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ABSTRACT  

RNA molecules carry information in their primary sequence and also their secondary 

structure. Secondary structure can confer important functional information, but it is also a signal 

for an RNAi-like host epigenetic response mediated by small RNAs (smRNAs). In this study, we 

used two bioinformatic methods to predict local secondary structures across features of the maize 

genome, focusing on small regions that had similar folding properties to pre-miRNA loci. We 

found miRNA-like secondary structures to be common in genes and most, but not all, 

superfamilies of RNA and DNA transposable elements (TEs). The miRNA-like regions mapped 

a higher diversity of smRNAs than regions without miRNA-like structure, explaining up to 27% 

of variation in smRNA mapping for some TE superfamilies. This mapping bias was more 

pronounced among putatively autonomous TEs relative to non-autonomous TEs. Genome-wide, 

miRNA-like regions were also associated with elevated methylation levels, particularly in the 

CHH context Among genes, those with miRNA-like secondary structure were 1.5-fold more 

highly expressed, on average, than other genes. However, these genes were also more variably 

expressed across the 26 Nested Association Mapping founder lines, and this variability positively 

correlated with the number of mapping smRNAs. We conclude that local miRNA-like structures 

are a nearly ubiquitous feature of expressed regions of the maize genome, that they correlate with 

higher smRNA mapping and methylation, and that they may represent a trade-off between 

functional need and the potentially negative consequences of smRNA production.  
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INTRODUCTION 

In a highly simplified view, plant genomes consist of transposable elements (TEs) and 

genes. Both of these components use RNA to transmit coding information between one state 

(DNA) to another (protein). These RNA molecules carry information in their primary sequence 

of bases but also by their shape. This shape is primarily defined by the secondary structure of the 

transcript, which is a product of the intramolecular hydrogen bonds between RNA bases.  

Secondary structure can mediate the relationship between genotype and phenotype, because it 

affects the localization (Bullock et al., 2010), splicing (Buratti & Baralle, 2004), and translation 

(Ding et al., 2014) of mRNAs. As a result, secondary structure influences nearly every 

processing step in the life cycle of transcripts (Vandivier et al., 2016).  

Secondary structures can have another effect: they act as a template for small RNA 

(smRNA) production (Carthew & Sontheimer, 2009; Li et al., 2012; Hung & Slotkin, 2021). 

This production takes place through the binding of Dicer-like proteins (DCL) (Axtell 2013; 

Fukudome & Fukuhara 2017) that degrade double-stranded RNA (dsRNA). In other words, 

when single-stranded RNA (ssRNA) forms a hairpin-like secondary structure, DCLs can 

recognize structured ssRNA as dsRNA and then degrade the dsRNA to produce smRNAs. This 

mechanism is essential for the biogenesis of microRNAs (miRNAs), a class of smRNAs that are 

generally ~22-nt in length and that are derived from longer pre-miRNA transcripts with strong 

hairpin secondary structures (Carthew & Sontheimer 2009). However, this process is not limited 

to miRNAs, because 21–24-nucleotide RNAs can also originate from the secondary structure of 

other non-miRNA transcripts (Li et al., 2012, Slotkin et al., 2003). These small RNAs can, in 

turn, cause transcripts to enter into the RNA interference (RNAi) pathway (Baulcombe 2004; Li 

et al., 2012; Cuerda-Gil & Slotkin, 2016; Hung & Slotkin, 2021). These observations suggest 

that sufficiently structured mRNAs, like miRNAs, form secondary structures that act as dsRNA 

substrates for degradation into smRNAs     .  

Little is known about how host genomes initially distinguish TEs from genes and target 

them for smRNA production, but some studies suggest that hairpin structures in TE transcripts 

act as an immune signal for de novo silencing of certain TEs (Slotkin et al., 2003; Sijen and 

Plasterk, 2003; Bousios et al., 2016; Hung & Slotkin 2021). One such example is Mu-killer, a 

locus that generates small RNAs and thereby silences MuDR elements (a DNA transposon) in 

maize (Zea mays ssp. mays) (Slotkin et al., 2003). Mu-killer consists of a truncated, duplicated, 
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and inverted copy of MuDR that, when transcribed, creates a hairpin secondary structure and is 

subsequently cut into trans-acting small-interfering RNAs (siRNAs) that target active MuDR 

transcripts. Another potential example comes from Sirevirus long terminal repeat (LTR) 

retrotransposons in maize (Bousios et al., 2016), which occupy 21% of the maize B73 genome 

(Bousios et al., 2011). In this study, the authors mapped smRNAs to full-length Sirevirus copies, 

reasoning that loci important for host-plant recognition and silencing should be associated with a 

larger number of smRNA sequences than other regions of the elements. Indeed, an excess of 

smRNAs mapped to regions that had strong predicted secondary structure due to clusters of 

palindromic motifs (Bousios et al., 2016). These studies present evidence that secondary 

structure helps initiate silencing of some TEs.  In fact, one review has argued that the only 

characterized pathway to de novo smRNA production relies on RNA secondary structure (Hung 

and Slotkin, 2021). [It should be noted, however, that some phased siRNAs are caused by 

miRNA cleavage events that apparently do not require secondary structure (Creasey et al., 

2014).]   

If RNA sequences form miRNA-like hairpin structures, leading to the production of 

smRNAs, two important questions must be addressed. First, how common are miRNA-like 

secondary structures across the immense diversity of plant TEs? One prominent review of small 

RNAs argued that there is an urgent need to annotate hairpins that may have the capacity to act 

as a template for smRNA production (Axtell, 2013), but this need has not yet been met. Thus far, 

the importance of hairpin structure for de novo silencing has been implicated only in a few 

individual TE families. Second, secondary structure is not unique to TEs and exists within genes 

too. How often do genes have such structure, and is there evidence that genes form dsRNA 

substrates in these regions, too?  Li et al. (2012) documented a positive relationship between 

stability of mRNA structure and small RNA abundance for Arabidopsis thaliana genes, 

suggesting that genes do form dsRNA substrates. Yet these genes are still expressed, potentially 

due to countermeasures that moderate the potential effects of smRNAs on genes, including 

hypothesized protection against RNAi caused by high GC content (Hung and Slotkin 2021) and 

active gene demethylation (Gong et al., 2002; Zhang et al., 2022). Although it has long been 

thought that miRNA loci may be derived from TE sequences (Roberts et al., 2014), there has not 

yet been, to our knowledge, a genome-wide comparison of miRNA-like secondary structures 

among genes and TE superfamilies.  
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In this study, we predict secondary structures in genes and TEs of the maize B73 genome. 

Secondary structure can be empirically measured through sequencing techniques such as  DMS-

seq and SHAPE-seq (Yang et al., 2018), which is applied to the transcribed component of whole 

genomes (Ding et al., 2014; Ferrero-Serrano et al., 2022). However, this approach requires that 

the sequences of interest are expressed, preventing comprehensive investigation of plant TEs, 

most of which are silent. These methods are also difficult to perform on large genomes with high 

repeat content, so that genome-wide ‘structurome’ sequencing has thus far only been completed 

on plants with relatively small genomes, like Arabidopsis (Ding et al., 2014; Bevilacqua et al., 

2016) and rice, Oryza sativa (Ritchey et al., 2017). The second approach, which we adopted 

here, relies on bioinformatic predictions based on genome sequence data. Secondary structure 

prediction is a subject of active research, and methods vary in their predictions and accuracy. 

Here we employ two separate methods that rely on distinct algorithms to identify regions with 

properties similar to miRNA-like hairpins. Briefly, the first uses RNAfold (Lorenz et al., 2011), 

which estimates the minimum free energy (MFE) of the most likely secondary structure of a 

given sequence (Nussinov and Jacobson, 1980; Zuker and Stiegler, 1981).  Following 

precedence, we apply RNAfold in a windows-based approach. The second relies on a newer tool, 

LinearPartition (Zhang et al., 2020), that calculates a partition function for a complete (i.e., not 

windows-based) RNA sequence. The LinearPartition function includes the sum of equilibrium 

constants for all possible secondary structures for a sequence (i.e, not just the most likely 

structure).  We focus specifically on detecting regions with miRNA-like secondary structures, 

because miRNA are known to fold and thereby act as a dsRNA substrate for Dicer-like 

mechanisms.      .   

After performing computational annotation to predict miRNA-like regions in the genes 

and TEs of maize, we investigate the relationship between these regions to smRNAs, 

methylation levels, chromatin accessibility and, where applicable, gene expression (Fig S1). 

With these data, we address four sets of questions. The first focuses on predicted secondary 

structure: How often do TEs and genes contain regions of miRNA-like regions? And are these 

regions in specific locations? The second set of questions focuses on the relationship between 

secondary structure and smRNAs. Do miRNA-like regions consistently map more smRNAs,      

and, if so, of what size? The question of size is important because it is thought that dsRNA 

degradation via Dicer feeds into post-transcriptional gene silencing (PTGS) pathways, which 
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tends to rely on 21- and 22-nt smRNAs. In contrast, pathways that lead to transcriptional gene 

silencing (TGS) tend to rely more often on 24-nt smRNAs, although these size distinctions are 

neither strict nor universal (Fultz & Slotkin, 2017; Panda et al., 2020). Our third set of questions 

focuses on the potential genomic implications of hairpins and smRNAs. Do these miRNA-like 

regions have higher methylation levels or specific chromatin properties? Finally, we assess the 

effects of miRNA-like secondary structures on gene expression by including data from 26 

parents of the maize Nested Association Mapping (NAM) lines (McMullen et al., 2009; Hufford 

et al., 2021).  

