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Abstract On a global scale, invasive grasses threa-

ten biodiversity and ecosystem function. Nevertheless,

the importation of forage grasses is a significant

economic force driven by globalization. Pastureland

and rangeland are of critical economic and ecological

importance, but novel grass species may lead to

invasion. Recognizing that economically important

species can also be ecologically damaging creates a

contentious debate for land managers, policymakers,

and ecologists alike. Many Afrotropical perennial

grass species have been intentionally introduced

pantropically given their high forage production and

resistance to stress. However, these traits may also

confer competitive ability, increasing the possibility of

unintended escape and invasion. Further, these traits

have posed challenges for traditional control methods

using chemicals, prescribed fire, and mowing. The use

of classic biological control may alleviate the ecolog-

ical impact in invaded areas. In this literature synthesis

we examine Guinea grass (Megathyrsus maximus);

whose economic value in many countries is undeni-

able, yet its impact on native ecosystems is a mounting

concern. First, we introduce Guinea grass taxonomy,

general biology and ecology, and the geographic and

genetic origins. Second, we review the economic

value and the ecological impacts. Third, we review the

control of Guinea grass in undesired areas using

chemical and mechanical means. Finally, we review

current efforts to use biological control.
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Introduction

The introduction of nonnative grasses is at the

intersection of two powerful drivers of biodiversity

loss: the spread of invasive species and land conver-

sion for pastureland development. Invasive plants,

directly and indirectly, threaten biodiversity (Hejda

et al. 2009; Tilman 1999), ecosystem function and

biogeochemistry, (Williams and Baruch 2000), and

further compound their impact by altering established

disturbance regimes such as fire (Brooks et al. 2004;

D’Antonio and Vitousek 1992). Consequently, the hu-

man-mediated invasion of plants has been highlighted

as a critical driver of human degradation of Earth

(Vitousek 1997) and a leading cause of biodiversity

loss (Keane and Crawley 2002). The pantropical

conversion of hundreds of millions of hectares of

naturally occurring ecosystems to pasturelands com-

pounds the impact of nonnative grass species (Jank

et al. 2014). However, these negative ecological

impacts must be reconciled with the socioeconomic

forces promoting exotic grass introduction and land

conversion (Fig. 1) (McGeoch et al. 2010).

The development of rangelands and pastureland for

livestock production drives the movement and culti-

vation of Afrotropical perennial grasses (Ghosh et al.

2016; Jank et al. 2014; Mitchell and Bakker 2014).

Given the economic importance of forage grasses,

there may be contention around recognizing some of

these grasses as being invasive since this could lead to

restrictions on their use (Brenner 2010; Friedel et al.

2011; Hanselka 1988; Smith 2010). Nonnative grasses

often have characteristics of monodominance that

reduce ecosystem function and resilience (Williams

and Baruch 2000), and they are often considered both

invasive for their detrimental impact on ecosystems

and economically important due to their value as

pasture grasses (Friedel et al. 2011; Marshall et al.

2012; Sutton et al. 2019). A paradigm for weighing the

positive and negative value associated with translo-

cating plant species remains a critical step (Mooney

2005). International policy is in a positive trend to

mitigate invasive species effects, yet global

movements of species due to trade—introductions,

both purposeful and accidental, also continue to rise

(McGeoch et al. 2010).

Guinea grass (Megathyrsus maximus (Jacq.) B.K.

Simon and Jacobs) exemplifies this dichotomy as a

valuable pasture grass recognized for high livestock

yields through increased forage production, palatabil-

ity, and tolerance of herbivory (Maciel et al. 2018;

Sukhchain 2010), yet is also a highly successful

invasive species globally (CABI 2020). Guinea grass’s

valuable traits for livestock also correspond with its

high potential as an invasive species (e.g., high

biomass accumulation and tolerance to herbivory

and variable environmental conditions). Therefore, it

is timely to review the agro-economic benefits of an

introduced rangeland grass versus its detrimental

impacts on native flora, fauna, and ecosystems, as

well as agriculture (Fig. 1) (Marshall et al. 2012).

Several morphotypes of Guinea grass occur sym-

patrically in both native and nonnative ranges (Cook

et al. 2005; Mercadier et al. 2009). Of these morpho-

types, two forms can be found growing sympatrically

in wild populations both in introduced areas (e.g.

Texas, Florida) and in its native range (e.g. Kenya,

South Africa). These varieties include a tall form that

is generally 50% larger in morphological characteris-

tics and occurs in moister conditions than a short form

(Fig. 2). The size differences may be due to hybridiza-

tion between genotypes (Usberti-Filho et al. 2002) or

the multiplication of ploidy level, given that Guinea

grass is known to have sexual diploids, and facultative

to strict apomictic tetraploids and higher ploidy levels

(7 9 and 11 9) (Kaushal et al. 2015). These morpho-

logic and genotypic differences play an important role

in selecting morphotypes for agricultural use and may

inform the management of morphologically distinct

invasive forms.

Our objective is to present a review of scientific

literature concerning Guinea grass and present its

importance as a forage species and its negative impact

on ecosystem function. First, we discuss the taxon-

omy, geographic and genetic origins, and general

biology of Guinea grass. Second, we review the

economic value for pasture development, economic

detriment as an agricultural weed, and the ecological

impacts on native plants and fire regimes. Third, we

review the control of Guinea grass in undesired areas

using chemical, mechanical, prescribed fire, and

grazing. Finally, we consider the use of natural
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enemies to reduce the ecological impacts of Guinea

grass. We describe ongoing work in the search for an

appropriate arthropod species for biological control.

