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RNA molecules carry information in their primary sequence and also their secondary structure. Secondary structure can confer important functional information, but it is also a signal for an RNAi-like host epigenetic response mediated by small RNAs (smRNAs). In this study, we used two bioinformatic methods to predict local secondary structures across features of the maize genome, focusing on small regions that had similar folding properties to pre-miRNA loci. We found miRNA-like secondary structures to be common in genes and most, but not all, superfamilies of RNA and DNA transposable elements (TEs). The miRNA-like regions mapped a higher diversity of smRNAs than regions without miRNA-like structure, explaining up to 27% of variation in smRNA mapping for some TE superfamilies. This mapping bias was more pronounced among putatively autonomous TEs relative to non-autonomous TEs. Genome-wide, miRNA-like regions were also associated with elevated methylation levels, particularly in the CHH context Among genes, those with miRNA-like secondary structure were 1.5-fold more highly expressed, on average, than other genes. However, these genes were also more variably expressed across the 26 Nested Association Mapping founder lines, and this variability positively correlated with the number of mapping smRNAs. We conclude that local miRNA-like structures are a nearly ubiquitous feature of expressed regions of the maize genome, that they correlate with higher smRNA mapping and methylation, and that they may represent a trade-off between functional need and the potentially negative consequences of smRNA production.

INTRODUCTION

In a highly simplified view, plant genomes consist of transposable elements (TEs) and genes. Both of these components use RNA to transmit coding information between one state (DNA) to another (protein). These RNA molecules carry information in their primary sequence of bases but also by their shape. This shape is primarily defined by the secondary structure of the transcript, which is a product of the intramolecular hydrogen bonds between RNA bases.

Secondary structure can mediate the relationship between genotype and phenotype, because it affects the localization [START_REF] Bullock | A′-form RNA helices are required for cytoplasmic mRNA transport in Drosophila[END_REF], splicing [START_REF] Buratti | Influence of RNA secondary structure on the pre-mRNA splicing process[END_REF], and translation [START_REF] Ding | In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features[END_REF] of mRNAs. As a result, secondary structure influences nearly every processing step in the life cycle of transcripts [START_REF] Vandivier | The conservation and function of RNA secondary structure in plants[END_REF].

Secondary structures can have another effect: they act as a template for small RNA (smRNA) production [START_REF] Carthew | Origins and Mechanisms of miRNAs and siRNAs[END_REF][START_REF] Li | Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome[END_REF][START_REF] Hung | The initiation of RNA interference (RNAi) in plants[END_REF]. This production takes place through the binding of Dicer-like proteins (DCL) [START_REF] Axtell | Classification and comparison of small RNAs from plants[END_REF][START_REF] Fukudome | Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis[END_REF]) that degrade double-stranded RNA (dsRNA). In other words, when single-stranded RNA (ssRNA) forms a hairpin-like secondary structure, DCLs can recognize structured ssRNA as dsRNA and then degrade the dsRNA to produce smRNAs. This mechanism is essential for the biogenesis of microRNAs (miRNAs), a class of smRNAs that are generally ~22-nt in length and that are derived from longer pre-miRNA transcripts with strong hairpin secondary structures [START_REF] Carthew | Origins and Mechanisms of miRNAs and siRNAs[END_REF]. However, this process is not limited to miRNAs, because 21-24-nucleotide RNAs can also originate from the secondary structure of other non-miRNA transcripts [START_REF] Li | Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome[END_REF][START_REF] Slotkin | Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays[END_REF]. These small RNAs can, in turn, cause transcripts to enter into the RNA interference (RNAi) pathway [START_REF] Baulcombe | RNA silencing in plants[END_REF][START_REF] Li | Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome[END_REF][START_REF] Cuerda-Gil | Non-canonical RNA-directed DNA methylation[END_REF][START_REF] Hung | The initiation of RNA interference (RNAi) in plants[END_REF]. These observations suggest that sufficiently structured mRNAs, like miRNAs, form secondary structures that act as dsRNA substrates for degradation into smRNAs .