       

RESULTS 

Two methods to predict miRNA-like secondary structures and their comparison 

We adopted two complementary bioinformatic methods to identify miRNA-like hairpin 

regions (Fig 1a). The details of their implementation are given in the Materials and Methods. 

Here we provide an overview of the methods and compare their performance. To aid the reader, 

we also provide terms that are used to characterize analyzed sequences (Table 1).  

RNAfold: The first method applied RNAfold to sliding windows of 110 nt, following 

previous work (Wang et al., 2009; Bousios et al., 2016). The 110 nt windows were originally 

designed by Wang and co-authors to include regions that map 20-25 nt small RNAs, along with 

~90 bp of flanking sequence (Wang et al., 2009). This approach established that pre-miRNA 

windows of this size typically have MFEs <-40 kcal/mol (Wang et al., 2009); we used that 

empirical cutoff to define windows of secondary structure with miRNA-like stability. By 

focusing on regions of similar size to pre-miRNA transcripts and by employing their empirical 

threshold cutoff of -40 kcal/mol, we in effect used miRNA loci as a ‘positive control’ for 

ssRNAs that are expected to form secondary structures.  

 We applied RNAfold across features of the B73 reference maize genome (version 

4.0)(Jiao et al., 2017). The features included miRNA precursor loci, TEs and genes. The TEs 

included all families annotated in Jiao et al. (2017), including Long Terminal Repeat elements 

(LTRs), Terminal Inverted Repeat elements (TIRs), Helitrons, Long Interspersed Nuclear 

Elements (LINEs), and Short Interspersed Nuclear Elements (SINEs). Within these TE types, we 

focused on superfamily categories (Wicker et al., 2007), which distinguished (for example) 

between Ty3/RLG and Copia/RLC LTR elements and among TIR elements like Mutators/DTM 
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and Harbingers/DTH. [Note that throughout the paper we refer to TE superfamilies by their 

names and also their three-letter designation from Wicker et al., 2007 (Table 2)]. Notably, these 

annotations do not typically include miniature inverted terminal repeats (MITEs), a class of small 

non-autonomous TEs that often contain strong secondary structures. For genes, we studied both 

the annotated gene—which included untranslated regions (UTRs), exons, introns—as well as 

mature transcripts that lacked introns. Altogether, with this method we examined 373,485 

features representing 15 distinct feature categories (Table 2). Because we used sliding windows, 

each nucleotide within a feature corresponded to one sliding window (for all but the final 109 

nucleotides of a sequence). This approach was a massive bioinformatic undertaking, requiring an 

MFE calculation for a total of 3.56 billion windows. 

Because each feature consisted of many RNAfold windows, we used summary statistics 

to characterize local secondary structure in each feature (Table 1). These included the minimum 

MFE (minMFE), which was the MFE of the window with the strongest predicted secondary 

structure for each feature, and mean MFE (meanMFE), which averaged MFE across windows 

within a feature. For each feature, we also concatenated overlapping windows with MFE < -40 

kcal/mol, designating these as lowMFE regions (Table 1; Fig 1a,b).  

One concern about using MFE as a quantitative statistic is that it varies by G:C 

composition (e.g., higher G:C content tends to induce more stable secondary structures) and 

primary sequence (e.g., whether the order of bases forms palindromes and stem-loop structures). 

Because we were primarily interested in secondary structure resulting from the latter, we 

controlled for base composition by randomizing the sequence of each feature five times and then 

repeating MFE predictions each time, requiring another 17.8 billion (=5 x 3.56 billion) window 

computations. By randomizing, we identified features that had more stable secondary structures 

than expected given their nucleotide composition. We then classified a feature as “RF-

structured” (RF for RNAfold) when it contained windows with MFEs < -40 kcal/mol and also 

had a minMFE significantly lower than permutations (p < 0.05, one-sided Wilcoxon test, 

Benjamini and Hochberg corrected) (Table 1). Conversely, we labeled features as “unstructured” 

when their minMFE was not significantly lower than that of randomized sequences. [We report 

the differences between randomized and observed minMFE values for each feature category in 

Fig S2.] Overall, 76% (286,774 of 373,485) of features were RF-structured - i.e., contained 

regions of miRNA-like structures by this criteria (Table 2).   
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LinearPartition: The second prediction method was based on LinearPartition (Zhang et 

al., 2020). This approach did not rely on sliding windows to infer local secondary structure but 

analyzed the complete sequence of each feature. The advantage of this was that each feature 

required only one computational analysis, vastly improving computational burden and speed. 

Accordingly, we applied this method to the same set of 373,485 features as RNAfold but also to 

a larger, updated version of maize TE annotations (Stitzer et al., 2021), resulting in an expanded 

dataset of 467,255 features (Table 2). 

For each sequence, LinearPartition calculated the partition function, summarized by the 

parameter Q.  For each nucleotide site within a feature, the method calculated a pairing 

probability between all nucleotides in the feature. We focused on nucleotide pairs with high 

probabilities of pairing (> 0.90) and searched within each feature for runs of nucleotides that 

matched widely-accepted miRNA annotation guidelines for plants (Axtell and Meyers 2018). 

These guidelines defined hairpins consisting of consecutive stretches of  ≥21-nucleotides that 

were likely to pair (>90% probability) with <5 mismatched nucleotides, including <3 

mismatches in putative asymmetric bulges (i.e., places where the gap on one side of a hairpin 

was > the gap on the other side of the hairpin)(Fig. 1a; see Methods for details). We called 

sequences that fit these criteria “LP-hairpins” (Table 1).  

 Comparing the methods: It is worth emphasizing similarities and differences between the 

two methods. Both focused on identifying regions of strong local secondary structures within 

features, based on known properties of miRNA-like regions. The MFE method focused on 

regions of high local structure (MFEs < -40 kcal/mol), without reference to the properties of 

those structures, like the length of stem loops. In contrast, LinearPartition focused on regions 

along the complete sequence that matched specific length and size criteria. Because the two 

methods utilized different miRNA-like properties, we did not expect them to correlate perfectly 

throughout the genome.   

Yet, they did yield significant consistencies and overlaps. For example, we contrasted the 

two entire-sequence summary statistics—i.e., meanMFE and the partition function normalized 

for feature length (Qnorm). Across structured features, Qnorm correlated strongly with meanMFE 

(Fig 1c)(R2 = 0.73 across all feature types and R2 = 0.97 across genes; P = 0) and weakly (R2 = 

0.04) but still significantly (P = 3.05 x 10-10) with minMFE. The low correlation between Qnorm 

and minMFE was not unexpected, because minMFE focuses on one window within a feature, as 
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opposed to the property of an entire sequence. However, we also compared the overlap in 

genomic locations between LP-hairpins and low (<-40) MFE regions (Fig 1a). Across all of the 

287,744 RF-structured features (Table 2), 78.46% of LinearPartition hairpins were within a 

lowMFE region. Given that lowMFE regions collectively comprised ~22.95% of annotated 

features, this represented a substantial 12.2-fold enrichment of LP-hairpins within lowMFE 

regions. By design, lowMFE regions were much larger (median = 348 nt) than LP-hairpins 

(median = 25 nt), and therefore took up a much larger proportion of the space inside of 

comparable features. (In total, lowMFE regions constituted 1.9 x 108 nt vs 1.7x 107 nt for LP-

hairpins). These comparisons demonstrate that LP-hairpins are based on a narrower definition, 

but that the two methods generally agree.      

Finally, we compared the performance of the two methods based on a control dataset: 

annotated pre-miRNA loci from the B73 reference (n=107; Table 2). Most (71.0%) of this set 

were RF-structured (Table 2), indicating that the MFE threshold defined by Wang et al (2009) 

generally conformed to existing annotations. Similarly, most (66.36%) of the annotated pre-

miRNA loci had LP-hairpins (Table 2).       

 

The prevalence and locations of miRNA-like secondary structures  

Prevalence of miRNA-like secondary structure across TE superfamilies: Using both 

methods of prediction, we detected substantial variation in the prevalence of miRNA-like 

secondary structures among TE categories. Some TE superfamilies contained little evidence of 

structure.  For example, the LINE (RIL and RIT) elements had no RF-structured elements and 

also had no detectable LP-hairpins (Table 2). Because the 2017 annotation from Jiao et al. 

(2017) contained few (n=65) RIL and RIT elements, we repeated the LinearPartition analysis 

with an expanded set of n=773 elements from Stitzer et al. (2021), finding again that only a small 

subset (~3%) contained hairpins (Table 2). SINEs/RST also had very low incidences of miRNA-

like structure, with no RF-structured elements and <2% containing LP-hairpins (Fig. 1b). In 

contrast to LINEs and SINEs, LTR elements generally had abundant miRNA-like structures. For 

example, 98% of Copia/RLC elements had RF-structure and 58.0% had LP-hairpins (Table 2; 

Fig 1b). We note, however, that LTR elements were longer on average than the other TE 

subfamilies, and also that there was an overall negative relationship between feature length and 

minMFE across all 15 feature categories (P < 2.2 x 10-16, R2 = 0.20, linear model; Fig S3).   
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Just as the prevalence of miRNA-like regions varied across RNA-based superfamilies, 

they also varied among DNA-based TE superfamilies. Mutator/DTM elements were especially 

notable for the high percentage of elements with LP-hairpins, at up to 62.82%, while 32.52% of  

CACTA/DTC elements contained LP-hairpins. Fewer than half of the annotated Tc1-

Mariner/DTT and PIF-Harbinger/DTH elements were RF-structured or contained LP-hairpins 

(Table 2), but this corresponded to thousands of elements in these superfamilies that contain 

miRNA-like regions.     

It is worth making two overarching observations from the analyses reported in Table 2. 

