
HAL Id: hal-04293793
https://hal.science/hal-04293793

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Towards integrated pest and pollinator management in
tropical crops

Isabelle Merle, Juliana Hipólito, Fabrice Requier

To cite this version:
Isabelle Merle, Juliana Hipólito, Fabrice Requier. Towards integrated pest and pollinator management
in tropical crops. Current Opinion in Insect Science, 2022, 50, pp.100866. �10.1016/j.cois.2021.12.006�.
�hal-04293793�

https://hal.science/hal-04293793
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Towards integrated pest and pollinator management in tropical crops  1 

  2 

Isabelle Merle1, Juliana Hipólito2,3, Fabrice Requier1,* 3 

1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et 4 

Écologie, 91198, Gif-sur-Yvette, France 5 

2 Instituto de Biologia, Universidade Federal da Bahia, Salvador, BA, Brasil 6 

3 Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil 7 

* Correspondence: Fabrice Requier; fabrice.requier@egce.cnrs-gif.fr  8 

 9 

ORCID 10 

Isabelle Merle https://orcid.org/0000-0003-3402-2892  11 

Juliana Hipólito https://orcid.org/0000-0002-0721-3143  12 

Fabrice Requier https://orcid.org/0000-0003-1638-3141 13 

 14 

Running head: IPPM in tropical crops  15 

 16 

Word count: 17 

Abstract = 134 words (120 words suggested) 18 

Main text = 2,317 words (2,000 words suggested) 19 

References = 156 (including 102 for the systematic review) 20 

Artwork = 1 figure + 1 table + 1 box (max. 4) 21 

 22 

  23 

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2214574521001358
Manuscript_1f329c54b67572dd89292038c269a8b5

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2214574521001358
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2214574521001358


Abstract  24 

Biotic pollination and pest control are two critical insect-mediated ecosystem services 25 

that support crop production. Although management of both services is usually 26 

treated separately, the new paradigm of Integrated Pest and Pollinator Management 27 

(IPPM) suggests synergetic benefits by considering them together. We reviewed the 28 

management practices in two major tropical perennial crops: cocoa and coffee, to 29 

assess IPPM applications under the tropics. We found potential synergies and 30 

antagonisms among crop pest and pollination management, however, very few 31 

studies considered these interactions. Interestingly, we also found management 32 

practices focusing mainly on a single service mediated by insects although species 33 

can show multiple ecological functions as pests, natural enemies, or pollinators. The 34 

tropics represent a promising area for the implementation of IPPM and future 35 

research should address this concept to move towards a more sustainable 36 

agriculture. 37 

 38 
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Introduction 41 

Insect-mediated ecosystem services are critical in agriculture [1**]. Beyond interac-42 

tions between crops and their abiotic environment, crop yield is driven by ecosystem 43 

services including pollination and pest control and pollination, which are governed by 44 

antagonistic and mutualistic biotic interactions [2]. Animal pollination is critical for 45 

yield improvement of three-quarters of the world’s major crops [3]. Overall, 5 to 8% of 46 

global crop production would be lost without animal pollination [4]. A wide diversity of 47 

insects are often assessed as efficient pollinators [5,6*] but pollination limitation is 48 

frequently driven by a lack of insect pollinators [7]. Crop pests herbivory is another 49 

well-known driver of important crop yield losses due to a decrease in plant survival, 50 

growth, and reproduction [8]. Worldwide yield losses are estimated from 7.9% to 51 

15.1% [8]. Biological pest control is defined as a process by which predators, parasi-52 

toids or pathogens reduce pest abundance. Apart from alleviating the negative im-53 

pact from crop pest, managing the diversity of natural pest enemies to support crop 54 

yield could help reduce both the use of synthetic pesticides in agriculture [9*] and the 55 

associated detrimental effects on biodiversity and human well-being [10]. Given the 56 

evidence of benefits from pest control and pollination on crop production, manage-57 

ment practices should be developed to foster the ecosystem services and mitigate 58 

the ecosystem disservices provided by insects [1**,11].  59 

Crop pest control is commonly performed by means of species management 60 

approaches such as pesticide use [12–14]. However, many concerns are associated 61 

with over-reliance on pesticide applications including not only pest resistance, out-62 

breaks of secondary pests, but also loss of natural enemies [9*]. Alternatively, there 63 

is evidence that landscape management can promote the presence of natural ene-64 

mies, and thus enhance biological control which could reduce pesticide application 65 