Little is known about how host genomes initially distinguish TEs from genes and target them for smRNA production, but some studies suggest that hairpin structures in TE transcripts act as an immune signal for de novo silencing of certain TEs [START_REF] Slotkin | Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays[END_REF][START_REF] Sijen | Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi[END_REF]Bousios et al., 2016;[START_REF] Hung | The initiation of RNA interference (RNAi) in plants[END_REF]. One such example is Mu-killer, a locus that generates small RNAs and thereby silences MuDR elements (a DNA transposon) in maize (Zea mays ssp. mays) [START_REF] Slotkin | Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays[END_REF]. Mu-killer consists of a truncated, duplicated, and inverted copy of MuDR that, when transcribed, creates a hairpin secondary structure and is subsequently cut into trans-acting small-interfering RNAs (siRNAs) that target active MuDR transcripts. Another potential example comes from Sirevirus long terminal repeat (LTR) retrotransposons in maize (Bousios et al., 2016), which occupy 21% of the maize B73 genome (Bousios et al., 2011). In this study, the authors mapped smRNAs to full-length Sirevirus copies, reasoning that loci important for host-plant recognition and silencing should be associated with a larger number of smRNA sequences than other regions of the elements. Indeed, an excess of smRNAs mapped to regions that had strong predicted secondary structure due to clusters of palindromic motifs (Bousios et al., 2016). These studies present evidence that secondary structure helps initiate silencing of some TEs. In fact, one review has argued that the only characterized pathway to de novo smRNA production relies on RNA secondary structure [START_REF] Hung | The initiation of RNA interference (RNAi) in plants[END_REF]. [It should be noted, however, that some phased siRNAs are caused by miRNA cleavage events that apparently do not require secondary structure [START_REF] Creasey | miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis[END_REF].]

If RNA sequences form miRNA-like hairpin structures, leading to the production of smRNAs, two important questions must be addressed. First, how common are miRNA-like secondary structures across the immense diversity of plant TEs? One prominent review of small RNAs argued that there is an urgent need to annotate hairpins that may have the capacity to act as a template for smRNA production [START_REF] Axtell | Classification and comparison of small RNAs from plants[END_REF], but this need has not yet been met. Thus far, the importance of hairpin structure for de novo silencing has been implicated only in a few individual TE families. Second, secondary structure is not unique to TEs and exists within genes too. How often do genes have such structure, and is there evidence that genes form dsRNA substrates in these regions, too? [START_REF] Li | Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome[END_REF] documented a positive relationship between stability of mRNA structure and small RNA abundance for Arabidopsis thaliana genes, suggesting that genes do form dsRNA substrates. Yet these genes are still expressed, potentially due to countermeasures that moderate the potential effects of smRNAs on genes, including hypothesized protection against RNAi caused by high GC content [START_REF] Hung | The initiation of RNA interference (RNAi) in plants[END_REF] and active gene demethylation [START_REF] Gong | ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[END_REF][START_REF] Zhang | Active DNA demethylation in plants: 20 years of discovery and beyond[END_REF]. Although it has long been thought that miRNA loci may be derived from TE sequences (Roberts et al., 2014), there has not yet been, to our knowledge, a genome-wide comparison of miRNA-like secondary structures among genes and TE superfamilies.

In this study, we predict secondary structures in genes and TEs of the maize B73 genome.

Secondary structure can be empirically measured through sequencing techniques such as DMSseq and SHAPE-seq [START_REF] Yang | New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants[END_REF], which is applied to the transcribed component of whole genomes [START_REF] Ding | In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features[END_REF][START_REF] Ferrero-Serrano | Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis[END_REF]. However, this approach requires that the sequences of interest are expressed, preventing comprehensive investigation of plant TEs, most of which are silent. These methods are also difficult to perform on large genomes with high repeat content, so that genome-wide 'structurome' sequencing has thus far only been completed on plants with relatively small genomes, like Arabidopsis [START_REF] Ding | In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features[END_REF][START_REF] Bevilacqua | Genome-Wide Analysis of RNA Secondary Structure[END_REF] and rice, Oryza sativa [START_REF] Ritchey | Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo[END_REF]. The second approach, which we adopted here, relies on bioinformatic predictions based on genome sequence data. Secondary structure prediction is a subject of active research, and methods vary in their predictions and accuracy.