First, the percentage of sequences identified by RNAfold and LinearPartition were correlated 

across the 15 feature categories (R=0.65; p<0.001), suggesting again that the two methods 

identified similar characteristics in most superfamilies. Second, the expanded TE dataset of 

Stitzer et al. (2021) exhibited similar trends to the Jiao et al. (2017) annotation dataset (R=0.96; 

p<0.001).  For example, LINEs, SINEs and hAT/DTA elements generally had low proportions of 

elements with LP-hairpins in both annotation sets, while LTR superfamilies had high proportions 

in both annotation sets.       

Biases in the locations of miRNA-like regions: We next examined the locations of 

miRNA-like secondary structure across the length of each feature type. For these analyses, we 

focused only on the 286,744 features that were predicted to have RF-structure (Table 2). For 

each feature category, we separately mapped the positions of lowMFE regions and LP-hairpins 

along their lengths (Fig 2). Consistent with previous work (Bousios et al., 2016), both lowMFE 

and LP-hairpins were concentrated within the LTRs of Copia/RLC elements.  In contrast, 

Ty3/RLG elements generally lacked an obvious peak for miRNA-like structures. Most DNA 

transposon superfamilies had relatively uniform distributions of lowMFE regions across their 

lengths (Fig S4), but LP-hairpins were biased heavily towards the terminal inverted repeats for 

TIR elements like Mutator/DTM (Fig 2), hAT/DTA and CACTA/DTC elements (Fig. S4). 

Finally, Helitrons/DHH had a distinct 3’ bias for both lowMFE regions and LP-hairpins (Fig 2).  

reflecting the ~11 nt stem-loop structure common to Helitron 3’ ends (Kapitonov & Jurka 2007; 

Xiong et al., 2014). The take-home messages were that: i) some superfamilies – like 

Helitron/DHH, Mutator/DTM and Copia/RLC – exhibited notable biases in the locations of 

miRNA-like regions and ii) these inferences were similar between the two prediction methods.  
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Motifs within miRNA-like structures: Distinct sequence motifs could define lowMFE 

regions. For each TE superfamily, we extracted all the sequences of lowMFE regions and input 

them into the Multiple EM for Motif Elicitation (MEME) suite motif discovery tool (Bailey and 

Elkan, 1994), which finds overrepresented sequence motifs within a set of sequences. As 

expected (Bousios et al., 2016), we recovered the previously identified consensus Sirevirus 

palindrome, CACCGGACNNNGTCCGGTG (Fig S5) as the most abundant motif in Copia/RLC 

elements (MEME e-value = 5.3x10-677).  This motif appeared in 42.9% of RLC structured 

regions. This      same palindrome was also the most abundant motif in Helitron/DHH 

transposons (MEME e-value = 1.0e-165), appearing in 5,231 DHH structured regions (10.7%). 

This observation could reflect independent emergence of these motifs in the two superfamilies or 

frequent insertion of one type of element into the other.   

miRNA-like secondary structure within genes: A higher percentage (69.0%) of genes 

were RF-structured than contained LP-hairpins (29.8%) (Table 2).  When we examined the 

distributions of miRNA-like structures across genes and their mature transcripts, we found that 

the two methods differed in their predictions. In 85% of genes (Fig 2), lowMFE regions 

overlapped the 5’ UTRs, where secondary structures are known to participate in ribosome 

binding and translation (Babendure et al., 2006; Matoulkova et al., 2012). In contrast, LP-

hairpins were fairly uniformly distributed across gene lengths (Fig 2), with perhaps a slight bias 

towards the middle of the gene as documented previously in Arabidopsis (Li et al. 2012). Most 

(76.19%) of these LP-hairpins were found in introns, so that far fewer (5.02%) of mature mRNA 

transcripts had LP-hairpins (Table 2). The lowMFE results demonstrate that 5’ UTRs commonly 

have regions of local secondary structure but infrequently contained LP-hairpins.  

  

Comparing miRNA-like secondary regions to smRNA diversity 

 Correlations between miRNA-like regions and smRNA mapping abundance: Under the 

dsRNA-substrate model, genomic regions of high secondary structure should have homology to 

more smRNAs than non-structured regions. To test the hypothesis, we mapped 21, 22, and 24-nt 

smRNAs from up to 42 published smRNA libraries (see Methods; Table S1) to the B73 maize 

genome, and then counted the number of distinct smRNA sequences (also known as ‘smRNA 

species’) (Bousios et al., 2017) that mapped with 100% identity to genomic regions. Because of 

their different functions (Axtell, 2013; Borges and Martienssen, 2015), we examined smRNAs in 
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the three size classes (21, 22, and 24 nt) separately. Two caveats should be mentioned regarding 

these small RNAs. First, although we suspect many of these small RNAs to be hairpin-derived 

RNAs (hpRNAs) (Axtell, 2013), we do not know their origin and refer to them by the more 

general ‘smRNA’ term for clarity and concision. Second, we do not know that each smRNAs 

identified here function as siRNA, merely that they are the correct size to act as a canonical 

siRNAs.  

 We first examined the relationship between miRNA-like regions and smRNAs using a 

linear model across all 373,485 features of the Jiao et al. (2017) annotation set, using correlation 

statistics. The correlation coefficient was generally small—e.g., R2 was ~0.1 for models 

incorporating minMFE—but highly significant (Table 3).  Moreover, the results were 

significantly positive for all RNAfold and LinearPartition summary metrics (Table 3).  

Extending this approach separately to the 15 individual feature categories, three smRNA lengths, 

and three metrics (minMFE, meanMFE and Qnorm ), 82% of correlations were significant after 

false discovery rate (FDR) correction (Table S2).  

Overall, these results indicate a weak but consistent relationship between presence of 

miRNA-like secondary structure in features and the number of smRNAs that map to those 

features. We did find some interesting outliers, however. First, the relationship between smRNAs 

and minMFE statistics were generally not significant for miRNAs (Table S2), perhaps reflecting 

small sample sizes (n=107) or perhaps the fact that miRNA loci generate few distinct smRNAs, 

despite being highly expressed.  Similarly, some LINE comparisons also were typically not 

significant; LINEs were heavily saturated with for all three smRNA size classes (Fig S6) but few 

had detectable miRNA-like regions.  Second, the estimated linear relationships were typically 

higher for 21 and 22-nt smRNA than for 24-nt smRNA, which is consistent with their role during 

the initiation of silencing (Table 3&S2) and with the observation that DCL-like processing of 

dsRNA substrates typically yield 21- and 22-nt smRNAs. In genes, for example, correlations 

between minMFE and 21-22 nt smRNAs were again weak but highly significant (R2 = 0.01, P < 

4.12 x 10-106), but the correlation with 24-nt smRNAs was not (R2 = 8.35x 10-05, P = 

0.072)(Table S2).  

Measuring smRNA abundance with skew: We also examined the relationship between 

miRNA-like structures and smRNA counts within features by measuring smRNA mapping skew, 

which measures the ratio of smRNA mapping in miRNA-like vs. non-miRNA-like regions 
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(Table 1 and Methods). We defined skew to be zero when smRNA mapping was equivalent on a 

per nucleotide basis between miRNA-like vs. non-miRNA-like regions, and skew ranged from -

1.0 to 1.0. When it was positive, smRNA mapping was more abundant in miRNA-like regions.   

Generally, TEs in all superfamilies exhibited positive skews, reflecting the tendency for 

more smRNAs to map to LP-hairpins (Fig 3a,b) and the lowMFE regions of RF-structured 

elements (Fig S7).  As just one example, Copia/RLC elements had positive skews, with slightly 

higher skews for 22-nt smRNAs as opposed to 21 and 24-nt smRNAs (Fig 3a).  These results 

were confirmed by a linear mixed effects models, because all three smRNA lengths were 

significantly higher in Copia/RLC LP-hairpin regions with all three metrics (i.e., minMFE, 

meanMFE and Qnorm; all P-values < 1.23 x 10-04; Table S2; Fig S8 & S9). Overall, LTR 

elements had more obvious skew than DNA elements, although five of six DNA superfamilies 

had positive skews for all three smRNA lengths (Fig. 3a). These observations were largely 

supported by mixed effects models (Table S3 & S4), where all TE superfamilies showed 

significantly higher smRNA mapping to both LP-hairpin and lowMFE regions at all three 

smRNA lengths (P-value range 9.3 x 10-04 in Rle/RIT elements to 0.0 in many LTRs, TIRs, and 

helitrons). 

We also examined skew within genes. Genes had homology to far fewer smRNA species 

than most TE types—nearly 100-times less in most cases (Fig S6)—but smRNA species 

abundance was roughly equivalent between genes and their transcripts. Although genes mapped 

fewer smRNAs overall, they had stronger skews than any of the TE superfamilies. For example, 

roughly three-fold more smRNAs (of all size classes) mapped to lowMFE in genes, compared to 

the 1.5- and 1.3-fold difference in CACTA/DTC transposons and Copia/RLC retrotransposons. 

This effect was more pronounced for LP-hairpins. For example, LTR retrotransposons (which 

includes the RLC, RLG and RLX superfamilies) had a 2.9-fold greater smRNA density in LP-

hairpins compared to non-hairpin regions, but genes had a ~89-fold greater density. Consistent 

with these observations, linear mixed effect models were significant for higher smRNA 

abundance in lowMFE regions and LP-hairpins of genes for all three smRNA lengths (P ≅ 0; 

Table S3 & S4). Comparisons of overall smRNA mapping densities between miRNA-like 

regions and other regions in genes and TEs can be seen in Figs S8 (lowMFE) & S9 (LP-

hairpins). 
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Finally, we included organellar genes as negative controls, because they are typically 

sequestered from the cytosolic complexes like DCL and RdR6 and hence should not exhibit any 

skew. smRNAs mapped to organellar genes at low levels, but as expected did not exhibit any 

skew (Fig. S10).  