[18**–21**]. Pest control practices are distinguished between human input-based 66 

practices and biodiversity based, respectively [18**,19**], along with the concept of 67 

Integrated Pest Management (IPM). On the other hand, the management of crop pol-68 

lination was also divided among different strategies from human input-based practic-69 

es (e.g. the implementation of managed beehives [11]) to habitat and resource pro-70 

motion to maintain or attract wild pollinators [20,21]. Nevertheless, the management 71 

practices of pest control and pollination services are usually treated independently 72 

[18**]. IPM has been used as a response to mitigate pollinator decline, yet IPM itself 73 

is not necessarily "pollinator friendly" [18**]. The impact on yield is affected by the 74 



success of both pollination and insect pest control services, thus a more holistic ap-75 

proach is essential. 76 

 77 

New paradigm of Integrated Pest and Pollinator Management (IPPM) 78 

The concept of Integrated Pest and Pollinators Management (IPPM) emerged in 79 

2015 with the main goal of considering adverse effects and synergies of pest control 80 

management on pollinators and vice versa [18**,19**,22,23]. IPPM has been further 81 

defined by categorizing and prioritizing co-management practices to limit adverse 82 

environmental impacts. A pyramid has thus been proposed as a decision support tool 83 

for choosing preventive and biodiversity-based management practices rather than 84 

curative and human-based ones [18**,19**] (Figure 1). At the top of the pyramid are 85 

the human-based practices, such as pesticide application, which are widely used for 86 

their effectiveness on target species but are also highly criticized for their effects on 87 

beneficial insects [24]. These practices involve a direct management of targeted spe-88 

cies (e.g. controlling pests or fostering pollinators) and are differentiated in two man-89 

agement strategies according to the use of biotic or abiotic inputs (Figure 1). The 90 

biodiversity based-practices stand at the base of the pyramid and are differentiated 91 

among field and landscape management strategies [19**] (Figure 1). Landscape 92 

components, namely habitat quantity and density, have a primary role in maintaining 93 

insect communities [25**]. Landscape simplification affects pollination and pest con-94 

trol services through negative effects on the abundance, richness and diversity of 95 

pollinators and predators [26**]. Consequently, the objective in such practices is no 96 

longer to directly manage the arthropod population but to manage their dynamics 97 

through the provision of nesting sites and food resources. However, while recent 98 

studies applied the concept of IPPM in field-based trials [25**], IPPM remains essen-99 

tially conceptual since its establishment in 2015 [23]. Here, we carried out a system-100 

atic review of the management practices of pest control and pollination services in 101 

two major tropical crops: cocoa and coffee, in order to assess for the first time IPPM 102 

applications on those crops.  103 

  104 

IPPM application in tropical crops  105 

Coffee (Coffea canephora and Coffea arabica) and cocoa (Theobroma cacao) are 106 

two tropical crops with different levels of animal-mediated pollination required for 107 

yield improvement. The species T. cacao and C. canephora have a high dependence 108 



on pollinators for fruit set, C. arabica has a moderate dependence [3]. Coffee and 109 

cocoa suffer important pressures from crop pests [27,28]. We performed our system-110 

atic review on these two crops by selecting the scientific publications published since 111 

the emergence of the IPPM concept in 2015 (Box 1). Despite the importance of in-112 

sects to coffee and cocoa –as pollinators, pests and natural enemies– very few stud-113 

ies have applied the IPPM concept. We found no study addressing both pollination 114 

and pest control services in cocoa and only three in coffee. Some studies assessed 115 

the effects of shade cover in agroforestry systems, ground cover, and distance to 116 

forest [29*,30] or the use of vector-disseminated biopesticides [31] on both services 117 