Here we employ two separate methods that rely on distinct algorithms to identify regions with properties similar to miRNA-like hairpins. Briefly, the first uses RNAfold [START_REF] Lorenz | ViennaRNA Package 2.0[END_REF], which estimates the minimum free energy (MFE) of the most likely secondary structure of a given sequence [START_REF] Nussinov | Fast algorithm for predicting the secondary structure of single-stranded RNA[END_REF][START_REF] Zuker | Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information[END_REF]. Following precedence, we apply RNAfold in a windows-based approach. The second relies on a newer tool, LinearPartition [START_REF] Zhang | LinearPartition: linear-time approximation of RNA folding partition function and base-pairing probabilities[END_REF], that calculates a partition function for a complete (i.e., not windows-based) RNA sequence. The LinearPartition function includes the sum of equilibrium constants for all possible secondary structures for a sequence (i.e, not just the most likely structure). We focus specifically on detecting regions with miRNA-like secondary structures, because miRNA are known to fold and thereby act as a dsRNA substrate for Dicer-like mechanisms.

.

After performing computational annotation to predict miRNA-like regions in the genes and TEs of maize, we investigate the relationship between these regions to smRNAs, methylation levels, chromatin accessibility and, where applicable, gene expression (Fig S1).

With these data, we address four sets of questions. The first focuses on predicted secondary structure: How often do TEs and genes contain regions of miRNA-like regions? And are these regions in specific locations? The second set of questions focuses on the relationship between secondary structure and smRNAs. Do miRNA-like regions consistently map more smRNAs, and, if so, of what size? The question of size is important because it is thought that dsRNA degradation via Dicer feeds into post-transcriptional gene silencing (PTGS) pathways, which tends to rely on 21-and 22-nt smRNAs. In contrast, pathways that lead to transcriptional gene silencing (TGS) tend to rely more often on 24-nt smRNAs, although these size distinctions are neither strict nor universal [START_REF] Fultz | Exogenous Transposable Elements Circumvent Identity-Based Silencing, Permitting the Dissection of Expression-Dependent Silencing[END_REF][START_REF] Panda | Arabidopsis RNA Polymerase IV generates 21-22 nucleotide small RNAs that can participate in RNA-directed DNA methylation and may regulate genes[END_REF]. Our third set of questions focuses on the potential genomic implications of hairpins and smRNAs. Do these miRNA-like regions have higher methylation levels or specific chromatin properties? Finally, we assess the effects of miRNA-like secondary structures on gene expression by including data from 26 parents of the maize Nested Association Mapping (NAM) lines [START_REF] Mcmullen | Genetic properties of the maize nested association mapping population[END_REF][START_REF] Hufford | De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[END_REF].

RESULTS

Two methods to predict miRNA-like secondary structures and their comparison

We adopted two complementary bioinformatic methods to identify miRNA-like hairpin regions (Fig 1a). The details of their implementation are given in the Materials and Methods.

Here we provide an overview of the methods and compare their performance. To aid the reader, we also provide terms that are used to characterize analyzed sequences (Table 1).

RNAfold:

The first method applied RNAfold to sliding windows of 110 nt, following previous work [START_REF] Wang | Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes in Maize[END_REF]Bousios et al., 2016). The 110 nt windows were originally designed by Wang and co-authors to include regions that map 20-25 nt small RNAs, along with ~90 bp of flanking sequence [START_REF] Wang | Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes in Maize[END_REF]. This approach established that pre-miRNA windows of this size typically have MFEs <-40 kcal/mol [START_REF] Wang | Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes in Maize[END_REF]; we used that empirical cutoff to define windows of secondary structure with miRNA-like stability. By focusing on regions of similar size to pre-miRNA transcripts and by employing their empirical threshold cutoff of -40 kcal/mol, we in effect used miRNA loci as a 'positive control' for ssRNAs that are expected to form secondary structures.