 

Expression matters: putatively autonomous vs. non-autonomous TEs 

Non-autonomous DNA transposons are not transcribed (except when they are within 

expressed UTRs or introns), and therefore RNA secondary structure generally cannot drive the 

creation of smRNAs for these elements (Panda et al., 2016). We therefore predicted that there 

could be a difference in skew between autonomous and non-autonomous DNA elements. To 

investigate, we separated DNA transposons into nonautonomous and autonomous elements using 

transposase homology data (Stitzer et al., 2021)(see Methods), and then repeated our skew and 

linear model analyses. In most cases, non-autonomous elements had notably less smRNA skew 

towards miRNA-like regions than autonomous elements (Fig 3b), as we had predicted. This 

pattern was consistent among Helitron/DHH (autonomous mean skew among all smRNA lengths 

= 0.91, non-autonomous mean = 0.37), CACTA/DTC (autonomous mean = 0.44, non-

autonomous mean = 0.34), Harbinger/DTH elements (autonomous mean = 0.37, nonautonomous 

mean = 0.27), and Mutator/DTM (autonomous mean = 0.51, non-autonomous mean = 0.05), but 

it was particularly notable for 21 and 22-nt smRNAs (P < 7.5 x 10-31) among Helitrons/DHH and 

Mutator/DTM, most of which are non-autonomous in maize (Stitzer et al., 2021). Note that all 

Mariner/DTT elements were non-autonomous, which may relate to their overall lack of skew 

(Fig 3b).   

 

Methylation peaks in miRNA-like regions 

One function of smRNAs is to recruit methylases, leading to RNA-directed DNA 

methylation (RdDM). We reasoned that miRNA-like structures should be more highly 

methylated because they map more smRNAs. We further predicted that this effect should be 

primarily detected in the CHH context, because mCHH is deposited de novo each generation 

(Law and Jacobsen, 2010).   

We employed B73 whole-genome methylation data (Hufford et al., 2021) to measure 

weighted methylation levels (Schultz et al., 2012) across the genome. We then plotted 
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methylation levels centered on regions of miRNA-like structure and 2 kb of the upstream and 

downstream sequences. Both LP-hairpins (Fig. 4) and lowMFE regions (Fig S11) demonstrated 

peaks of CHH methylation centered on the region; this peak dissipated rapidly, especially for 

LP-hairpins. These peaks were found in all feature types with detectable miRNA-like structures, 

including RNA elements, DNA elements and genes. We also confirmed that miRNA-like regions 

had significantly higher levels of CHH methylation than other regions by comparing them to 

randomly chosen unstructured regions of the same length as LP-hairpins (Fig. 4). Finally, we 

found that CHH methylation levels in LP-hairpins were significantly higher than those in the rest 

of the corresponding sequence (paired t-test; P values between 3.43 x 10-81 and 1.16 x 10-165 

among genes, TIRs, LINEs, LTRs, and helitrons), with enrichments as high as ~10x in genic 

hairpins. These observations complement the smRNA mapping results and confirm that our 

miRNA-like regions have detectable epigenetic correlates.  

 

miRNA-like structures and gene expression   

 Genes possess regions with stable RNA secondary structure (Figs 1&2), and this 

secondary structure coincides with the presence of smRNAs (Fig 3c & Table S3-S4) and 

methylation (Fig 4 & S11). Yet, genes are usually expressed, which raises the question as to 

whether these miRNA-like structures have a quantifiable relationship to gene expression. To 

address this question, we used previously published RNA-seq data from 23 B73 tissues across 

developmental stages (Walley et al., 2016).  We focused these analyses on structured genes with 

lowMFE regions (as opposed to LP-hairpins), both because they were common in the UTRs and 

gene bodies of genes (Fig. 2) and because 5’ secondary structure is known to be important to 

gene function.  In contrast, LP-hairpins were detected in only ~5% of genic transcripts (Table 2); 

however, the results presented below for lowMFE regions were often recapitulated with LP-

hairpin data.  

We began by comparing expression in 27,025 structured versus 5,060 unstructured genes. 

Structured genes had significantly higher expression (t-test, P < 2.0 x 10-16)(Fig 5a), and this was 

true for all tissues (Fig S12) as well as for genes that contained LP-hairpins (Fig S13).  We 

suspected, however, that most unstructured genes were either pseudogenes or misannotated. To 

focus on evolutionarily conserved (and hence presumably bona fide) genes, we identified 24,784 

B73 genes with syntelogs in Sorghum bicolor (Muyle et al., 2021)(see Methods). Among the 
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syntelog set, 16,171 were structured and 460 were unstructured.  Structured syntelogs still had a 

mean expression level that was slightly higher than unstructured syntologs (P = 3.7 x 10-4; Fig 

5a).  More important, however, was the quantifiable relationship between the minMFE and gene 

expression. Among structured syntelogs, the relationship was significantly positive—i.e, such 

that gene expression peaked at a minMFE of ~40 kcal/mol (Fig. 5b).  The opposite was true 

among unstructured genes, because higher expression occurred with lower MFEs (Fig. 5b). This 

pattern implies both a relationship between gene expression and the properties of secondary 

structures and also the existence of an optimal minMFE for gene expression. These trends are 

present for many of the 23 separate B73 tissues separately (Fig. S14) and for the complete gene 

set of genes—i.e., not just genes with syntelogs (Fig. S15). 

 Among syntelogs, structured genes also mapped significantly more smRNAs than 

unstructured genes (Fig. 5c), which raises an interesting question: Could this phenomenon      

modulate the expression of genes?  To examine this idea, we examined expression data across 

the 26 nested association mapping (NAM) founder lines (McMullen et al., 2009). For these 

analyses, we assumed that the secondary structure designations predicted in B73 applied to its 

syntelog across all 26 NAM parents (Hufford et al., 2021). We then compared gene expression 

among lines using the coefficient of variation (CV), based on expression values that were 

normalized across eight tissues in each line (Hufford et al., 2021)(see Methods). Our analyses 

revealed that structured genes had significantly higher CVs than non-structured genes (Ps < 0.01, 

permutation test)(Fig 5d). This was true both for comparisons between all genes in each group 

and between a downsampled subset of structured genes that was equal in size to the set of 

unstructured genes. One concern about this analysis is that the CV is standardized by the mean, 

which could bias results, but this did not drive our observations for three reasons.  First, mean 

expression did not vary substantially between structured and unstructured syntelogs (Fig. 5a). 

Second, we fitted a linear model of expression CV as a function of B73 gene expression, but the 

correlation was negative (i.e., more highly expressed genes were slightly less variable across 

lines; R2 = 6.1 x 10-4, P = 1.5x 10-7, estimate = -0.01). Third, we examined CV across 23 B73 

tissues. There was no difference in CV between structured and unstructured syntelogs across 

tissues (Fig. 5c), illustrating that the CV metric alone does not explain the significant difference 

across genotypes.  
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 Can the variable expression of structured genes be explained by smRNAs? We predicted 

that more smRNAs should lead to more expression variation across lines. To investigate this 

possibility, we fit a linear model of expression CV as a function of smRNA density and found 

that CV was positively correlated with smRNA abundance (P = 6.7 x 10-283; R2 = 0.010). To see 

if an effect was discernible between structured genes of variable minMFE values (as suggested 

by Fig 4b), we separated structured genes into four quartiles based on their minMFE and then 

plotted the number of smRNAs that map to each gene in B73. Consistent with our hypothesis, 

genes in the lowest minMFE quartile mapped more smRNAs than the other three quartiles for all 

three smRNA lengths, and minMFE was significantly but weakly correlated with CV in a linear 

model (P = 5.8 x 10-79; R2 = 0.0031).  

 This evidence shows that higher CVs for expression are related to the number of 

smRNAs that map to a gene, but additional factors likely cause (or contribute) to expression 

variability across NAM genotypes. One factor is chromatin accessibility. We assessed whether 

accessibility varies more in lowMFE genic regions by using ATAC-seq data (Hufford et al., 

2021), which defines accessible chromatin regions (ACRs) among parents (see Methods). For 

each NAM parent, we identified whether ACRs overlapped with lowMFE regions more than 

unstructured (MFE > -40kcal/mol) genic regions. We found no difference between the two 

categories (Fig 5e). Genetic effects, like SNPs and structural variants (SVs), contribute to gene 

expression variation across the NAM lines, particularly given that regions of structure can have 

altered mutation rates (Hoede et al., 2006). We therefore also examined SNPs and SVs in these 

regions, based on the data of Hufford et al. (2021). We found that lowMFE regions were less 

likely to contain SNPs or SVs than unstructured genic regions (Fig. 5e), which superficially 

discounts the idea that higher CVs for expression are caused by genetic effects due to miRNA-

like regions having notably high mutation rates.   

   

DISCUSSION  

We have profiled miRNA-like secondary structure in annotated features of the maize 

genome. To our knowledge, this study is the first to comprehensively catalog such structures, 

and we have done so by applying two bioinformatic prediction methods. The methods rely on 

different algorithms (RNAfold vs. LinearPartition), different approaches (overlapping windows 

vs. no windows) and on different characteristics to define miRNA-like regions. By design, the 
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LinearPartition analyses relied on a narrower definition (Fig 2), and so there were fewer 

observations. Yet, the two methods provide largely concurrent insights about miRNA-like 

regions, including their relative abundances among TE superfamilies (Table 2); their locational 

biases in some TE superfamilies (Fig 2); their association with elevated smRNA counts in TEs 

and genes (Fig 3); and their genome-wide correspondence to peaks of methylation (Fig 4).  

