvae per plant than the stemborer species

(Table 2). In contrast to FAW, infestation incidence and

number of larvae in the three stemborers were higher at 40

than at 80 cm (GLM; infestation incidence, B. fusca:

LR = 7.78, P = 0.03; S. calamistis: LR = 4.10, P = 0.04; C.

partellus: LR = 3.26, P = 0.04; FAW: LR = 0.24, P = 0.62;

number of larvae per plant, B. fusca: LR = 8.02, P = 0.004;

S. calamistis: LR = 6.48, P = 0.01; C. partellus: LR = 5.09,

P = 0.02; FAW: LR = 2.00, P = 0.15).

The damage rating scale decreased with the distance

from the initial point of infestation for the stemborer spe-

cies but not for FAW (B. fusca: LR = 4.75, P = 0.02; S.

calamistis: LR = 4.16, P = 0.03; C. partellus: LR = 6.32,

P = 0.01; FAW: LR = 1.87, P = 0.17). Damage ratings

were lower for stemborers than for FAW (LR = 11.78 at

40 cm; LR = 258.48 at 80 cm, both P<0.0001) (Figure 4).

Discussion

All species studied exhibited ballooning activities. How-

ever, this is the first time it has been shown for S. calamistis

Figure 2 Mean (� SE) percentage of larvae of fall armyworm

(Spodoptera frugiperda) and three stemborer species leaving

maize plants by ballooning.Means capped with different letters

are significantly different (Tukey’s test: P<0.05).
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and FAW. Ballooning activity has been recorded in several

lepidopteran families, including Cossidae, Geometridae,

Lymantriidae, Noctuidae, Psychidae, and Pyralidae (Com-

mon & Slater, 1997; Zalucki et al., 2002). Dispersal com-

monly leads to neonates selecting newly expanding leaves

for their first meal (e.g., Joseph & Kelsey, 1994). However,

the capacity for ballooning off in neonate larvae depends

on the insect species (Zalucki et al., 2002). The percentage

of the first instars that disperses by ballooning off is vari-

able, ranging from 1% in Ostrinia nubilalis (H€ubner)

(Razze & Mason, 2012), 15-26% in Lymantria dispar (L.)

(Diss et al., 1996; Zlotina et al., 1999) to 93% in the com-

mon armyworm, Mythimna convecta (Walker) (McDon-

ald, 1991). Ballooning activities of 4 and 55% were

reported for B. fusca and C. partellus, respectively (Van

Rensburg et al., 1987; Berger, 1989); in the present study it

was 30% for both species, not different from the mean val-

ues found by the previous studies. In the present study,

FAW neonate larvae exhibited greater ballooning activity

than stemborers. Several studies suggested that in the cases

where larval dispersal is limited, females select for high-

quality hosts (van Huis, 1981; Thompson, 1988; Roitberg

et al., 1999; Zlotina et al., 1999; Gripenberg et al., 2010;

Refsnider & Janzen, 2010; Bellota et al., 2017). Thus, the

higher dispersal indicates that FAW is less involved in

high-quality host assessment and also more polyphagous

than any of the stemborer species. In fact, its host range

exceeds 180 species (Sparks, 1979; Andrews, 1980; Pogue,

2002; Casmuz et al., 2010). In this case, dispersal away

fromhosts carryingmore larvae is likely to bemostly adap-

tive for FAWbecause it would reduce intraspecific compe-

tition and cannibalism (Chapman et al., 1999; Andow

et al., 2015). Neonate lepidopteran larvae disperse away

from their natal plants for diverse reasons, from avoiding

predation and competition to finding suitable hosts

Table 1 Mean (� SE) larval and pupal survival rate (%) and development time (days) of ballooning and non-ballooning larvae of fall

armyworm (Spodoptera frugiperda) and three stemborer species (Busseola fusca, Sesamia calamistis,Chilo partellus) onmaize plants