We applied RNAfold across features of the B73 reference maize genome (version 4.0) [START_REF] Jiao | Improved maize reference genome with single-molecule technologies[END_REF]. The features included miRNA precursor loci, TEs and genes. The TEs included all families annotated in [START_REF] Jiao | Improved maize reference genome with single-molecule technologies[END_REF], including Long Terminal Repeat elements (LTRs), Terminal Inverted Repeat elements (TIRs), Helitrons, Long Interspersed Nuclear Elements (LINEs), and Short Interspersed Nuclear Elements (SINEs). Within these TE types, we focused on superfamily categories [START_REF] Wicker | A unified classification system for eukaryotic transposable elements[END_REF], which distinguished (for example) between Ty3/RLG and Copia/RLC LTR elements and among TIR elements like Mutators/DTM and Harbingers/DTH. [Note that throughout the paper we refer to TE superfamilies by their names and also their three-letter designation from Wicker et al., 2007 (Table 2)]. Notably, these annotations do not typically include miniature inverted terminal repeats (MITEs), a class of small non-autonomous TEs that often contain strong secondary structures. For genes, we studied both the annotated gene-which included untranslated regions (UTRs), exons, introns-as well as mature transcripts that lacked introns. Altogether, with this method we examined 373,485 features representing 15 distinct feature categories (Table 2). Because we used sliding windows, each nucleotide within a feature corresponded to one sliding window (for all but the final 109 nucleotides of a sequence). This approach was a massive bioinformatic undertaking, requiring an MFE calculation for a total of 3.56 billion windows.

Because each feature consisted of many RNAfold windows, we used summary statistics to characterize local secondary structure in each feature (Table 1). These included the minimum MFE (minMFE), which was the MFE of the window with the strongest predicted secondary structure for each feature, and mean MFE (meanMFE), which averaged MFE across windows within a feature. For each feature, we also concatenated overlapping windows with MFE < -40 kcal/mol, designating these as lowMFE regions (Table 1; Fig 1a,b).

One concern about using MFE as a quantitative statistic is that it varies by G:C composition (e.g., higher G:C content tends to induce more stable secondary structures) and primary sequence (e.g., whether the order of bases forms palindromes and stem-loop structures).

Because we were primarily interested in secondary structure resulting from the latter, we controlled for base composition by randomizing the sequence of each feature five times and then repeating MFE predictions each time, requiring another 17.8 billion (=5 x 3.56 billion) window computations. By randomizing, we identified features that had more stable secondary structures than expected given their nucleotide composition. We then classified a feature as "RFstructured" (RF for RNAfold) when it contained windows with MFEs < -40 kcal/mol and also had a minMFE significantly lower than permutations (p < 0.05, one-sided Wilcoxon test, Benjamini and Hochberg corrected) (Table 1). Conversely, we labeled features as "unstructured"

when their minMFE was not significantly lower than that of randomized sequences. [We report the differences between randomized and observed minMFE values for each feature category in 76% (286,774 of 373,485) of features were RF-structured -i.e., contained regions of miRNA-like structures by this criteria (Table 2).

Fig S2.] Overall,
LinearPartition: The second prediction method was based on LinearPartition [START_REF] Zhang | LinearPartition: linear-time approximation of RNA folding partition function and base-pairing probabilities[END_REF]. This approach did not rely on sliding windows to infer local secondary structure but analyzed the complete sequence of each feature. The advantage of this was that each feature required only one computational analysis, vastly improving computational burden and speed.

Accordingly, we applied this method to the same set of 373,485 features as RNAfold but also to a larger, updated version of maize TE annotations [START_REF] Stitzer | The genomic ecosystem of transposable elements in maize[END_REF], resulting in an expanded dataset of 467,255 features (Table 2).

For each sequence, LinearPartition calculated the partition function, summarized by the parameter Q. For each nucleotide site within a feature, the method calculated a pairing probability between all nucleotides in the feature. We focused on nucleotide pairs with high probabilities of pairing (> 0.90) and searched within each feature for runs of nucleotides that matched widely-accepted miRNA annotation guidelines for plants [START_REF] Axtell | Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data[END_REF].

These guidelines defined hairpins consisting of consecutive stretches of ≥21-nucleotides that were likely to pair (>90% probability) with <5 mismatched nucleotides, including <3 mismatches in putative asymmetric bulges (i.e., places where the gap on one side of a hairpin was > the gap on the other side of the hairpin)(Fig. 1a; see Methods for details). We called sequences that fit these criteria "LP-hairpins" (Table 1).

Comparing the methods: It is worth emphasizing similarities and differences between the two methods. Both focused on identifying regions of strong local secondary structures within features, based on known properties of miRNA-like regions. The MFE method focused on regions of high local structure (MFEs < -40 kcal/mol), without reference to the properties of those structures, like the length of stem loops. In contrast, LinearPartition focused on regions along the complete sequence that matched specific length and size criteria. Because the two methods utilized different miRNA-like properties, we did not expect them to correlate perfectly throughout the genome.