 

Detecting miRNA-like secondary structures   

 For detecting secondary structure, we have included two positive controls: miRNA 

precursor loci (Wang et al, 2009) and Copia/RLC elements (Bousios et al., 2016). As expected, 

these two feature categories have extreme statistics. For example, Copia/RLC elements have the 

highest proportion of RF-structured elements (Table 2) and also the lowest average minMFE, 

reflecting previously recognized regions of strong secondary structure (Fig. 1). Our other 

positive control set, miRNA precursor loci, have a high proportion of RF-structure and the 

highest proportion of LP-hairpins (Table 2). However, these positive controls also indicate an 

appreciable false negative rate, because 29% (RF-structure) and 38% (LP-hairpin) of pre-miRNA 

loci do not have detectable miRNA-like structures. It is of course possible that misannotations of 

miRNA precursors contribute to these false negative rates.   

The methods have additional limitations. We need to first reiterate that the approach was 

not designed to identify all secondary structures. Our goal was to identify regions similar to 

miRNA precursors, because they are thought to be involved in forming dsRNA substrates that 

lead to the production of smRNAs.  Second, there are limitations to the TE annotation sets.  For 

example, miniature inverted repeats (MITEs) are not included in either annotation set. MITEs are 

short non-autonomous elements that are characterized by their tendency to form stem-loop 

structures and to insert near genes (Bureau & Wessler, 1992, 1994), where they are often 

incorporated in read-through transcripts. They are an interesting topic for additional work, but 

we can provide no insights about them here. Third, we know that some summaries are biased—

e.g., minMFE is correlated with feature length and lowMFE regions are more likely in sequences 

with high G:C composition. We have addressed these biases by using multiple summary 

statistics, by randomizing the primary sequence to test for significant evidence of structure and 

by using two prediction methods. Finally, we recognize that bioinformatic predictions are 

approximations that may not correspond to in vivo assessments (Ding et al., 2014).   
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Nonetheless, despite these limitations, the two distinct prediction methods yield several 

similar trends, including higher smRNA mapping and methylation levels in miRNA-like regions 

(Table 2 and Figs 1,2). One prosaic explanation for these results is that they are caused by 

systematic biases in the prediction methods, but this seems highly unlikely because: i) error in 

secondary structure prediction should lead to randomness—i.e., inconsistent correlations, ii) the 

inclusion of false negatives among unstructured elements makes the measured correlations 

inherently conservative and iii) the results, while not identical, are largely consistent between 

prediction methods.  Since both genes and TEs exhibit this relationship, we conclude that the 

association between miRNA-like structure and smRNA abundance is a general characteristic of 

the maize epigenome.  Our work extends this relationship from a few examples to the genome-

wide scale.  

 

miRNA-like regions, epigenetic signals and potential mechanisms 

Given known pathways of miRNA and smRNA biogenesis (O’Brien et al., 2018; Hung & 

Slotkin, 2021), we believe the most likely explanation for the observed association is that 

miRNA-like secondary structures lead directly to smRNA production via Dicer-like 

mechanisms. This conclusion is bolstered by the fact that smRNA skew is more pronounced for      

expressed genomic regions—like genes and putatively autonomous elements—for which this 

mechanism is expected to be most active (Fig. 3). There are likely exceptions to this pattern, 

though.  For example, MITEs can be frequently expressed owing to their insertion near genes 

(Zhang et al., 2000). We predict, then, that “expressed” non-autonomous MITEs will exhibit 

skews similar to autonomous elements; future work will address that hypothesis.    

Based on our bioinformatic analyses, we cannot prove that the structure:smRNA 

relationships are caused by the formation and processing of dsRNA substrates by DCL-like 

mechanisms. Arguably the most-straightforward way to do so would be to map smRNA libraries 

from maize mutants lacking Dicer-like functions. Unfortunately, we found no such librarieswe 

did map the available libraries from maize RdDM mutants: mediator of paramutation1 (mop1) 

and required to maintain repression2 (rmr2) (Gent et al., 2014; Barbour et al., 2012). These 

mutants affect the repression of TEs that have already been silenced (Barbour et al., 2012); they 

are thus not particularly good candidates to test the dsRNA-substrate model. We nonetheless 

assessed the effect of mutants on skew by comparing mutant smRNAs to WT individuals from 
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the same study (Fig S16), but we did not observe any clear or consistent patterns across smRNA 

lengths or TE superfamilies. These comparisons relied on single libraries and are thus more 

subject to sampling variability than our other observations, which were based on joint 

consideration of dozens of smRNA libraries.   

Since we cannot prove that processing of dsRNA substrates is a causal mechanism, it is 

worth considering alternative explanations. For example, structure:smRNA correlations could 

reflect abundance rather than production; one way this could occur is if smRNAs generated from 

miRNA-like regions degrade less quickly. It is hard to imagine how this might happen, but it is 

known that smRNAs that are loaded onto AGO have biases (Mi et al., 2008) and thus some may 

be more stable with longer half-lives. Another possibility is that these structures correlate with 

degradation through other, non-DCL pathways. Some studies have attempted to correct for 

degradation and other effects by focusing only on genomic regions where the proportion of 21, 

22 and 24 nt smRNAs exceed an arbitrary threshold compared to smRNAs of all lengths 

(Lundardon et al., 2020). We did not apply such a threshold here, because this approach 

necessarily assumes that some 21, 22 and 24-nt smRNAs should be ignored as biologically 

uninformative. We did, however, assess overlaps in genomic positions between the annotated, 

21–24-nt siRNA producing loci of Lundardon et al. (2020) and our miRNA-like hairpin 

structures. Relative to random chance, we found a modest but significant enrichment in 

overlapping locations in genes and in all TE superfamilies except SINEs and LINEs (Table S5), 

which generally lack miRNA-like structures (Table 2). We repeated this exercise with a set of 

annotated small RNA loci that do not produce smRNAS within the canonical 21-24nt length 

range (Lunardon et al., 2020); these analyses revealed lower enrichment across all features 

compared to 21-24nt producing loci, no notable enrichment within TEs and a very slight 

enrichment within mRNAs (Table S5). Altogether, these analyses suggest that a subset of our 

miRNA-like secondary structures correspond to loci that produce 21–24-nt siRNAs, presumably 

through DCL-like mechanisms.  

We can think of one additional explanation for the association between miRNA-like 

regions and smRNAs. In Arabidopsis, miRNA target sites within mRNAs are significantly less 

structured than surrounding regions (Li et al., 2012), which may confer accessibility to the 

endoribonucleases involved in RNAi (Vandivier et al., 2016). This pattern hints that small RNA 

binding and RNAi could be less effective in structured regions of TEs than in non-structured 
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regions, as is likely the case in viruses (Gebert et al., 2019). If this is the case, miRNA-like 

regions of TEs may have evolved to protect those primary sequences from targeting through 

RNAi-like mechanisms. In this explanation, the regions are first highly targeted by smRNAs and 

then structure evolves as a component of the evolutionary arms race between TEs and their hosts.  

While we cannot document a definitive mechanism, precedence suggests that processing 

of dsRNA substrates likely contributes to the genome-wide structure:smRNA relationship. If 

true, then we can add insights about its effects. First, we can estimate the relative amount of 

smRNAs that are produced via processing of dsRNA substrates compared to other smRNA-

generating mechanisms. Across the entire dataset of 373,485 features (Jiao et al., 2017), 

minMFE explains 10% of the smRNA mapping results for 21-nt smRNAs (Table 3), providing a 

rough estimate for the proportion of smRNAs produced from dsRNA substrates. This value is 

larger for some metrics within specific feature categories—e.g., Qnorm explained 24% of 22-nt 

smRNA mapping variation in genes and meanMFE explained 21% of 21nt variation for 

CACTA/DTC elements (Table S2). On average, across feature categories and smRNA lengths, 

the summary statistics minMFE, meanMFE and Qnorm explained 8% of mapping variation 

between miRNA-like regions and non-miRNA-like regions (Table S2). These low but highly 

significant values are consistent with the fact that dsRNAs are only one of several routes to 

smRNA production (Carthew & Sontheimer, 2009).                 

Second, our data show that miRNA-like regions are associated with peaks of elevated 

methylation (Fig 4). Since siRNAs guide DNA methylation mechanisms (Law and Jacobsen, 

2010), these peaks likely reflect causal relationships among structure, smRNAs and methylation. 

It is especially notable that these peaks are elevated for CHH methylation, which is deposited de 

novo each generation and thus represents active methylation mechanisms (Law and Jacobsen, 

2010).  Methylation in these peaks is also elevated in other contexts—e.g., the CG context (Fig. 

4)—such that the peaks resemble mCHH islands. mCHH islands are short (~100 bp) regions of 

elevated methylation typically found both up- and downstream of genes. They were first 

identified in rice as associated with MITEs (Zemach et al. 2010). In maize, mCHH islands are 

associated with several TE types, found near roughly half of genes, and enriched near highly 

expressed genes (Gent et al. 2013; Li et al, 2015; Martin et al., 2021). It is not yet known if 

mCHH islands typically correspond to miRNA-like secondary structures, but it is a fitting topic 
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for future investigations that may shed further insights into this mysterious epigenetic 

phenomenon.    