(Table 1). Otherwise, most studies focused on a single service or a single insect 118 

species mediating that service. Nevertheless, some studies considered a more holis-119 

tic framework by assessing arthropods’ community without considering their ecologi-120 

cal function [32,33*]. Other studies focused only on pest and predator communities 121 

[17,34–47] or pollinators and predators [48*–51*].  122 

 Overall, we found fewer experiments conducted on the pollination service 123 

compared to the pest control service (Figure 1). Moreover, in cocoa and coffee 124 

crops, pollination management seems to depend to a greater extent on the concept 125 

of IPM. Conversely to pest management, the promotion of pollination relies more on 126 

biodiversity-based practices at the landscape scale than on human practices. Con-127 

sidering both crops, the impact of abiotic and biotic inputs is studied on the pollination 128 

service in only 10% of cases (6 experiments) compared to 90% on the pest control 129 

service (53 experiments). Conversely, 69% of the experimental units (35 experi-130 

ments) investigated the effect of landscape-level practices on pollination, compared 131 

to 31% (16 experiments) on pest control (Figure 1). While IPPM encourages the use 132 

of landscape-level practices as a priority, plot-level practices are the most common 133 

since they represent 57% of the practices studied on cocoa (11 pollination experi-134 

ments vs. 19 pest control experiments) and 49% on coffee (36 pollination experi-135 

ments vs. 49 pest control experiments). This particularity could be explained by the 136 

fact that coffee and cocoa plantations are complex systems where the implementa-137 

tion of agroecological practices within the plot, such as agroforestry [52], is easier 138 

than in annual crop plantations. Importantly, we found that landscape level manage-139 

ment strategies are rarely studied in cocoa compared to coffee for the pollination ser-140 

vice. It is likely that this difference is explained by the short distance foraging behav-141 



ior of the main cocoa pollinators (e.g. small flies) [53] compared to those of coffee 142 

crop (e.g. bees) [54*]. 143 

 144 

Synergies and antagonisms among crop pest and pollination managements 145 

Complementary and synergistic effects can occur in crop management practices with 146 

potential positive interactions between pollinators and natural enemies on crop yield 147 

[55]. We examined such synergies but also potential antagonisms among the prac-148 

tices performed for crop pest and pollination management in cocoa and coffee. Sev-149 

eral practices were studied specifically on one of the two services (i.e. pollination or 150 

pest control) in both cocoa and coffee, although there were fewer studies on cocoa 151 

(Table 1). The large majority of the practices involving abiotic and biotic inputs (i.e. 152 

pesticides, traps, biopesticides and biocontrol agents) were evaluated for their effec-153 

tiveness on pest control but rarely on pollination service (Table 1). However, these 154 

practices can have antagonistic effects by negatively affecting the pollination service 155 

[24] or the community of beneficial arthropods [56]. Surprisingly, we found an exper-156 

iment showing an increase of pollination service linked with pesticide use. This result 157 

can be explained by the family of the pesticide used, a fungicide, and by its effect on 158 

the plant physiology by increasing flower retention capability that could attract more 159 

insect pollinators [57]. Similarly, several biodiversity-based practices applied at the 160 

plot level and landscape level (e.g. mechanical management such as sanitary har-161 

vesting, pruning and exclusion netting, and the practices of biodiversity conservation 162 

such as bird-mediated predation) were only considered affecting pest control (Table 163 

1). Nevertheless, these practices may also lead to antagonistic adverse effects on 164 

pollination or pest control services if, for example, birds also predate on pollinators 165 

and predators [22].  166 

On the other hand, practices such as promoting floral resources in the plot and 167 

enhancing abundance of semi-natural habitats at the landscape scale are almost ex-168 

clusively studied on the pollination service. However, studies carried out in temperate 169 

regions, i.e. where farmers can receive financial incentive to set flower strip, show 170 

benefits of such practices on pest control [58], suggesting that floral resources and 171 

semi-natural habitats could represent an interesting approach that offers a synergetic 172 

practice on both services. For instance, breeding substrates, vegetal ground cover 173 

and agroforestry are practices that could validate the IPPM concept through syner-174 

getic effects among pest control and pollination. However, the impact of agroforestry 175 



on insect-mediated services is mixed (Table 1). This result is likely due to the large 176 

diversity of agroforestry systems with variability in tree size and the species of shade 177 

trees [59] and the differences in the survey scales chosen by the different studies. 178 