Yet, they did yield significant consistencies and overlaps. For example, we contrasted the two entire-sequence summary statistics-i. Finally, we compared the performance of the two methods based on a control dataset: annotated pre-miRNA loci from the B73 reference (n=107; Table 2). Most (71.0%) of this set were RF-structured (Table 2), indicating that the MFE threshold defined by [START_REF] Wang | Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes in Maize[END_REF] generally conformed to existing annotations. Similarly, most (66.36%) of the annotated pre-miRNA loci had LP-hairpins (Table 2).

The prevalence and locations of miRNA-like secondary structures

Prevalence of miRNA-like secondary structure across TE superfamilies: Using both methods of prediction, we detected substantial variation in the prevalence of miRNA-like secondary structures among TE categories. Some TE superfamilies contained little evidence of structure. For example, the LINE (RIL and RIT) elements had no RF-structured elements and also had no detectable LP-hairpins (Table 2). Because the 2017 annotation from Jiao et al.

(2017) contained few (n=65) RIL and RIT elements, we repeated the LinearPartition analysis with an expanded set of n=773 elements from [START_REF] Stitzer | The genomic ecosystem of transposable elements in maize[END_REF], finding again that only a small subset (~3%) contained hairpins (Table 2). SINEs/RST also had very low incidences of miRNAlike structure, with no RF-structured elements and <2% containing LP-hairpins (Fig. 1b). In contrast to LINEs and SINEs, LTR elements generally had abundant miRNA-like structures. For example, 98% of Copia/RLC elements had RF-structure and 58.0% had LP-hairpins (Table 2;

Fig 1b).

We note, however, that LTR elements were longer on average than the other TE subfamilies, and also that there was an overall negative relationship between feature length and minMFE across all 15 feature categories (P < 2.2 x 10 -16 , R2 = 0.20, linear model; Fig S3 Biases in the locations of miRNA-like regions: We next examined the locations of miRNA-like secondary structure across the length of each feature type. For these analyses, we focused only on the 286,744 features that were predicted to have RF-structure (Table 2). For reflecting the ~11 nt stem-loop structure common to Helitron 3' ends [START_REF] Kapitonov | Helitrons on a roll: eukaryotic rolling-circle transposons[END_REF][START_REF] Xiong | HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes[END_REF]. The take-home messages were that: i) some superfamilies -like Helitron/DHH, Mutator/DTM and Copia/RLC -exhibited notable biases in the locations of miRNA-like regions and ii) these inferences were similar between the two prediction methods.

Motifs within miRNA-like structures: Distinct sequence motifs could define lowMFE regions. For each TE superfamily, we extracted all the sequences of lowMFE regions and input them into the Multiple EM for Motif Elicitation (MEME) suite motif discovery tool [START_REF] Bailey | Fitting a mixture model by expectation maximization to discover motifs in biopolymers[END_REF], which finds overrepresented sequence motifs within a set of sequences. As expected (Bousios et al., 2016), we recovered the previously identified consensus Sirevirus This observation could reflect independent emergence of these motifs in the two superfamilies or frequent insertion of one type of element into the other.

miRNA-like secondary structure within genes: A higher percentage (69.0%) of genes were RF-structured than contained LP-hairpins (29.8%) (Table 2). When we examined the distributions of miRNA-like structures across genes and their mature transcripts, we found that the two methods differed in their predictions. In 85% of genes (Fig 2), lowMFE regions overlapped the 5' UTRs, where secondary structures are known to participate in ribosome binding and translation [START_REF] Babendure | Control of mammalian translation by mRNA structure near caps[END_REF][START_REF] Matoulkova | The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells[END_REF]. In contrast, LPhairpins were fairly uniformly distributed across gene lengths (Fig 2), with perhaps a slight bias towards the middle of the gene as documented previously in Arabidopsis [START_REF] Li | Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome[END_REF]. Most (76.19%) of these LP-hairpins were found in introns, so that far fewer (5.02%) of mature mRNA transcripts had LP-hairpins (Table 2). The lowMFE results demonstrate that 5' UTRs commonly have regions of local secondary structure but infrequently contained LP-hairpins.