Parameters Species

Larvae Pupae

Ballooning

Non-

ballooning LR P Ballooning

Non-

ballooning LR P

Survival rate

(%)

B. fusca 89.68 � 1.96 61.55 � 2.14 56.95 <0.0001 91.47 � 1.06 69.03 � 2.54 56.95 0.004

S. calamistis 91.08 � 1.53 58.98 � 2.56 157.92 <0.0001 89.14 � 1.29 65.98 � 2.30 54.17 <0.0001
C. partellus 90.50 � 1.22 57.84 � 2.70 114.62 <0.0001 90.16 � 1.26 63.88 � 2.68 61.73 <0.0001
S. frugiperda 85.81 � 1.56 63.04 � 1.93 82.06 <0.0001 89.19 � 2.18 62.09 � 2.44 89.15 <0.0001
LR 6.23 8.13 0.88 7.09

P 0.10 0.07 0.82 0.06

Development

time (days)

B. fusca 34.95 � 0.18c 35.65 � 0.15b 0.13 0.70 9.80 � 0.18 10.50 � 0.26 1.48 0.47

S. calamistis 32.10 � 0.51bc 34.40 � 0.41b 1.59 0.20 10.10 � 0.19 11.15 � 0.20 1.03 0.30

C. partellus 29.85 � 1.34b 31.80 � 0.63b 1.23 0.26 10.35 � 0.48 12.15 � 0.39 2.88 0.08

S. frugiperda 20.65 � 1.24a 22.65 � 1.14a 1.84 0.17 10.40 � 0.35 11.55 � 0.38 1.20 0.27

LR 82.88 70.54 0.44 2.54

P <0.0001 0.003 0.93 0.46

LR = likelihood ratio.

Means within a column followed by different letters are significantly different (Tukey’s test: P<0.05).

Figure 3 Mean (� SE) percentage of females from larvae that

exhibited ballooning and non-ballooning activity in fall

armyworm (Spodoptera frugiperda) and three stemborer species.

Means within a species capped with different lowercase letters are

significantly different (Tukey’s test: P<0.05); means within an

activity did not differ among species (Tukey’s test: P>0.05).
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(Zalucki et al., 2002; Perovic et al., 2008). In gregarious

species the risk of reduced larval fitness as a result of

rapidly declining host quality due to overcrowding is high.

Thus, population density and host quality may mediate

their dispersal from natal hosts (van Huis, 1981; Chapman

et al., 1983; Berger, 1992; Price, 1997; Cohen et al., 2000;

Dirie et al., 2000; Zalucki et al., 2002; Moore & Hanks,

2004; Lopez et al., 2013; Ramalho et al., 2014; Bernal et al.,

2015).

For all species studied, the percentage of females among

ballooning larvae that reached the pupal stage was higher

than that of non-ballooning larvae. Rhainds et al. (2002)

reported that for larvae of Metisa plana Walker, a pest of

the oil palm Elaeis guineensis Jacquin, the sex ratio of bal-

looned larvae that attained the pupal stage was consistently

female-biased and exceeded 81%. This female-biased sex

ratio might be involved in ensuring the perennity of the

species (Rossiter, 1987; Lagoy & Barrows, 1989; Rhainds

et al., 1998). Sex-specific dispersal behavior by male and

female larvae has been reported in other lepidopteran spe-

cies such as Lymantriidae (Rossiter, 1987; Harrison, 1994)

and Psychidae (Cox & Potter, 1988; Rhainds & Gries,

1997; Rhainds et al., 1998). Moreover, for all species under

study, ballooning larvae had a higher survival rate than

non-ballooning larvae. These results are in contrast to the

lower survival rate for ballooning larvae, widely reported

in field and semi-field conditions (Carey et al., 1995;

Zalucki et al., 2002; Razze & Mason, 2012; Varella et al.,

2015). A lower survival rate for ballooning larvae than for

non-ballooning larvae can be expected under field condi-

tions, as the ballooning larvae are more prone to abiotic

factors such as ambient temperature, dislodgment by rain-

fall, drowning, and biotic factors, such as landing on an

unsuitable plant or being attacked by natural enemies

(Zalucki et al., 2002).Meagher & Nagoshi (2004) and Pan-

nuti et al. (2015) reported similar higher survival rates in

ballooning than in non-ballooning larvae, whereas Reavey

& Lawton (1991) emphasized the contribution of larval

behavior to their fitness under controlled conditions.