Shade tree species may affect their attractiveness and repellency to arthropod spe-179 

cies. The size of the trees influences the microclimate, which in turn affects the de-180 

velopment cycle of arthropods in various ways, depending on the species considered 181 

[52,53]. Surprisingly, most of the practices studied at the landscape scale aim to 182 

promote forest areas as arthropod-friendly habitats. Indeed, little attention has been 183 

paid to the landscape composition in terms of crops [60]. However, these crops can 184 

share the same pest or pollinator species assemblage, or can host arthropods per-185 

forming multiple functions in the cropping system. 186 

 187 

Multiple services mediated by insects 188 

Our systematic review confirms that pest control and pollination management are 189 

mainly treated separately in cocoa and coffee (Figure 1). Interestingly, we also found 190 

that most management practices focus on targeted insect species for a single service 191 

(i.e. pollination or pest control) although numerous species have multiple ecological 192 

functions as crop pests, natural enemies or pollinators. In other words, very few 193 

works consider the multiple ecological functions of insects while the species are usu-194 

ally classified by their major ecological function for example pollinators, pests, or nat-195 

ural enemies. Nevertheless, many insects can provide multiples services improving 196 

crop production due to their double ecological functions over their development stag-197 

es (e.g. larvae as herbivore vs. adult as pollinator) or over different crops. For in-198 

stance, Forcipomyia spp (Diptera) are pollinators in cocoa [53] and also natural ene-199 

mies of Dione juno (Lepidoptera: Nymphalidae) [61] that damages many tropical 200 

crops (e.g. passion fruit, tomato, sugarcane, among others) [62,63]. In coffee, Syr-201 

phus sp. (Diptera: Syrphidae), Allobaccha brevis (Diptera: Syrphidae) and Hemipyrel-202 

lia sp. (Diptera: Calliphoridae) are recorded as pollinators but these species are also 203 

reported as insect natural enemies in passion fruit and avocado [62,64]. 204 

On the other hand, other insects can have adverse effects (e.g. providing a 205 

service and a disservice) such as Sciaridae that are pollinators in cocoa [65] but are 206 

also considered as pests in watermelon [66]. Trigona spinipes Fabr. (Hymenoptera: 207 

Apidae) is a pollinator in coffee that can be detrimental to coffee fruit set [67] and is 208 

also considered as a pest due to its damages of open galleries on fruits reducing fruit 209 



quality [68]. The Azteca sericeasur ant is known to be an effective predator of the 210 

coffee berry borer [69], a major coffee pest, but its aggressiveness towards pollina-211 

tors visiting the coffee flowers has been studied little [56]. Overall, it is accepted that 212 

improving insect diversity in croplands benefits crop yield [70]. However, despite di-213 

versity being important, studies that evaluate whether an insect is an efficient and or 214 

effective pollinator, predator or has multiple ecological functions are valuable [54*]. 215 

For instance, Trigona jaty (Hymenoptera: Apidae, meliponinae) is a flower visitor in 216 

cocoa but is considered as an inefficient pollinator given its pollen robbing action that 217 

weakens flower fitness [71].  Pollination efficiency of many flower visitors in coffee 218 

and cocoa crops are not yet tested and although studies suggest their ecological 219 

function as pollinators, they can also act as pests or natural enemies in other crops. 220 