Comparing miRNA-like secondary regions to smRNA diversity

Correlations between miRNA-like regions and smRNA mapping abundance: Under the dsRNA-substrate model, genomic regions of high secondary structure should have homology to more smRNAs than non-structured regions. To test the hypothesis, we mapped 21, 22, and 24-nt smRNAs from up to 42 published smRNA libraries (see Methods; Table S1) to the B73 maize genome, and then counted the number of distinct smRNA sequences (also known as 'smRNA species') [START_REF] Bousios | Considerations and complications of mapping small RNA high-throughput data to transposable elements[END_REF] that mapped with 100% identity to genomic regions. Because of their different functions [START_REF] Axtell | Classification and comparison of small RNAs from plants[END_REF][START_REF] Borges | The expanding world of small RNAs in plants[END_REF], we examined smRNAs in the three size classes (21, 22, and 24 nt) separately. Two caveats should be mentioned regarding these small RNAs. First, although we suspect many of these small RNAs to be hairpin-derived RNAs (hpRNAs) [START_REF] Axtell | Classification and comparison of small RNAs from plants[END_REF], we do not know their origin and refer to them by the more general 'smRNA' term for clarity and concision. Second, we do not know that each smRNAs identified here function as siRNA, merely that they are the correct size to act as a canonical siRNAs.

We first examined the relationship between miRNA-like regions and smRNAs using a linear model across all 373,485 features of the Jiao et al. ( 2017) annotation set, using correlation statistics. The correlation coefficient was generally small-e.g., R 2 was ~0.1 for models incorporating minMFE-but highly significant (Table 3). Moreover, the results were significantly positive for all RNAfold and LinearPartition summary metrics (Table 3).

Extending this approach separately to the 15 individual feature categories, three smRNA lengths, and three metrics (minMFE, meanMFE and Q norm ), 82% of correlations were significant after false discovery rate (FDR) correction (Table S2).

Overall, these results indicate a weak but consistent relationship between presence of miRNA-like secondary structure in features and the number of smRNAs that map to those features. We did find some interesting outliers, however. First, the relationship between smRNAs and minMFE statistics were generally not significant for miRNAs (Table S2), perhaps reflecting small sample sizes (n=107) or perhaps the fact that miRNA loci generate few distinct smRNAs, despite being highly expressed. Similarly, some LINE comparisons also were typically not significant; LINEs were heavily saturated with for all three smRNA size classes (Fig S6) but few had detectable miRNA-like regions. Second, the estimated linear relationships were typically higher for 21 and 22-nt smRNA than for 24-nt smRNA, which is consistent with their role during the initiation of silencing (Table 3&S2) and with the observation that DCL-like processing of dsRNA substrates typically yield 21-and 22-nt smRNAs. In genes, for example, correlations between minMFE and 21-22 nt smRNAs were again weak but highly significant (R 2 = 0.01, P < 4.12 x 10 -106 ), but the correlation with 24-nt smRNAs was not (R 2 = 8.35x 10 -05 , P = 0.072)(Table S2).

Measuring smRNA abundance with skew: We also examined the relationship between miRNA-like structures and smRNA counts within features by measuring smRNA mapping skew, which measures the ratio of smRNA mapping in miRNA-like vs. non-miRNA-like regions (Table 1 andMethods). We defined skew to be zero when smRNA mapping was equivalent on a per nucleotide basis between miRNA-like vs. non-miRNA-like regions, and skew ranged from -1.0 to 1.0. When it was positive, smRNA mapping was more abundant in miRNA-like regions.

Generally, TEs in all superfamilies exhibited positive skews, reflecting the tendency for were confirmed by a linear mixed effects models, because all three smRNA lengths were significantly higher in Copia/RLC LP-hairpin regions with all three metrics (i.e., minMFE, meanMFE and Qnorm; all P-values < 1.23 x 10 -04 ; Table S2;

Fig S8 & S9). Overall, LTR
elements had more obvious skew than DNA elements, although five of six DNA superfamilies had positive skews for all three smRNA lengths (Fig. 3a). These observations were largely supported by mixed effects models (Table S3 & S4), where all TE superfamilies showed significantly higher smRNA mapping to both LP-hairpin and lowMFE regions at all three smRNA lengths (P-value range 9.3 x 10 -04 in Rle/RIT elements to 0.0 in many LTRs, TIRs, and helitrons).