Guinea grass taxonomy

Megathyrsus maximus has a long history of taxonomic

revisions at both generic and species levels, com-

pounded in part by multiple global introductions from

several African sources and further distribution of both

tall and short forms and multiple cultivars, including a

hybrid form of two related species (M. maximus and

M. infestus) (Bon et al. 2011; Parsons 1972). Guinea

grass species have been variously assigned to genera;

Panicum, Urochloa, and Megathrysus (Table 1).

Giussani et al. (2001) proposed placement inUrochloa

based on sequences of chloroplast gene ndhF, yet

morphological characteristics suggest that proposed

moves to Bracharia or Urochloa should be avoided

(Brown 1977; Reinheimer et al. 2005). Retention in

Panicum presents further problems since this would

make Panicum paraphyletic (Simon and Jacobs 2003).

To resolve these issues, Megathyrsus was elevated

from subgenus and presently includes M. maximus and

M. infestus, two species characterized by a distinct

transversally rugose upper lemma and P.C.K. C4

Kranz subtype of leaf anatomy (Simon and Jacobs

2003). However, some databases have not been

updated and still retain alternate generic placements

[e.g., PLANTS database, (USDA NRCS 2020)].

Combined molecular and morphological data Soreng

et al. (2015) has reaffirmed Megathyrsus as the valid

genus, and we use that nomenclature here. Within the

species complex, Guinea grass has numerous

infraspecific taxa (Table 1).

Biology and ecology

Guinea grass is a tufted perennial C4 bunchgrass that

reproduces by seed and vegetatively through both

rhizomes and stolons in highly variable environments

such as savannas (Rhodes et al. in prep.), grasslands

(Ho et al. 2016), tropical forests (Mantoani and

Torezan 2016), cultivated pasturelands (Maciel et al.

2018) and in agricultural settings, especially with

sugarcane (Cabrera et al. 2015) and citrus (Chan-

dramohan et al. 2002). Individual plants produce many

panicles with seeds that mature and drop over several

weeks. Seed dispersal is likely via seed-eating birds, or

arthropods and seeds will adhere to wet surfaces

allowing mechanical dispersal (CABI 2020). Anthro-

pogenic dispersal is driven by movement on vehicles

and mowers (Veldman and Putz 2010).

The short form has become a major invasive threat

in parts of southern Texas and northeast Mexico.

Morphologically, the tall and short forms from Kenya,

South Africa, and Texas both key to M. maximus

(Agnew 2006; Flora Zambeziaca 2019). The two

forms may be differentiated by height and leaf size

(Fig. 2). The lack of intermediate growth forms in

Improve capacity of a 
variety of global 

ecosystems
to support cattle 

production

Forage quality, high 
palatability, and 

digestibility, highly viable 
seed, insect and 

pathogen resistance, 
adaptability to low fertility 

soils and drought, 
creeping traits with 
stoloniferous and 

rhizotomous reproduction

Invasion of croplands

Altered ecosystem 
function 

Reduced quality of 
wildlife habitat

Support of disease 
vectors for livestock 

(Texas)

Plant traitsBenefit Costs

Fig. 1 Conceptual framework of the significant costs and benefits of forage species and the functional traits often selected for collection

and cultivation
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wild populations, even in close proximity such as at

Mpala, Kenya, and Brownsville, Texas, indicates a

level of reproductive isolation, perhaps from apomixis

or from differing ploidy levels (Fig. 2). However,

several intermediate size classes exist as products of

breeding programs (Jank et al. 2001; Sukhchain 2010;

Usberti-Filho et al. 2002).

Information on the biology of Guinea grass typi-

cally refers to the tall form, being a well-studied

pasture grass in its introduced ranges, yet differenti-

ation between the two forms in published literature is

rare. Guinea grass can exhibit high intraspecific

variation in morphological traits, yet some of this

variation is attributable to the two forms (Fig. 2) and

growth under a wide range of environmental gradients.

Descriptions of Guinea grass characterize it as grow-

ing on light-textured (loams and sandy loams), well-

drained soils in areas with high mean precipitation

ranging from 750 to 1700 mm per annum and few

frost days (Alves and Xavier 1986; Bogdan 1977;

Holm et al. 1977). Chou and Young (1975) report that

it has strong allelopathic effects, and this trait may

facilitate invasion.

Major limiting abiotic factors of Guinea grass’s

potential range may be minimum temperatures and

rainfall. The short form of Guinea grass has been

known to grow at 500 mm of rainfall and may be more

drought tolerant than the tall form. This could, in part,

explain the expansive range of short form Guinea

grass into the semiarid rangelands of south Texas,

while the tall form is confined to the banks of the Rio

Grande River in Texas. Similarly, at Mpala Research

Station in Kenya, the short form is found in both the

open and shaded portions of savanna sites, while the

tall form is restricted to the Ewaso Ng’iro riparian

zone. Although Guinea grass, generally, can tolerate

dry conditions, droughts more prolonged than four

months have been noted to cause high mortality rates

(Holm et al. 1979). Guinea grass can survive mild frost

and remain somewhat productive in cool-season

climates (Islam and Thakuria 2002), although it is

globally absent from cooler areas with increased frost

days (Fig. 3). Guinea grass grows naturally in grass-

lands and savannas under woody plants or riparian

areas. It can colonize open areas with sufficient soil

moisture and sheltered areas with low ungulate

herbivory under cover of woody plants, especially

nitrogen-fixing trees (Rhodes et al. in prep.).