 

TE superfamilies vary in the number and pattern miRNA-like regions   

Our work was motivated, in part, by a lack of knowledge about the incipient stages of 

plant host recognition that leads to TE silencing (Bousios and Gaut, 2016). Since processing of 

dsRNA substrates remains the only recognized pathway to de novo smRNA production (Hung 

and Slotkin, 2021), we had hoped that characterizing miRNA-like regions would provide clues 

into properties of host recognition across specific TE superfamilies. Our work does not inform 

this mystery, except to show that most annotated TEs have some miRNA-like regions and also to 

provide a snapshot of variation across TE superfamilies.  That snapshot shows that DNA 

elements generally have less evidence for miRNA-like structures than LTR elements (Fig. 1), 

but non-LTR RNA elements (LINEs and SINEs) contain almost no miRNA-like structures 

(Table 2). There is also marked variation among LTRs, because Copia/RLC exhibit a 

concentration of secondary structures in the LTRs, but Ty3/RLG do not show a similar locational 

bias (Fig. 2). Finally, Helitrons/DHH warrant separate mention because 84% are RF-structured, 

with a strong bias of LP-hairpins at the 3’ end (Fig. 2). The lowMFE regions of Helitrons/DHH 

often contain the same palindrome sequence that defines structured regions of Copia/RLC 

elements (Bousios et al., 2016).  

One cannot help but wonder why miRNA-like regions are common within TEs. If 

secondary structure can lead to the potential for host recognition through smRNAs, there should 

be selective pressure to lose structure. We suspect that there is a cost to loss related to function.  

In Sireviruses (the principal representative of the Copia/RLC superfamily), there is evidence that 

palindromic motifs define the cis-regulatory region of the LTR (Grandbastien et al., 2015). In 

fact, studies of different TE families in different organisms have revealed that cis-regulatory 

regions are often arranged as arrays of complex, sometimes palindromic, repeats (Vernhettes et 

al., 1998; Araujo et al., 2001; Fablet et al., 2007; Ianc et al., 2014; Martinez et al., 2016), 

implying that secondary structures often assume a cis-regulatory function. We hypothesize that 

Copia/RLC elements are engaged in a tug-of-war between the functional necessities of 

secondary structure and the tendency of these same regions to act as templates for smRNAs     .  

We presume similar dynamics apply to other TE superfamilies, although clearly this conjecture 
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requires further detailed analyses of structure and function in specific TEs. However, the location 

differences between Copia/RLC and Ty3/RLG are interesting in this context (Fig. 2), because it 

superficially suggests that cis-regulation modules for Ty3/RLG elements have either moved or 

have modified function. Another potential function for miRNA-like regions relates to the fact 

that retrotransposons and autonomous DNA transposons need to co-opt the host’s translation 

machinery to extend their life-cyle. miRNA-like structures may be as crucial for translation for 

TE transcripts as it is for genes (see below).  

 

Genes: evidence for a trade-off  

Our analyses have uncovered a few unexpected features of genes. One is that the two 

methods provide different insights. The RNAfold approach identifies 85% of genes as RF-

structured (Table 2), with an evident bias toward 5’ UTR regions (Fig. 2). This result is not 

unexpected, given that secondary structures in 5’ UTRs are tied to crucial functions in ribosome 

binding and translation (Babendure et al., 2006; Matoulkova et al., 2012).  In contrast, LP-

hairpins are primarily found in introns. We conclude that 5’ UTRs commonly have miRNA-like 

regions (as defined by MFEs) but apparently lack the stem-loop structures identified by 

LinearPartition. Nonetheless, both lowMFE regions and LP-hairpins associate positively with 

smRNAs and demonstrate elevated CHH methylation levels within genes (Figs. 3,4 & S11).  

This is not the first such observation for plant genes, because Li et al. (2012) discovered 

that Arabidopsis mRNA transcripts with more stable secondary structures had higher smRNA 

expression and lower genic expression. Our work expands this previous work in two ways. First, 

we have extended the observations to maize; it is notable that genes in maize and Arabidopsis 

share these trends, because maize has a larger genome with more TEs. Second, we have shown 

that secondary structure does not universally correlate negatively with gene expression. Rather, 

the relationship is tiered: there is a qualitative difference in expression between genes with and 

without RF-structure (Fig 4A,B), probably reflecting that secondary structure in 5’ UTRs is 

crucial for some aspects of gene function. Among genes with RF-structure, however, genes with 

strong structure (as measured by minMFE) tend to be less expressed than genes with moderate 

RF-structure (Fig. 5B). That is, genes with particularly strong secondary structures (i.e., very low 

MFEs) have lower expression. 
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This relationship suggests that there can be “too much of a good thing” when it comes to 

miRNA-like structures. The potential functional consequence of “too much” is illustrated across 

the NAM parental genotypes, because structured genes with higher coefficients of variation tend 

to map more smRNAs (Fig. 5B) and have more variable expression among genotypes (Fig. 5C). 

We investigated whether this observation could be explained by other features of the miRNA-

like regions, such as especially high variability in chromatin accessibility.  We also investigated 

SNPs and SVs, because some work has shown that structured regions can have higher mutation 

rates (Hoede et al., 2006). Unfortunately, none of these variables have provided insights that 

explain higher expression variation across genotypes.  In fact, the miRNA-like regions tend to 

have fewer SNPs and SVs than the rest of the gene (Fig. 5E), suggesting that the miRNA-like 

regions are under purifying selection.   

Altogether, these results suggest the possibility of an evolutionary tradeoff between 

selection for stable secondary structure against too much secondary structure. Even so, we are 

still left by a paradox: if genes have miRNA-like regions that serve as a template for smRNA 

production, why are they not silenced? We do not have the answer, but we believe it must rely on 

the bevy of differences between hetero- and euchromatin. It is known, for example, that genic 

regions have distinct sets of chromatin markers relative to heterochromatin and also that 

demethylases like Increased in Bonsai Methylation 1 (IBM1) and repressor of silencing 1 

(ROS1) (Gong et al., 2002; Penterman et al., 2007) actively demethylate expressed genes (Saze 

et al. 2008; Miura et al. 2009). Some aspects of genic methylation are under selection (Muyle et 

al., 2022), and selection will be particularly strong against mechanisms that silence genic 

regions. We hypothesize that these mechanisms have evolved in part to counter the potentially 

deleterious effects of the formation of dsRNA structures and subsequent production of smRNAs.       

Overall, we have created a catalog of miRNA-like structures across many features of the 

maize genome. Our catalog shows that miRNA-like secondary structures are common. These 

regions also correlate weakly, but highly significantly, with smRNA abundance, and they 

associate visibly with DNA methylation, especially in the CHH context. Finally, we tentatively 

suggest that the dynamics of gene expression are affected by these structures and their epigenetic 

associations. We hope this work sparks further exploration of the roles of secondary structure in 

plant genome evolution, because it raises questions about unstudied TE categories (e.g., MITEs), 

about the strength of population genetic evidence against mutations in miRNA-like regions 
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(Ferrero-Serrano et al., 2022), whether secondary structure characteristics are conserved among 

species, and whether miRNA-like regions contribute to the previously documented relationship 

between secondary structure and stress response (Zhang et al., 2018).   

 

METHODS 

B73 annotation and secondary structure prediction 

Version 4 of the B73 maize genome and version 4.39 of the genome annotation were 

downloaded from Gramene (www.gramene.org). B73 TE annotations were retrieved from 

https://mcstitzer.github.io/maize_TEs/ (Jiao et al., 2017; Stitzer et al., 2021). TE and gene 

annotations were cleaned for redundancy (e.g., the same feature annotated by different 

annotation authorities) using custom scripts, and separated into annotation files for different 

feature categories. BED files were then generated for each annotation feature, with a 

standardized naming convention for each feature: Feature Type::Chromosome:Start Position-End 

Position (e.g., exon::Chr1:47261-47045).  

FASTA files for each feature were generated using BEDtools v2.27 (Quinlan & Hall 

2010) getFASTA. These FASTA files were divided into 110 nucleotide sliding windows (1-nt 

step size) for use in the secondary structure prediction program RNAfold v2.4.9 from 

ViennaRNA (Lorenz et al., 2011). MFE calculations per window were extracted from RNAfold 

predictions using a Python script, and the MFE summary metrics (minMFE and meanMFE) were 

calculated for each feature, based on all windows in that feature. As described in the main text, 

minMFE was calculated as the lowest MFE window in the feature and meanMFE was the mean 

of all 110 bp window MFE values. The partition function, Q, was calculated by LinearPartition. 

Qnorm was calculated by dividing Q by the length of each feature in R. BED files representing 

regions of lowMFE were created by combining all overlapping windows of <-40 kcal/mol MFE. 

Overlapping MFE windows were converted to BED format using an inhouse Python script. The 

scripts used for MFE calculations and analyses are available on GitHub 

(https://github.com/GautLab/maize_te_structure).  

To determine whether a feature contained significant structure, the feature sequence was 

randomized by shuffling the position of nucleotides across the length of the feature. This 

approach maintained the GC content of the feature but not the primary sequence. Randomized 

sequences were then subjected to identical MFE calculations—i.e., they were split into 110 bp 
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windows for RNAfold prediction. This process was repeated five times for each feature, and the 

minMFE of each randomization was recorded. The significance of observed structure vs the five 

randomizations was assigned using a Wilcoxon one-sided test with Benjamini-Hochberg 

correction in R.  

For plotting the location of lowMFE regions across features (Figs 2 & S4), we split each 

feature into 100 equally-sized bins across the length of the feature from 5’ to 3’ end and counted 

the number of < -40 kcal/mol regions overlapping each bin. To find motifs in lowMFE regions of 

different feature types, BED files from concatenated low MFE regions were extracted using 

BEDtools v2.27 getFASTA. These FASTA files  were fed into the MEME motif finder 

(v5.4.0)(Bailey & Elkan 1994) with the DNA alphabet in Classic mode (i.e., enrichment of 

sequences in a single reference sequence and no control sequence) for each feature category. We 

selected the top 10 overrepresented sequences.  