We also examined skew within genes. Genes had homology to far fewer smRNA species than most TE types-nearly 100-times less in most cases (Fig S6)-but smRNA species abundance was roughly equivalent between genes and their transcripts. Although genes mapped fewer smRNAs overall, they had stronger skews than any of the TE superfamilies. For example, roughly three-fold more smRNAs (of all size classes) mapped to lowMFE in genes, compared to the 1.5-and 1.3-fold difference in CACTA/DTC transposons and Copia/RLC retrotransposons.

This effect was more pronounced for LP-hairpins. For example, LTR retrotransposons (which includes the RLC, RLG and RLX superfamilies) had a 2.9-fold greater smRNA density in LPhairpins compared to non-hairpin regions, but genes had a ~89-fold greater density. Consistent with these observations, linear mixed effect models were significant for higher smRNA abundance in lowMFE regions and LP-hairpins of genes for all three smRNA lengths (P ≅ 0; Finally, we included organellar genes as negative controls, because they are typically sequestered from the cytosolic complexes like DCL and RdR6 and hence should not exhibit any skew. smRNAs mapped to organellar genes at low levels, but as expected did not exhibit any skew (Fig. S10).

Expression matters: putatively autonomous vs. non-autonomous TEs

Non-autonomous DNA transposons are not transcribed (except when they are within expressed UTRs or introns), and therefore RNA secondary structure generally cannot drive the creation of smRNAs for these elements [START_REF] Martínez | Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell[END_REF]. We therefore predicted that there could be a difference in skew between autonomous and non-autonomous DNA elements. To Mutator/DTM, most of which are non-autonomous in maize [START_REF] Stitzer | The genomic ecosystem of transposable elements in maize[END_REF]. Note that all Mariner/DTT elements were non-autonomous, which may relate to their overall lack of skew

(Fig 3b).

Methylation peaks in miRNA-like regions

One function of smRNAs is to recruit methylases, leading to RNA-directed DNA methylation (RdDM). We reasoned that miRNA-like structures should be more highly methylated because they map more smRNAs. We further predicted that this effect should be primarily detected in the CHH context, because mCHH is deposited de novo each generation [START_REF] Law | Establishing, maintaining and modifying DNA methylation patterns in plants and animals[END_REF].

We employed B73 whole-genome methylation data [START_REF] Hufford | De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[END_REF] to measure weighted methylation levels [START_REF] Schultz | Leveling" the playing field for analyses of single-base resolution DNA methylomes[END_REF] across the genome. We then plotted methylation levels centered on regions of miRNA-like structure and 2 kb of the upstream and downstream sequences. Both LP-hairpins (Fig. 4) and lowMFE regions (Fig S11) demonstrated peaks of CHH methylation centered on the region; this peak dissipated rapidly, especially for LP-hairpins. These peaks were found in all feature types with detectable miRNA-like structures, including RNA elements, DNA elements and genes. We also confirmed that miRNA-like regions had significantly higher levels of CHH methylation than other regions by comparing them to randomly chosen unstructured regions of the same length as LP-hairpins (Fig. 4). Finally, we found that CHH methylation levels in LP-hairpins were significantly higher than those in the rest of the corresponding sequence (paired t-test; P values between 3.43 x 10 -81 and 1.16 x 10 -165 among genes, TIRs, LINEs, LTRs, and helitrons), with enrichments as high as ~10x in genic hairpins. These observations complement the smRNA mapping results and confirm that our miRNA-like regions have detectable epigenetic correlates.

miRNA-like structures and gene expression

Genes ). Yet, genes are usually expressed, which raises the question as to whether these miRNA-like structures have a quantifiable relationship to gene expression. To address this question, we used previously published RNA-seq data from 23 B73 tissues across developmental stages [START_REF] Walley | Integration of omic networks in a developmental atlas of maize[END_REF]. We focused these analyses on structured genes with lowMFE regions (as opposed to LP-hairpins), both because they were common in the UTRs and gene bodies of genes (Fig. 2) and because 5' secondary structure is known to be important to gene function. In contrast, LP-hairpins were detected in only ~5% of genic transcripts (Table 2); however, the results presented below for lowMFE regions were often recapitulated with LPhairpin data.

We began by comparing expression in 27,025 structured versus 5,060 unstructured genes.