Fig. 2 Morphotypes of Guinea grass in North America. Guinea

grass (M. maximus) grows in dense clumps with a high density

of plants connected through very short rhizomes. Guinea grass

culms are erect and cylindrical with either glabrous internodes

or hairy internodes. The culms are sometimes branched, and this

branching may develop into stoloniferous growth, where the leaf

and root tissue will form vertically as the culm begins laying

over. These stoloniferous nodes often reproduce one to three

individuals per culm (Alves, Xavier 1986). Short and tall forms

of Guinea grass are differentiated by their morphological

characteristics of the leaves and stems. They can grow

sympatrically, but large Guinea grass favors wetter shadier

environments, while short form Guinea grass can grow in mesic

and open areas. Short form Guinea grass generally grows 1—2

m tall, while tall form Guinea grass grows 2—3 m in height in

well-watered conditions (Photo 1). Leaves are highly variable

with light green to bluish-green leaves which are linear,

narrowly lanceolate and vary in size for the short form from

12 to 40 cm long, and 12 to 25 mm wide and large Guinea grass

leaves can reach up to 60 cm long and 35 mm wide. Panicles for

both short and tall Guinea grass are ovoid racemose and terminal

from 15 to 65 cm long. Reddish-brown spikelets are oblong,

rounded on the back, either glabrous or pubescent 3.5 mm long

when mature (Alves, Xavier 1986). The ligule is membranous

with a ciliate margin and is from 1 to 3 mm long (Wagner et al.

1999). Guinea grass is highly plastic in both its vegetative

characteristics (size, color, hairiness) (Ellis 1988) and repro-

ductive strategy (seed vs. vegetative (Rhodes et al. in prep.)),
which has led to many morphotypes being described in its native

range (Njarui et al. 2015).
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Despite well-established descriptions of Guinea

grass’s environmental conditions, there is only anec-

dotal evidence of expanded physiological limits in

nonnative regions. Along with release from biotic

stressors, another possible explanation for such

expansion is that extensive breeding programs and

highly variable genotypes and phenotypes contribute

to an expanded range of suitable habitat conditions for

Guinea grass (CABI 2020). For example, short form

Guinea grass is documented to grow in areas with

lower annual precipitation (500 mm) with frequent

dry periods in both introduced ranges in South Texas

and its native range in Kenya. Short form Guinea grass

has been observed on saline clay soils in West Texas

(E. Grahmann obs.), suggesting expanding tolerance

to soil resource limitation. Guinea grass in Mexico is

Table 1 Taxonomic

summary of M. maximus
Nomenclature Describing Botanist

Accepted name Megathyrsus maximus (Jacq.) B.K. Simon and Jacobs, 2003

Synonyms Panicum bivonianum Brullo, Miniss, Scelsi & Spamp

Panium eburnum Trin

Panicam heynii Roth

Panicum hirsutissimum Steud

Panicum jumentorum Pers

Panicum laeve Lam

Panicum maximum Jacq

Panicum pamplemoussense Steud

Panicum polygamum Sw

Panicum praticola Salzm. ex Döll

Panicum scaberrimum Lag

Panicum sparsum Schumach

Panicum teff Desv

Panicum tephrosanthum Schinz

Panicum trichocondylum Steud

Panicum trichoglume Engl

Urochloa maxima (Jacq.) R.D. Webster

Infraspecific taxa var.altissimum Kuntze

var.bulbosum (Kunth) Vasey

var.coloratum C.T. White

subsp.commune (Nees) Peter

var.commune Nees

var.confine Chiov

var. congoensis Vanderyst

var.glaucum Nees

var.gongylodes (Jacq.) Döll

var.heterotrichum Peter

var.hirsutissimum (Steud.) Oliv

var.hirsutum Peter

var.laeve Nees

var.laevis Nees

var.maximum

subsp.pubescens

M. Sharma

var.pubiglume K. Schum

var.trichoglume Robyns

123

The dilemma of Guinea grass (Megathyrsus maximus)



encroaching into higher elevation areas 1800 to

2400 m a.s.l. in Mexico’s Altiplano region (A. Quero

pers. obs.), yet there are no records of it growing above

1900 m elevation in its home range in east Africa (East

African Herbarium, Kenya 2020). A clear understand-

ing of the biogeography of Guinea grass in the context

of invasion biology is currently lacking yet needed as

it continues to invade unintended areas.

Geographic distribution

Guinea grass is native to Africa’s wetter tropical, and

subtropical regions yet have been widely introduced

into other regions both accidentally and as a forage

species beginning as early as the seventeenth century

(Fig. 3) (CABI 2020; GBIF 2020; Parsons 1972).

Guinea grass was generally imported for range

improvement or by accident in chaff (Parsons 1972),

and has since been cultivated extensively and utilized

in tropical and subtropical regions globally (CABI

2020; Jank et al. 2014). Guinea grass growing in

diverse conditions in its home range can lead to

persistent ecotypes across a range of climatic condi-

tions (Njarui et al. 2015), but it can also have

sympatric morphotypes in its introduced and native

ranges (Soti et al. 2020). Guinea grass now has a

pantropical distribution (Fig. 3), where its success is

due to its highly plastic vegetative characteristics and

popularity as a forage species. However, in many

regions, it has escaped from target pastures and

invaded recently disturbed sites, spreading along

roadsides and into native grasslands, savannas, and

forests (Espinosa-Garcia and Villasenor 2017; Ho

et al. 2016; Mantoani and Torezan 2016; Rojas-

Sandoval, Meléndez-Ackerman 2012; Veldman and

Putz 2010).