Neglecting the multiple ecological functions of insects and their efficiency carrying out 221 

these ecosystem services and disservices would considerably limit crop yield im-222 

provement.  223 

 224 

Perspectives 225 

The tropics are home to the highest diversity and abundance of arthropods [72], and 226 

as such, represent an excellent area for considering IPPM approaches in agricultural 227 

systems. Through the study of two tropical crops, we found that few experiments 228 

have investigated the effect of agricultural practices simultaneously on pests, natural 229 

enemies and pollinator communities despite IPPM recommendations. Although it is 230 

rather recognized that analyzing the influence of a single ecosystem service on crop 231 

yield can be complex due to context-dependency, studying combined effects of 232 

pollinator and pest managements implies interacting relationships that are current 233 

challenges in applied ecology [55]. Integrating pest and pollinator management 234 

strategies in agriculture is therefore pioneering and represents future a direction 235 

towards sustainable food production. Consideration of the landscape scale also 236 

invokes the possibility of multiple ecological functions that insects may have [22] as 237 

pests of one crop and pollinators of a neighboring crop. This consideration should be 238 

even more important when species richness and abundance are high. In the future, 239 

the growing awareness of the landscape scale effect and the multiple ecological 240 

functions of arthropods in relation to crops should lead to further consideration of the 241 

neighboring agricultural landscape, i.e. the nature of the established crops and their 242 

pollinator, pests and predator assemblages. 243 
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Box 1. Cocoa and coffee tropical crops 899 

The genus Coffea (Rubiaceae) originates from tropical and subtropical Africa. Coffee 900 

is a crop of global importance cultivated in approximately 80 tropical countries with 901 

Brazil being the greatest producer and exporter [73]. The two main varieties cultivat-902 

ed in the tropics have different pollination requirements since in Coffea arabica (self-903 

compatible), animal pollination represents only 10 to 40% of total pollination while 904 

animal pollination represents more than 40% in Coffea canephora (self-incompatible) 905 

(Figure S2 in [3]). Interestingly, the absence of pollinators could decrease coffee 906 

yields from 20 to 30% [20] and pest attacks harm up to 26 to 38% of productions [28]. 907 

The species Theobroma cacao is the main fruit cultivated from the genus Theobroma 908 

(Malvaceae). Native to the rainforest regions of the northern part of South America, it 909 

is currently cultivated mainly in Africa, and the Ivory Coast is the leading producer 910 

country providing more than a third of global production [73]. Most of the cocoa culti-911 

vated varieties are self-incompatible and the sticky pollen is not dispersed by the 912 

wind Cocoa pollination is therefore highly dependent on animal-mediated pollination 913 

[3]. We performed a systematic review on the management practices of pest control 914 

and pollination services in cocoa and coffee crops, from 2015 (i.e. the establishment 915 

of the IPPM concept, [23]) to May 2021 and based on two search string equations in 916 

Web of Science (using the "topics" field search, [74]). Each of the equations identified 917 

the scientific articles dealing with one of the two services on both crops: (Equation 1) 918 

pest* and (damage* or control* or monitor* or manag* or suppress* or regulat*) and 919 

(cocoa or cacao or coffee or coffea); (Equation 2) pollin* and (manag* or enhance* or 920 

benefi* or success or increase* or promot* or monitor* or facilita* or support* or im-921 

prov* or favo*) and (cocoa or cacao or coffee or coffea). Out of 1224 reviewed stud-922 

ies, only 32 studies on cocoa [14,21**,37,39,48*,53,65,75–99] and 70 studies on cof-923 

fee [13,15–17,20,29*,44,45*,51*,56,57,67,69,100–156] were considered by reading 924 

the abstracts and full texts and selecting that (i) address coffee and cocoa in field 925 

experiments, (ii) include arthropods and (iii) did not consider the effect of a practice 926 

on the ecosystem service (e.g. pest or pollinator biology, climate effect, monitoring 927 

and detection). The combination of the article, the ecosystem service studied, the 928 

management practice and the response metric (ex: the abundance, the diversity, the 929 

richness or the infestation) was named an ‘experimental unit’ and used to perform an 930 

analysis of the management strategies conducted on cocoa and coffee crops. 931 

 932 



Figure legends 933 

 934 

Figure 1. Integrated Pest and Pollinator Management (IPPM) application in coffee 935 

and cocoa illustrated with a systematic review of the management strategies for 936 

pollination and pest control services from 102 scientific articles. The pyramid and the 937 

four categories of management from human input-based strategies (in gray) to 938 

biodiversity-based strategies (in dark green) are inspired from Lundin et al. 2021 939 