In plant-to-plant movements, in addition to bal-

looning, neonates may move between plants by lower-

ing themselves on silk threads (Torres-vila et al.,

1997), whereas older larvae may migrate by crawling

from one plant to another, leading to a decline in

stemborers and fall armyworm density on the oviposi-

tion plant and an increase in density on adjacent

plants. This pattern is similar to that reported for the

European corn borer, O. nubilalis (Shelton et al.,

1986; Ross & Ostlie, 1990) and was already reported

Table 2 Mean (� SE) number of infested maize plants and number of larvae of fall armyworm (Spodoptera frugiperda) and three stem-

borer species per plant in a circle with 40-cm radius (five plants in a circle) or 80-cm radius (10 plants in a circle) (see Figure 1)

Species

Infested plants Larvae per plant

40 cm 80 cm 40 cm 80 cm

Busseola fusca 2.60 � 0.24a 3.20 � 0.58a 1.00 � 0.22a 0.38 � 0.09a

Sesamia calamistis 2.60 � 0.24a 2.80 � 0.20a 0.92 � 0.20a 0.38 � 0.09a

Chilo partellus 3.00 � 0.00ab 3.80 � 0.37a 0.96 � 0.16a 0.50 � 0.10a

S. frugiperda 5.00 � 0.00b 9.80 � 0.20b 2.92 � 0.26b 2.36 � 0.14b

LR 18.207 78.98 18.20 78.98

P 0.0003 <0.0001 0.0003 <0.0001

LR = likelihood ratio.

Means within a column followed by different letters are significantly different (Tukey’s test: P<0.05).

Figure 4 Mean (� SE) damage score for maize plants in a circle

with 40 or 80 cm radius (see Figure 1), damaged by larvae of fall

armyworm (Spodoptera frugiperda) and three stemborer species.

Means within a species capped with different lowercase letters,

and within a radius capped with different uppercase letters, are

significantly different (Tukey’s test: P<0.05).
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for African stemborers (Van Rensburg et al., 1987;

Van Den Berg et al., 1991; Calatayud et al., 2014;

Ndjomatchoua et al., 2016). In our study, both the

incidence and density of infestation of stemborers

decreased significantly with distance from the point of

infestation for all stemborers, whereas those of FAW

were not affected by distance. In addition, as a pure

leaf feeder, FAW larvae produced higher leaf damage

and dispersal potential than stemborers. The devastat-

ing character in maize fields of FAW has been

reported in several studies (Goergen et al., 2016;

Srinivasan et al., 2018; Fotso Kuate et al., 2019).

In conclusion, the invasive characteristic of C. partellus

was not explained by its larval dispersal activity (by either

ballooning off or crawling) compared to indigenous stem-

borers. Other parameters can explain its invasiveness, such

as its higher survival rate and higher relative growth rate

under interspecific interactions with B. fusca and S. cala-

mistis (Ntiri et al., 2016). In contrast, FAW neonate larvae

had greater potential for ballooning off than those of stem-

borers, irrespective of species, more females dispersed than

males, and their survival rate was higher than that of non-

ballooning larvae. In addition, FAW larvae have higher

potential to spread between plants than the African maize

stemborers, and this might explain, in part, the invasive

characteristic of the species. These findings might also help

in the production of sampling plans, as larval dispersal

directly influences the accuracy of scouting methods (Ross

& Ostlie, 1990) and larval survival information increases

the precision of economic thresholds (Ostlie & Pedigo,

1987; Ross &Ostlie, 1990).
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