Guinea grass introduction and cultivation varies on

a country-to-country basis, where its economic ben-

efits and ecological damage must be considered

independently. Guinea grass is a vital forage through-

out India following introduction as early as 1793

(Parsons 1972) and where research into increasing

forage quality has been conducted (Sukhchain and

Sidhu 1992). Guinea grass was introduced into Japan

in the 1960s and was considered an excellent forage

species for Japan’s southern islands (Komatsu and

Nakajima 1988). It has been a principal forage grass

used in Queensland, Australia but is also considered an

invasive weed (Holm et al. 1979). Guinea grass may

have spread to the Antilles as early as 1684, where it

was extensively cultivated and then reached mainland

Latin America by 1797 through Columbia (Parsons

1972). Its fast biomass accumulation and tolerance to

herbivory throughout the Americas led to comments

of it being a miracle grass (Parsons 1972). The

planting of pastures in Central America through the

nineteenth century was attributed to expanding the

livestock industry in Costa Rica, Guatemala, and

Mexico (Parsons 1972). Guinea grass has been used as

cattle forage in Brazil but tended to escape pastureland

into tropical forest understories and disturbed sites,

Fig. 3 Distribution and status of M. maximus. Introduced and invasive status based on CABI (online, April 2020), shown by country or

state political boundaries. Location records sourced from GBIF (online, April 2020)

123

A. C. Rhodes et al.



especially roadsides (Mantoani and Torezan 2016). It

was reported as an invasive weed in Mexico as early as

1910 (Hitchcock and Chase 1910) and is now consid-

ered a candidate for mitigation (Espinosa-Garcia and

Villasenor 2017). In the United States of America,

Guinea grass was collected in Lake City, Florida, in

1889 by Bitting, in South Texas along the Rio Grande

in 1894 by Heller and in Hawai’i in 1903 (GBIF 2020).

Despite these early collections, Guinea grass was only

recently reported as an invasive in 1984 on the eastern

coast in the Indian River–Fort Pierce area, Florida

(Chandramohan et al. 2002). To date, Guinea grass has

invaded large areas of South Texas, especially in the

Rio Grande Valley (Lonard and Judd 2006). In our

field observations, we only found the tall form in

limited riparian areas along the Rio Grande River at

Brownsville, while the short form is undergoing rapid

expansion along roads and into rangelands and

riparian zones through South Texas.

History of cultivation and breeding

Given its success as a forage species, Guinea grass has

undergone extensive cultivation with major breeding

programs, especially in India, Brazil, Japan, and

Mexico (Ghosh et al. 2016; Savidan et al. 1989).

Hybridization and selection have produced traits

highly desirable for forage production. Traits that are

commonly selected for include: forage quality, high

palatability and digestibility, highly viable seeds,

insect resistance, adaptability to low fertility savanna

soils, drought tolerance, rapid seedling growth, and

creeping traits with stoloniferous rooting (Jank et al.

2001; Savidan et al. 1989). Diploid sexual Guinea

grass forms have been used for artificial doubling to

produce autotetraploids and allowed to cross with

apomictic individuals to fix desirable traits (Miles and

Hare 2007; Resende et al. 2004). Higher forage

production is linked to vegetative spread through

stoloniferous growth traits transferred through back-

crossing sexual and apomictic individuals (Savidan

et al. 1989). These traits of high productivity, biotic/

abiotic resistance, high reproductive output, and

plasticity in reproductive mode likely improve the

invasion success of Guinea grass.

Guinea grass has been used as a model plant for

studying apomixis and polyploidy due to the ploidy-

dependent expression of apomixis, which allows the

components of apomixis to be separated (Kaushal

et al. 2018). Apomixis is considered essential for trait

fixation by avoiding the genetic variability introduced

through recombination (Calzada et al. 1996; Kaushal

et al. 2018). Most cultivars of Guinea grass are

tetraploid and reproduce in a facultative apomictic

manner (Kaushal et al. 2015; Warmke 1954). How-

ever, Guinea grass displays a gradient of sexuality

from full sexuality, facultative apomicts to obligate

apomicts for diploid and tetraploid individuals (Naka-

jima and Mochizuki 1983). Diploid Guinea grass has

either 2n = 16 or 2n = 18 chromosomes with two

accessory chromosomes, and tetraploid are generally

2n = 32 chromosomes (Kaushal et al. 2018; Nakajima

and Mochizuki 1983). Sexuality in Guinea grass has

been an important characteristic for developing

hybrids (Nakajima and Mochizuki 1983) and has led

to the fixation of traits associated with higher produc-

tivity (Savidan et al. 1989). Differences in genotypes

and ploidy level could influence the economic value of

Guinea grass or its invasiveness.

Breeding programs in Latin America introduced

new genetic material from East Africa for improve-

ment and were conducted in Brazil by Empresa

Brasileira de Pesquisa Agropecudria, (EMBRAPA),

in Colombia by Centro Internacional de Agricultura

Tropical (CIAT), in Mexico by the Colegio de

Postgraduados, and in Cuba by the Indio Hatuey

Research Center during the 1980’s (Savidan et al.