Separately, we used LinearPartition v1.0 (Zhang et al., 2020) to annotate miRNA-like 

regions in each feature. We extracted the sequence of each feature using BED tools getFASTA      

and ran LinearPartition with default arguments on each sequence. The base-pairing probability 

files generated by LinearPartition contain estimated pairing probabilities for each pair of likely-

pairing positions. We used these probabilities to infer the locations of miRNA-like hairpins by 

searching for consecutive runs of likely pairing bases in R using functions from the IRanges and 

GenomicRanges (Lawrence et al., 2013), data.table (Dowle & Srinivasan, 2023), and tidyverse 

(Wickham et al., 2019) packages. We focused on bases with >0.90 pairing probabilities and 

search for evidence of miRNA-lik hairpin structure based on the criteria of Axtell and Meyers 

(2018).  Specifically, we required LP-hairpins to be ≥21-nt long with <5 mismatched nucleotides 

(<3 of mismatches in asymmetric bulges). We did not place an upper limit on the length of 

predicted LP-hairpins, because we sought to find genomic regions with folding potentials equal 

to or greater than known miRNAs.  

 

Small RNA Library Analysis 

 Small RNA-seq libraries were downloaded using NCBI SRA tools and SRAExplorer 

(https://github.com/ewels/sra-explorer) from the sources indicated in Table S1. Adapters, 

regions with low quality, and low quality reads were trimmed from small RNA RNA-seq      

libraries using FastQC and cutadapt v0.39 (Bolger et al., 2014). Adapter sequences varied among 
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libraries, and so were identified and validated in each library using a custom bash script that 

searched for sets of known maize smRNAs of each length (21–24 nt) in each unprocessed library 

and confirmed the identity of the adapter sequence connected to each known smRNA sequence. 

The list of adapters derived for each library is included in Table S6. Trimmed reads were then 

filtered and split based on size matching 21, 22 and 24 nucleotides in length, creating three 

FASTQ files for each library. We identified the unique smRNA sequences, which we refer to as 

‘species’, following previous methods (Bousios et al., 2016, 2017).  

smRNA species were mapped using Bowtie 2 v2.4.2 (Langmead & Salzberg 2012) to the 

B73 genome, preserving only perfect alignments. SAM tools v1.10 (Danecek et al., 2021) was 

used to convert and sort the alignment output. BED tools bamtoBED was used to convert the 

sorted BAM file to BED files. smRNAs from each library were mapped separately for all three 

lengths, generating a total of 72 (3 sizes � 24 libraries) alignment files. Both uniquely and non-

uniquely mapping smRNAs were used to calculate the number of smRNA species corresponding 

to each genomic locus (Bousios et al., 2017), and strand was not taken into account. Thus, any 

given position in the genome can be overlapped by several smRNA species, up to two-times the 

length of the smRNA size class in question (21, 22, or 24). 

Bedtools was used to find intersections and coverage counts (per nucleotide) between the 

smRNA alignment BED files for each library and the MFE region bed files. Subsequently, the 

smRNA alignment BED files were split into two categories: alignments that intersected low (<-

40 kcal/mol) MFE regions and those that did not. Coverage and count files were subsequently 

generated that contained information of how many smRNA species aligned at each nucleotide, 

and coverage files contained a normalized count per nucleotide for classification. Normalization 

was performed by summing the counts and dividing by the length of the region in nucleotides. 

For correlations between smRNA species density vs. MFE measurements of features 

(Table 3), linear models of smRNA species per nucleotide as a function of secondary structure 

metrics (minMFE, meanMFE, etc) were fitted using the base R (v4.1.0) lm() function. To fit 

these models, smRNA species were summed across all 24 libraries for each feature so that 

observed smRNA species had an equal weight across libraries. These linear models can be 

expressed as:  

log(smRNA counts per kb across feature + 1) ~ MFE metric 
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To test the significance of differences in smRNA species density between high and low MFE 

regions within features, mixed effects models were fit for each smRNA size class using the R 

package lme4 (Bates et al., 2015). In these models, smRNA mapping counts from each library 

were not combined, meaning that each smRNA library:feature pair was counted individually. 

These mixed effects models can be expressed as:  

 

log(smRNA counts per kb across region + 1) ~ structure designation + (1|feature) 

 

Skew measurements (Fig 4) were calculated separately for each TE superfamily and 

genes as 
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For these calculations, feature-library pairs with zero smRNA species in either non-structured or 

structured regions were removed from each dataset. We further tested skew differences from 

zero using Wilcoxon one-sided tests in R. 

Autonomous vs non-autonomous designations for TEs were defined differently 

depending on TE type, but they were determined based on the presence or absence of open 

reading frames within the TEs, as identified by Stitzer et al. 2021 (downloaded from 

https://github.com/mcstitzer/maize_genomic_ecosystem). TIRs were considered autonomous if 

they contained sequence homology to a transposase, and helitrons were considered autonomous 

if they contained Rep/Hel, as per Stitzer et al. (2021).  

 

Methylation analyses 

 Pre-processed B73 genome-wide methylation data from Hufford et al. (2021) were 

downloaded from 

https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotati

on_Jan2021_release/DNA_METHYLATION_UMRs/DNA_methylation_coverage_bigwig_files

/NAM_methylation_coverage_on_B73v5_coordinates. These data originated from enzymatic 

methyl-seq (EM-seq) and were mapped against the B73 V5 reference. For this analysis, 
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coordinates of miRNA-like regions annotated using the B73 V4 reference genome were 

converted to the V5 reference using the EnsemblPlants CrossMap (v0.6.4) converter. 

The methylation data were downloaded as bigW     ig files; we converted these data to 

genome-wide coverage files by multiplying EM-seq coverage at each cytosine position by 

proportion of methylated and unmethylated reads at each position (yielding, for each cytosine, a 

number of methylated and unmethylated reads at that position). For each region with miRNA-

like structure, we calculated the weighted methylation level for each cytosine sequence context 

(CG or CHH) by dividing the number of methylation-supporting mapped cytosines by the total 

number of cytosines in the reference within that region (see Schultz et al., 2012). To find random 

control regions for comparison, we separated nucleotide positions in each feature into two 

groups: those that fell within miRNA-like regions and those that did not. For each miRNA-like 

region in each feature, we randomly assigned a region of equal size to that miRNA-like region 

but which did not overlap with the miRNA-like region. We did not consider methylation of 

miRNA-like regions in features where over half of the features fell within miRNA-like regions, 

because control regions could not be determined by this method.  

 

B73 RNA-seq analyses 

 B73 gene expression data were downloaded from the ATLAS expression database 

(www.ebi.ac.uk/gxa/) in transcripts per million (TPM) based on RNA-seq      data from 23 maize 

tissues (E-GEOD-50191)(Walley et al., 2016). The statistical significance of differences between 

expression of genes in different structure classifications was determined using unpaired t-tests 

between structured and unstructured genes, implemented with t.test() in R. Linear models of 

expression versus each measurement of secondary structure were separately fit for expression in 

each tissue type with lm() in R and graphed using ggplot2 (Wickham, 2016). These linear 

models can be expressed as:  

Log(Gene expression +1) ~ MFE metric 

 

For each of the downstream analyses, we focused on genes with Sorghum bicolor syntelogs. We 

relied on a list of syntelogs in Table S10 of Muyle et al. (2021).  

 

Comparative analyses among NAM founders 
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 Expression, ATAC-seq, SNP data and SV data for each NAM line were downloaded with 

B73 coordinates from CyVerse at 

https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotati

on_Jan2021_release (Hufford et al., 2021). Secondary structure predictions were performed in 

B73 assembly V4, so gene IDs were converted to V5 using the EnsemblPlants ID History 

Converter web tool (https://plants.ensembl.org/Zea_mays/Tools/IDMapper). Coordinates of TEs 

and structured regions were converted using the EnsemblPlants CrossMap (v0.6.4) converter 

with the B73_RefGen_v4 to Zm-B73-REFERENCE-NAM-5.0 parameter. Only genes shared 

across all lines were included.  

 Normalized expression data were downloaded in RPKM format from merged RNA-seq      

libraries from CyVerse at 

https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotati

on_Jan2021_release/SUPPLEMENTAL_DATA/pangene-files. Only data from genes shared 

among all lines (as determined by Hufford et al.) were included. These data include RNA-seq      

normalized across eight tissues in each line: primary root and coleoptile at six days after 

planting, base of the 10th leaf, middle of the 10th leaf, tip of the 10th leaf at the Vegetative 11 

growth stage, meiotic tassel and immature ear at the V18 growth stage, anthers at the 

Reproductive 1 growth stage. Details for how these data were normalized can be found in 

Hufford et al., (2021). 