[19**]. The category "sampling, monitoring and threshold" was not considered in the 940 

pyramid because these practices aim to monitor the level of arthropods communities 941 

without trying to regulate or promote them. Icons: www.flaticon.com and 942 

www.vecteezy.com 943 

 944 





Table 1: Effects of IPPM management strategies and practices on pest control and pollination services in cocoa and coffee. Studies are 

synthetized from January 2015 to May 2021 through a systematic review, as explained in Box 1. The effects presented are the result obtained 

on the expected ecosystem service, i.e. a practice that increases the abundance, richness and visitation rate of pollinators, or decreases their 

mortality, is considered to have a positive effect on the pollination service. For the pest control service, a practice that reduces the abundance or 

diversity of pests, or decreases their observed damage level is assumed to have a positive effect. Among the selected studies, we chose to 

consider only the ones that provided a conclusion on the overall effect of the practice. So, we did not include studies that aimed to compare the 

modalities of implementation, such as color traps or biopesticides' date of application on practice effectiveness, and studies that compared 

agroecosystems with many differences in term of management. N = total number of action effects; n = action effect not considered for the 

synthesis because they were comparisons of action modalities (ex: trap’s color, biopesticide’s dose) instead of showing a negative, positive or 

null effect. Icons: www.flaticon.com and www.vecteezy.com 

Pollination 
 

 Pest control 
 

 

Crop Management strategy Practice Negative Null Positive N(n)  Negative Null Positive N(n) References 

Cocoa Abiotic inputs Pesticides 0 0 0 0  0 1 1 2(0) [75] 

Traps 0 0 0 0  0 3 2 10(5) [14,76–81] 

Biotic inputs Biocontrol agent 0 0 0 0  3 4 5 12(0) [37,82–86] 

Biopesticides 0 0 0 0  0 0 1 2(1) [75,87] 

Crop field management Agroforestry 1 3 1 6(1)  1 4 4 9(0) [21**,37,39,53,65,88–91] 

Fertilization 0 0 0 0  0 2 2 4(0) [89,92,93] 

Intensification 0 0 0 1(1)  0 0 0 2(2) [94,95] 

  
Mechanical  
management 

0 0 0 0  0 0 2 2(0) [91,96*] 

Plot floral abundance 0 1 1 2(0)  0 0 0 0 [21**] 

Nesting habitat diversity 0 2 2 7(3)  2 1 1 5(1) [21**,48*,75,83,96*–99] 

Landscape management Biodiversity conservation 0 0 0 0  2 2 2 6(0) [37,88] 

Semi-natural habitats 0 1 1 2(0)  0 0 0 0 [21**] 

Coffee Abiotic inputs Pesticides 0 1 1 2(0)  0 3 3 6(0) [13,57,100–103] 

Traps 0 0 0 2(2)  0 1 0 6(5) [104–110] 

 
Biotic inputs Biocontrol agent 3 0 0 3(0)  3 11 12 26(0) 

[15–17,56,69,101,111–
117] 

Biopesticides 0 0 0 0  0 1 7 10(2) [100,106,118–123] 



 
Crop field management Agroforestry 7 8 3 18(0)  6 15 8 30(1) 

[16,29*,44,45*,101,124–
140] 

Fertilization 2 2 2 6(0)  0 2 1 3(0) [45*,136,140,141] 

  
Intensification 3 3 1 7(0)  1 3 2 7(0) 

[20,45*,125*,128,142–
144] 

  
Mechanical  
management 

0 0 0 0  2 3 5 10(0) [13,103,106,145–148] 

Plot floral abundance 2 3 8 13(0)  0 0 0 0 [20,129,130,140] 

  
Nesting habitat diversity 1 3 1 5(0)  2 4 4 10(0) 

[29*,101,130,136,137,14
9,150] 

Landscape management Biodiversity conservation 0 0 0 0  1 2 3 6(0) [29*,151,152] 

    Semi-natural habitats 4 19 13 38(2)  4 5 7 16(0) 
[15,17,20,29*,44,51*,67,
125*,130,133,140,152–
156]  

 

 