1989). In Brazil, at EMBRAPA Gado de Cort, an

extensive breeding program for Guinea grass began in

1982 using autotetraploids crossed with apomictic

individuals to fix desirable palatability traits (Resende

et al. 2004). For example, in Brazil, programs at

EMBRAPA evaluated 72 hybrids obtained from

crosses between sexual and apomictic individuals to

develop higher productivity in Guinea grass for forage

production (Jank et al. 2001). An extensive breeding

program for improving plant vigor and seed produc-

tion was established by the National Grassland

Research Institute of Japan in 1974 (Nakajima

1978). These types of programs continue to improve

pathogen resistance and yield (Maciel et al. 2018). Tall

Guinea grass remains a pasture grass under extensive

development for pastureland and rangeland improve-

ment despite growing concern about negative impacts

away from pastures. While these programs increase

the economic value of Guinea grass, these programs

also increase the invasive potential.
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The forage value of Guinea grass

While it is difficult to quantify the direct economic

value of Guinea grass, this grass is often cited as being

among the most important forage grasses in subtrop-

ical and tropical regions (Baldassini et al. 2018;

Choudhary et al. 2018; Euclides et al. 2018, 1999;

Maciel et al. 2018; Sukhchain 2010). Guinea grass is

implicated as a species integral to the early expansion

of pastureland development across the tropics (Motta

1953). For example, the conversion of tropical forests

to pasturelands has created hundreds of millions of

hectares of land sown with old-world C4 grasses

(Williams and Baruch 2000), including Guinea grass

(Jank et al. 2014). In Brazil, there are 190 Mha of

pastureland with approximately 10% under Guinea

grass cultivation, while cattle contribute nearly 7% of

Gross Domestic Product (Jank et al. 2014). Further,

Guinea grass seed exportation is a significant contrib-

utor to Brazil’s seed export economy of 600 million

USD annually, with over 16% of total grass seed

exports being Guinea grass (Jank et al. 2014). A

complete economic analysis of nonnative perennial

grasses has yet to be completed but is warranted.

Rangelands and pasturelands are of critical eco-

nomic importance to many developed and developing

countries (Choudhary et al. 2018; Ghosh et al. 2016;

Jank et al. 2014). Therefore, research into the culti-

vation and improvement of valuable pastoral species

plays a vital role in food security and economic

stability (Ghosh et al. 2016), both in commercial and

informal settings. Tall form Guinea grass is considered

a preferred choice as a forage grass and is therefore of

high economic value across its pantropic distribution

(Choudhary et al. 2018). It grows well in many

conditions and yields abundant palatable and nutri-

tious forage (Maciel et al. 2018). However, nutritive

value declines rapidly through the growing season

(Alderson and Sharp 1994). The economic value of

short form Guinea grass is less evident in South Texas.

A more focused assessment of the economic contri-

bution of nonnative grass species may help weigh the

benefits and consequences of using nonnative grasses

with invasive traits.

Guinea grass in agricultural settings

Traits associated with high yields and fast growth in

Guinea grass make it challenging to control, and

escape from intended areas makes it a weed in other

environments (Dias et al. 2013; Ho et al. 2016; Zenni

and Ziller 2011). If Guinea grass escapes from

intended pasturelands, it may invade other agricultural

endeavors such as tree plantations and cash crops. For

example, Guinea grass is considered a costly weed for

many crops in Africa, America, Australia, and Asia

(Baker and Terry 1991; Chandramohan et al. 2002;

Dias et al. 2013; Holm et al. 1977). Guinea grass is a

significant weed in sugarcane production globally,

reducing yields by as much as 40% (Kuva et al. 2003).

It may also reduce the establishment of native grass

species such as Miscanthus sinensis grasslands in

Taiwan (Ho et al. 2016) and suppress grass species

important for northern bobwhite (Colinus virginianus)

in Texas (Ramirez-Yanez et al. 2007). Guinea grass

has also been implicated in the loss of ecotourism due

to its conversion of native grasslands (Ho et al. 2016).

Generally, Guinea grass is scored as a high-risk

invasive species globally (Randall 2017).

Guinea grass also exhibits some positive impacts in

agricultural settings. Guinea grass has been shown to

suppress nematodes detrimental to various cash crops,

including; tobacco, coffee, taro, and ginger (Bridge

1996; Sipes and Arakaki 1997; Sistachs et al. 1991;

Stirling and Nikulin 1998). Guinea grass is also used in

intercropping systems to be used as fodder (Borghi

et al. 2013; George and Pillai 2000). Whether these

positive effects outweigh the negative impacts on

agriculture is not well studied and likely depends on

specific circumstances. Juxtaposed against the posi-

tive economic impact of introduced grass species is the

often significant detrimental effects of escaped grasses

in agricultural and ecological settings (Espinosa-

Garcia and Villasenor 2017).

In South Texas, short form Guinea grass has some

value as a pasture grass, but many negative aspects

impact crops, rangelands, and natural areas. In range-

lands, it is implicated in the decline of ground-

dwelling granivorous birds such as quail, a significant

economic loss of ranches that rely on hunting for

income (Fulbright et al. 2013). In Texas, short form

Guinea grass provides an ideal, cool, shaded habitat

for the survival of cattle fever ticks (Rhipicephalus

microplus) on cattle, nilgai (Boselaphus
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tragocamelus), and deer (Odocoileus spp.) since in

these conditions, ground-dwelling tick predators such

as beetles and ants are suppressed. Guinea grass

thereby facilitates cattle fever tick populations by

creating a ’pathogenic landscape’ in Texas (Esteve-

Gassent et al. 2014).

Invasive potential

The invasiveness of an introduced species and the

invasibility of the introduced range interact to deter-

mine the success of invasion (Davis et al. 2000;

Richardson and Pyšek 2006). Guinea grass’s life

history and functional traits are characteristic of many

successful invasive species. Guinea grass traits allow

it to spread rapidly, maintain high reproductive

potential, and produce long-lived robust adults that

are highly competitive (Ho et al. 2016; Zanine et al.

2018). This species can become monodominant,

altering the plant community when it shades and out-

competes other plant species (Hejda et al. 2009).