 The coefficient of variation (CV) of expression was calculated for each gene between the 

26 lines using the normalized RPKM expression data from Hufford et al. (2021). For each gene, 

CV was defined as the standard deviation of its expression across lines divided by its mean 

normalized across lines. We calculated CV using the sd() and mean() functions in base R. We 

plotted CVs between categories of structure (RF-structured and RF-unstructured) using ggplot2 

(Wickham 2016) and determined statistical significance of differences between categories using 

unpaired t-tests in R. We measured these differences in two different ways: first, using all genes 

and, second, removing genes with CV = 0 (920 genes, 3.3% of genes). We also built a linear 

model with lm() in R to correlate the magnitude of gene expression in B73 with the CV of that 

gene across lines. This linear model can be expressed as:  

 

log(B73 expression + 1) ~ NAM line CV 
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 We also measured epigenetic and genetic features across the NAM lines, and tracked 

their overlap with miRNA-like regions. For the former, we concatenated ACRs that overlapped 

positions between lines, producing a set of merged ACRs. We produced these merged sets using 

the R libraries IRanges and GenomicRanges (Lawrence et al., 2013). We extracted the positions 

of SNPs from the filtered VCF file from Hufford et al. (2021). The expected overlap was 

calculated as the proportional of genic space taken up by low MFE regions * the total length of 

features. We assessed overlap between ACRs/SVs/SNPs and miRNA-like regions using 

GenomicRanges in R. Custom scripts for these analyses can be found at 

https://github.com/GautLab/maize_te_structure, and additional supplementary files can be found 

at 

https://figshare.com/projects/siRNAs_and_secondary_structure_in_maize_genes_and_TEs/1507

14.  
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FIGURE LEGENDS 

Figure 1:  Characteristics of miRNA-like secondary structure across two methods.  (A) A 

schematic contrasting the two prediction methods for a genic region on C     hromosome 2.  The 

LinearPartition (LP) method focuses on identifying small regions with hairpin characteristics, 

while the RNAfold method focuses on regions with low Minimum Free Energy (MFE).  This 

example illustrates lowMFE regions in red, with overlapping LP-hairpins in blue.  Note that 

lowMFE regions exceed 110 bp, because they represent the concatenation of overlapping 

windows with MFE < -40 kcal/mol. (B) The correlation between meanMFE and Qnorm based on 

39,179 genes. (C) The distributions of three summary statistics—minMFE, meanMFE and Qnorm 

—across seven feature categories. In the key, helitrons correspond to DHH elements (see Table 

2 for the three letter designations); LTRs consist of RLC, RLG and RLX; LINEs are the RIL and 

RIT elements; SINEs are RST;  and terminal repeat elements consist of DTA, DTC, DTH, DTM, 

and DTT elements. 

 

Figure 2. Landscapes of miRNA-like regions across feature types. Each row represents a 

metaprofile that combines data from all members of each feature type, based on structured 

members. Features were divided into 100 equally sized bins from the 5’ end to the 3’ end.  The 

left column shows the number of features with lowMFE (<-40 kcal/mol) windows, while the 

right column shows the number of features with LP hairpins. A peak in the landscape represents 

a region that commonly contained miRNA-like structures. All panels share the same x-axis, 

which is represented proportionally across the length of features, from 0.00 (5’ end) to 1.00 (3’ 

end).  This figure shows these locations for a subset of the 15 categories in Table 2; the 

remainder of the categories are shown in Figure S4.  

 

Figure 3. The distribution of skew for smRNA mapping in different feature categories.  Skew is 

presented on the x-axis. Height on the y-axis represents the Gaussian estimated kernel density of 

skew values.  Skew measures the relative enrichments of smRNAs in miRNA-like regions 

compared to non-miRNA regions and ranges from 1.0 (enrichment in miRNA-like regions) to -

1.0 (enrichment in non-miRNA-like regions.  All panels use the same x-axis. The dotted vertical 

line represents zero where smRNA density is not skewed to either low or high MFE regions. A. 

Skew for retrotransposons for 21, 22 and 24-nt smRNAs, separately for Copia (RLC), Ty3 
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(RLG) and unknown retrotransposons (RLX). B. Skew for DNA transposons, with names for the 

three letter codes provided in Table 2. The dashed lines represent skew for putatively 

autonomous elements, while solid lines represent non-autonomous elements. C. Skew measured 

in genes. These graphs are based on LP-hairpins, but analogous for lowMFE regions and all 

feature categories are presented in Figure S7.  

 

Figure 4. Methylation at LP-hairpins. The left column shows methylation in the CG context 

(mCG) and the right shows methylation in the CHH context (mCHH). Each row represents a 

different feature type. The blue lines summarize the patterns of methylation in the hairpin 

(variable sizes, median = 25 nt) across all hairpins in a given feature type (e.g., all TIR hairpins, 

gene hairpins, etc.) and their flanking regions, divided into 40 nonoverlapping 100 bp windows. 

We assigned a control window to each hairpin in the dataset by choosing a random window of 

the same size as the hairpin within the same element. The red line corresponds to methylation 

patterns around these randomized control loci. 

 

Figure 5. Expression between structured and unstructured genes, as defined by RNAfold 

analysis, in B73.  The expression data are based on combined data across 23 tissues. A. 

Difference in the overall magnitude of expression in all structured (n=27,034) vs unstructured 

(n=5054) genes and in structured  vs. unstructured genes with a syntelog in S. bicolor.  The box 

plots report the range of the middle quartiles, whiskers report the range, and lines represent the 

median.  B. Expression as a function of minMFE for structured (dashed line) and unstructured 

genes with a S. bicolor syntelog (solid line).  Both lines report the linear regression; both slopes 

are highly significant, as indicated by P-values on the figure.  C. The coefficient of variation 

(CV) of gene expression across the 26 NAM parents compared between structured vs 

unstructured genes with a S. bicolor syntelog. The two categories differ significantly (P < 2.22 x 

10-16).  The graph also reports CV among B73 tissues, which does not differ significantly 

between structured and unstructured genes (P = 0.32). D. smRNA mapping to structured and 

unstructured genes and for three smRNA lengths. For all three lengths, the difference is 

significant (P < 2.22 x 10-16).  The violin plots show the distributions of smRNA counts, and the 

boxplots are formatted the same as in (A.) E. Epigenetic and genetic features in lowMFE regions 

of genes. The plots plot the number of expected and observed features overlapping (or not-
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overlapping) the lowMFE region.  For example, the number of ACRs (left graph) overlapping 

lowMFE regions is very similar to the number expected, based on the distributions along genes.  

In contrast, the numbers of observed SVs (middle) and SNPs (right) are highly underrepresented 

in lowMFE regions.  
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Table 1: Terms defined in the text and that are used to describe and characterize miRNA-like 
regions.  
 
 

Term Method Explanation 

minMFE RNAfold The Minimum Free Energy (MFE) of the 110 bp window 
with the lowest MFE score within an individual TE or gene 
sequence  

meanMFE RNAfold The average estimated MFE across all 110 bp windows in 
any TE or gene sequence 

lowMFE RNAfold A region or regions of a TE or gene that is defined by 
concatenating overlapping windows of MFE< -40/kcal/mol 

RF-structured RNAfold Designates any TE or gene that has a significantly lower 
minMFE value than randomized sequences 

LP-hairpin LinearPartition Putative hairpin structure identified by combing base-
pairing probabilities from LinearPartition with miRNA 
hairpin criteria 

Qnorm LinearPartition The LinearPartition function reports Q, a summary of 
secondary structure across an entire sequence. Qnorm adjusts 
Q by the length of the sequence   

skew Both Measures the relative proportion of distinct smRNAs that 
map to miRNA-like regions of a sequence compared to the 
remainder of that sequence.  Ranges from -1.0 to 1.0, 
where 1.0 denotes that smRNAs map only to miRNA-like 
regions.    

 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Fifteen feature categories and accompanying statistics.  The statistics include the 
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number of individual features in each category, based on two annotation versions for TEs, and 
the percentage of features that have miRNA like structure (structured) based on RNAfold or 
detectable LP-hairpins.  
 

Feature type No1 RF2 LP3 No4  LP 

Genes  39,179 69.00% 29.82% 39,179 29.82% 

mRNA  133,812 64.80% 5.02% 133,812 5.02% 

miRNA precursor 107 71.00% 66.36% 107 66.36% 

Helitrons/DHH  49,235 84.00% 13.00% 22,339 6.43% 

hAT/DTA  5,602 59.60% 4.15% 5,096 4.28% 

CACTA/DTC  1,264 79.00% 32.52% 2,768 41.76% 

PIF-Harbinger/DTH  4,971 38.80% 17.57% 63,216 6.22% 

Mutator/DTM  1,319 60.30% 62.82% 928 57.54% 

Tc1-Mariner/DTT  458 43.90% 16.69% 67,533 6.75% 

L1 LINE/RIL  36 0.00% 0.00% 477 2.73% 

Rte LINE/RIT  29 0.00% 0.00% 296 3.04% 

Copia/RLC  45,009 98.20% 58.04% 44,242 55.88% 

Ty3/RLG  72,976 88.00% 40.57% 70,165 38.47% 

Unclassified-LTR 
/RLX  

18,457 85.90% 38.18% 16,205 32.98% 

SINEs/RST  1,031 0.00% 1.74% 892 1.46% 
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TOTAL5 373,485 286,744 90,088 467,255 182,749 

 
1 The number of features in each category in the Jiao et al. (2017) annotation 
2 The percentage of RF-structured features in each category, as determined by RNAfold analyses and 

permutations.  
3 Percentage of features in each category that contained at least one LP-hairpin as inferred from 

LinearPartition base pairing probabilities and analyses. 
4 The number of features in each TE superfamily based on the updated annotation by Stitzer et al. (2021).  
5 Total refers to the total number (No.) of sequences in each annotation set or it refers to the number of 

sequences that contain miRNA-like regions based on the RF-structured or LP-hairpin criteria  
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Table 3: Correlation value (with FDR corrected p-value in parentheses) between secondary 
structure summary statistics and numbers of smRNA species across all 373,485 features.  
 

Summary  
Metric 

21-nt smRNA 22-nt smRNA 24-nt smRNA 

minMFE 0.091 (0.00)  0.103 (0.00) 0.074 (0.00) 

meanMFE 0.017 (0.00) 8.6 x 10-3 (0.00) 0.004 (5.01 x 10-227)  

Qnorm 0.101 (0.00) 0.133 (0.00) 0.089 (0.00) 

 

 

 

 

 