Higher photosynthetic rates, the rapid growth of

seedlings, and accumulation of biomass in the absence

of grazing and arthropod folivores and detritivores

have been proposed as mechanisms that are more

competitive than native grass plant species (Ho et al.

2016). Higher growth and carbon assimilation rates

can alter the ecophysiological properties of invaded

environments (Williams and Baruch 2000) and

provide mechanisms that underlie the invasion of

novel systems (Levine et al. 2003).

Currently, the dispersal range, rate, and mecha-

nisms of Guinea grass seed are not well studied. Long-

range dispersal of potentially invasive forms is often

human-mediated along transportation corridors (Van

Devender and Dimmitt 2006) when seeds, stolons, or

rhizomes are inadvertently transported on vehicles,

mowers, within hay, or cattle (Veldman and Putz

2010). Stolons and rhizomes represent a critical

vegetative reproductive strategy and may be integral

to its spread in areas where seedling germination is

limited by abiotic conditions (Rhodes et al. in prep.).

Once established, short-range dispersal may occur

through local seed dispersal by birds or animals

(Mantoani and Torezan 2016) or by stoloniferous

growth from established (Rhodes et al. in prep.).

Understanding the mechanisms of dispersal for

Guinea grass could improve our understanding of the

biogeography of future invasions.

Impacts on natural ecosystems

Guinea grass degrades natural ecosystems by outcom-

peting native plant species (Ho et al. 2016), altering

fire regimes (Ellsworth et al. 2013), promoting alter-

native stable states (Mantoani and Torezan 2016), and

disrupting associated fauna that provides ecosystem

services (Litt et al. 2014). In disturbed areas, Guinea

grass can form dense tussocks that outcompete native

flora (Baruch 1996) and impact native plant and

animal community structure, species richness, or

abundance (Litt et al. 2014). Highly plastic functional

traits may allow Guinea grass to invade various plant

community types and adjust to seasonal conditions

(Ammondt and Litton 2012; Ammondt et al. 2013).

Invasion into lowland grasslands in Taiwan replaces

native grasses (e.g., Miscanthus sinesis) of a similar

niche (Ho et al. 2016), suppresses tropical forest

regeneration in Brazil (Mantoani and Torezan 2016),

and fills the interspaces in semiarid savannas in Texas

(Ramirez-Yanez et al. 2007). In some cases, Guinea

grass may have a higher susceptibility to drought than

native plants in the nonnative range, yet the trade-off

for higher productivity may contribute to the exclusion

of native plants in the same ecological niche (Baruch

1996; Ellsworth et al. 2013; Ho et al. 2016).

Disturbance of soils and vegetation may facilitate

the spread of invasive species through changes in

resource availability (Lonsdale 1999), and invasive

grasses themselves can alter disturbance regimes, such

as fire, creating positive feedbacks (D’Antonio and

Vitousek 1992; Marshall et al. 2012). Guinea grass

spreads quickly after a fire and mechanical treatments

such as periodic mowing (Chandramohan et al. 2002).

It can withstand fire if the roots are not destroyed, and

in dense patches where it produces excess biomass,

intense fires may alter the plant community and

reinforce Guinea grass dominance (Ellsworth et al.

2013; Ho et al. 2016). Since Guinea grass is fire-

tolerant (Ellsworth et al. 2013), a local Guinea grass

invasion can exacerbate changes in ecosystem func-

tion and create alternate stable states where fire

becomes a predominant property (Ammondt et al.

2013; Grace et al. 2000).
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Like other invasive grass species, Guinea grass

promotes increased frequency in fire regimes (Brooks

et al. 2004; D’Antonio and Vitousek 1992; Ellsworth

et al. 2013). Accumulation of fuel loads can lead to

tipping points that alter ecosystem states and lead to

the degradation of rangelands (Brooks et al. 2010).

Altered fire regimes have strong top-down effects on

ecosystem function and threaten to shift biomes (e.g.,

cool desert to annual grassland (St Clair et al. 2016),

and tropical forest to perennial grassland (Pivello

2011). Guinea grass can produce year-round fine fuel

loads, and it recovers rapidly after a fire (Ellsworth

et al. 2013). In tropical environments, the fine fuel

loads from perennial African grasses have been

reported to reach 76% to 87% of the grass fuel load

(Kauffman et al. 1998). Guinea grass has highly

variable fine fuel loads ranging from\ 1 to

19.0 Mg ha-1, which has important implications for

managing Guinea grass and restoring invaded areas

(Ellsworth et al. 2013; Francis and Parrotta 2006;

Portela et al. 2009). Guinea grass regenerates rapidly

from underground rhizomes after a fire and accumu-

lates biomass quickly to replace native grasses via

competition, especially after fire (Ho et al. 2016). Fire-

cycle feedback then promotes subsequent increases in

grass invasion and the prevention of native species

regeneration (Portela et al. 2009).

Nonnative grasses can have negative impacts on

wildlife and their habitat (Fulbright et al. 2013;

Grahmann et al. 2018; Ramirez-Yanez et al. 2007;

Smith 2010) through altering vegetation structure

(Grahmann et al. 2018), reducing the biodiversity of

animals (Litt et al. 2014), and altering disturbance

regimes (Brooks et al. 2004). Guinea grass’s impact on

plant communities includes alteration of successional

patterns (Dias and Torezan 2020) and negatively

impact reproduction, growth, survival, and establish-

ment of tree and cactus species (Rojas-Sandoval et al.

2016). Guinea grass can remain in the understory long

after reforestation and remediation in tropical forests

(Dias and Torezan 2020). Guinea grass hinders native

grasses and forbs, which indirectly reduces the biodi-

versity of native fauna (Kuvlesky Jr et al. 2002;

Ramirez-Yanez et al. 2007). Guinea grass seed is

palatable to northern bobwhite (Larson et al. 2012),

yet vegetation structure created by monodominant

African perennial grasses generally does not create

suitable habitat for native birds (Grahmann et al. 2018;

Moore 2010). Guinea grass reduces arthropod

biodiversity, which may have bottom-up effects on

flora and fauna dependent on a diverse arthropod

community (Moreno et al. 2014).

In a few cases, native plants do compete well with

Guinea grass, such as in Brazilian tropical forests

where the vineMikania sp. reduces Guinea grass cover

and biomass due to light competition (Mantoani and

Torezan 2016). Similarly, in the Brazilian tropical

forest understory, the shade-tolerant Geophila repens

may prevent Guinea grass colonization through its

foliar cover dominance and prevention of seedling

establishment (Mantoani and Torezan 2016). In Costa

Rica’s Corcovado National Park, tall Guinea grass

pastures were shaded out by secondary forests in less

than 10 years after the park’s establishment in late

1976 (LEG personal obs.). Ammondt and Litton

(2012) found that high functional diversity in native

plants was necessary to reduce Guinea grass growth.

They found a canopy tree, shrub, and ground covering

forbs (Myoporum sandwicense, Dodonaea viscosa,

Plumbago zeylanica) reduced Guinea grass’s compet-

itive ability, but each alone could not. This suggests

that in restoration activities, a functionally diverse

community of plants should be considered.

Guinea grass management and control

The control of invasive perennial grasses is compli-

cated because some of the most important agricultural

species are grasses and restoration of rangeland and

grassland depends on the success of native grasses.

Therefore, chemical and mechanical methods that

typically target nonnative grass species would also

damage desired species (Ray et al. 2018; Sutton et al.

2019). Control options depend on whether Guinea

grass is invading grass crops, tree plantations, natural

forested areas, or native rangelands. Available control

techniques include combinations and interactions

between chemical applications, cattle grazing, pre-

scribed fire, mechanical removal, bioherbicides, and

biological control using host-specific natural enemies

from the plant’s native range (Simmons et al. 2007).

The use of grazing, fire, and bioherbicides have had

some success in mitigating the impact of Guinea grass

on native rangelands (Ramirez-Yanez et al. 2007) and

in agricultural settings (Chandramohan et al. 2002).

Improvements may also be gained through promoting
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native soil microbial communities in addition to the

sowing of native plants (Wubs et al. 2019).

Chemical and mechanical control

Management methods for Guinea grass depend heav-

ily on the agricultural context and size of the area

affected. Combinations of chemical and mechanical

control are often used in agricultural settings. The use

of glyphosate herbicide on Guinea grass in earlier

growth stages requires low concentrations (Silva et al.

2018), so combined mechanical removal and chemical

treatment may be appropriate in some settings. Despite

continued attempts at chemical controls, Guinea grass

has significant tolerance to herbicides, making chem-

ical control expensive and not pragmatic across large

areas (Chandramohan et al. 2002). A chemical appli-

cation can negatively impact non-target species,

making a chemical application over large areas

undesirable for natural ecosystems (Cauble and Wag-

ner 2005). Intensive mechanical removal of Guinea

grass is effective in tropical forest restoration (Man-

toani and Torezan 2016). Mechanical removal on

40 ha was successful after four removal events,

allowing sufficient woody vegetation to outgrow and

outcompete Guinea grass. This method may not be

efficient for larger areas or reclaiming grasslands,

although restoration responses will vary across plant

functional groups and ecoregions (Davies and Sheley

2011). For larger areas, prescribed fire and targeted

grazing (Rhodes et al. 2020) may improve manage-

ment and control outcomes for perennial invasive

grasses.

Prescribed fire and grazing

A combination of grazing and fire has successfully

reduced the dominance of Guinea grass and its impact

on native plants, which improves habitat for animal

species (Ramirez-Yanez et al. 2007). However, in

invaded grasslands where fire is common, Guinea

grass can outcompete native grasses despite their

evolutionary history with fire or classification as

pioneer species after major disturbance (Ho et al.

2016). The use of grazing to lower fine fuel loads and

reduce fire potential is a successful mitigation tech-

nique in areas where fire is uncommon (Evans et al.

2015). Targeted or prescribed grazing is a potential

tool for mitigating Guinea grass impacts on native

plant communities, but such techniques require exper-

tise and highly adaptable management (Frost and

Launchbaugh 2003). General recommendations for

the use of grazing to control invasive grasses are

lacking due to the particularities of season, precipita-

tion, and native plant communities (Frost and Launch-

baugh 2003).

Biological control

Perhaps the most promising form of sustainable

control (precluding prevention) may be classical

biological control. In some cases, candidate biological

control agents can be specific to a single genotype of a

weed. Therefore, a biological control program could

potentially target the short form of Guinea grass while

minimizing impacts to tall form Guinea grass in areas

where it is an important forage grass. For example, the

leaf galling mite, Floracarus perrepae, consists of a

suite of specialist genotypes, each developing on their

genotype of the climbing fern, Lygodium microphyl-

lum (Goolsby 2006). Similarly, leafhopper insects

(Cicadellidae) that were released as biological agents

for Gulf coast cordgrass (Spartina alterniflora) devel-

oped on only one grass genotype (Garcia-Rossi et al.

2003). In one of few other cases of grass biological

control (Sutton et al. 2019), three agents were released

to manage giant cane (Arundo donax) in Texas after

careful host matching (Goolsby et al. 2017).

Biological control may also consider pathogen and

bioherbicide options. Bioherbicides based on fungal

compounds have had some success (Chandramohan

et al. 2002). For example, specific bioherbicide

activity of Radicinin derivatives, active compounds

extracted from Cochliobolus australiensis, a plant

pathogen fungus associated with buffelgrass, have

been used (Masi et al. 2019). The use of bioherbicides

has been successful in agricultural settings, but it is

unknown whether restoration of native grassland or

rangelands would respond well to bioherbicides or be

cost-effective. Recently, smut affecting Guinea grass

in North America has been described (Rosskopf et al.

2019), which may provide an avenue for biological

control. Leaf spot disease Bipolaris maydis in Brazil

has been shown to lower Guinea grass yields, yet a

new cultivar, ‘‘Zuri’’ was developed in 2014 to be

blight resistant (Maciel et al. 2018). The specificity of

fungal pathogens has not yet been tested in Guinea

grass but is a worthwhile research avenue. While
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pathogens and bioherbicides may have applications

for controlling invasive grasses in agricultural settings

(Chandramohan et al. 2002), their use in rangelands

may also affect closely related native grasses (e.g.,

Panicum sp.). Import of pathogens would face com-

plex regulatory pathways, so limiting a search for

pathogens already found in the introduced range could

be plausible.

Import of a highly specific arthropod from Guinea

grass’s native range may provide optimal biological

control. Following the same approach used with

Phragmites australis (Casagrande et al. 2018), such

arthropods could be screened as candidates for

biological control if they are found to be impactful

and host-specific. One survey in Cameroon encoun-

tered a Geometrid moth and beetle species in the

Alticidae, Chrysomelidae, and Riocerinidae families

(Mercadier et al. 2009). Stem-boring larvae of the

noctuids Buakea kaeuae and Buakea obliquifascia

were associated explicitly with Guinea grass in Kenya

(Moyal et al. 2011). However, mass-rearing attempts

under laboratory conditions on Texas short Guinea

grass were unsuccessful for unknown reasons (Vacek

et al. 2021). Some genera of eriophyid mites, such as

Abacarus and Aculodes are common pests on grass

species (Laska et al. 2018; Sutton et al. 2019). An

Eriophyid mite (Abacarus sp.) that infests leaves of

Guinea grass has been recorded at Mpala, Kenya,

while in Durban, South Africa a Diptilomiopid mite

(Diptacus sp.) has been found (J. Goolsby and M.

Cristofaro, pers. comm). The Diptacus sp. is under

evaluation to determine it is host specificity and

potential damage to Guinea grass. Further exploration

is planned in the genetic match location (Bon et al.

2011) for the Texas short form of Guinea grass near

Durban, South Africa.

Guinea grass has invaded large areas of South

Texas, especially in the Rio Grande Valley (Lonard

and Judd 2006). The tall form is found only in limited

portions of riparian areas along the Rio Grande River

at Brownsville, while the short form is undergoing

rapid expansion along roads and into rangelands (Soti

et al. 2020). If these forms have different genotytpic

and geographic origins, these differences could

provide an avenue for biological control of the short

form but be less impactful on the more economically

valuable tall form. The introduction of host-specific

detritivores specific to Guinea grass may also be a

possible avenue of research (Sands and Goolsby

2011). Removing thatch could reduce some of the

shading effects of plant-plant competition and reduce

the biomass accumulation associated with altered fire

regimes.

Control of invasive grasses presents significant

challenges, given that many management options are

infeasible at the scale typically required for significant

ecological restoration (Brooks et al. 2010). Biological

control may be the most cost-effective and longest-

lasting type of control, barring the prevention of

spread. In areas where tall form Guinea grass is highly

desired as a forage species, the use of arthropods that

focus on detritus, or reproduction (e.g., seeds), may

allow stakeholders to grow Guinea grass but limit its

fire impacts or its spread outside of intended areas.

Biological control that reduces the biomass accumu-

lation and propagule pressure of invasive grasses is a

worthy strategy for the general management of

invasive grasses.

Conclusion

Our review of the current literature shows a dichotomy

of Guinea grass agricultural value against invasive

costs and impacts. Contemporary literature describes

its economic importance to the livestock industry

(Jank et al. 2014) and as a highly detrimental invasive

species (Ho et al. 2016; Ramirez-Yanez et al. 2007;

Zenni and Ziller 2011). This dichotomy creates real

challenges for managing perennial C4 grasses that are

widely cultivated and distributed globally for range-

land improvement (Cox et al. 1988; Marshall et al.

2012). While invasive grasses often have characteris-

tics of monodominance that reduce ecosystem func-

tion and resilience, they are often much slower to be

considered invasive due to their economic importance

(Friedel et al. 2011; Marshall et al. 2012). However, a

provocative question is, ‘‘what can be done when a

plant species is both economically important and

ecologically damaging?’’ Some stakeholders would be

wary of having economically important plant species

labeled as noxious or invasive.

Nevertheless, an approach is required that allows

continued sustainable use while mitigating invasive

impacts. Biological control of the less economically

important short form Guinea grass is plausible in

Texas but presents the challenge of finding arthropods

that have greater impacts on specific morphotypes of a
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single species. Therefore, policymakers and land

managers alike have critical challenges ahead due to

the dichotomy of managing an economically impor-

tant forage species that can be a highly damaging

species to native ecosystems and some other agricul-

tural land uses. A focus on control of Guinea grass

where it is not wanted (e.g., South Texas) would be the

most compelling outcome without harming agricul-

tural and rangeland use areas.
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