Structured genes had significantly higher expression (t-test, P < 2.0 x 10 -16 )( We suspected, however, that most unstructured genes were either pseudogenes or misannotated. To focus on evolutionarily conserved (and hence presumably bona fide) genes, we identified 24,784 B73 genes with syntelogs in Sorghum bicolor [START_REF] Muyle | Gene capture by transposable elements leads to epigenetic conflict in maize[END_REF](see Methods). Among the syntelog set, 16,171 were structured and 460 were unstructured. Structured syntelogs still had a mean expression level that was slightly higher than unstructured syntologs (P = 3.7 x 10 -4 ; Fig 5a). More important, however, was the quantifiable relationship between the minMFE and gene expression. Among structured syntelogs, the relationship was significantly positive-i.e, such that gene expression peaked at a minMFE of ~40 kcal/mol (Fig. 5b). The opposite was true among unstructured genes, because higher expression occurred with lower MFEs (Fig. 5b). This pattern implies both a relationship between gene expression and the properties of secondary structures and also the existence of an optimal minMFE for gene expression. These trends are present for many of the 23 separate B73 tissues separately (Fig. S14) and for the complete gene set of genes-i.e., not just genes with syntelogs (Fig. S15).

Among syntelogs, structured genes also mapped significantly more smRNAs than unstructured genes (Fig. 5c), which raises an interesting question: Could this phenomenon modulate the expression of genes? To examine this idea, we examined expression data across the 26 nested association mapping (NAM) founder lines [START_REF] Mcmullen | Genetic properties of the maize nested association mapping population[END_REF]. For these analyses, we assumed that the secondary structure designations predicted in B73 applied to its syntelog across all 26 NAM parents [START_REF] Hufford | De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[END_REF]. We then compared gene expression among lines using the coefficient of variation (CV), based on expression values that were normalized across eight tissues in each line [START_REF] Hufford | De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[END_REF](see Methods). Our analyses revealed that structured genes had significantly higher CVs than non-structured genes (Ps < 0.01, permutation test)(Fig 5d). This was true both for comparisons between all genes in each group and between a downsampled subset of structured genes that was equal in size to the set of unstructured genes. One concern about this analysis is that the CV is standardized by the mean, which could bias results, but this did not drive our observations for three reasons. First, mean expression did not vary substantially between structured and unstructured syntelogs (Fig. 5a).

Second, we fitted a linear model of expression CV as a function of B73 gene expression, but the correlation was negative (i.e., more highly expressed genes were slightly less variable across lines; R 2 = 6.1 x 10 -4 , P = 1.5x 10 -7 , estimate = -0.01). Third, we examined CV across 23 B73

tissues. There was no difference in CV between structured and unstructured syntelogs across tissues (Fig. 5c), illustrating that the CV metric alone does not explain the significant difference across genotypes.

Can the variable expression of structured genes be explained by smRNAs? We predicted that more smRNAs should lead to more expression variation across lines. To investigate this possibility, we fit a linear model of expression CV as a function of smRNA density and found that CV was positively correlated with smRNA abundance (P = 6.7 x 10 -283 ; R 2 = 0.010). To see if an effect was discernible between structured genes of variable minMFE values (as suggested by Fig 4b), we separated structured genes into four quartiles based on their minMFE and then plotted the number of smRNAs that map to each gene in B73. Consistent with our hypothesis, genes in the lowest minMFE quartile mapped more smRNAs than the other three quartiles for all three smRNA lengths, and minMFE was significantly but weakly correlated with CV in a linear model (P = 5.8 x 10 -79 ; R 2 = 0.0031).

This evidence shows that higher CVs for expression are related to the number of smRNAs that map to a gene, but additional factors likely cause (or contribute) to expression variability across NAM genotypes. One factor is chromatin accessibility. We assessed whether accessibility varies more in lowMFE genic regions by using ATAC-seq data [START_REF] Hufford | De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[END_REF], which defines accessible chromatin regions (ACRs) among parents (see Methods). For each NAM parent, we identified whether ACRs overlapped with lowMFE regions more than unstructured (MFE > -40kcal/mol) genic regions. We found no difference between the two categories (Fig 5e). Genetic effects, like SNPs and structural variants (SVs), contribute to gene expression variation across the NAM lines, particularly given that regions of structure can have altered mutation rates [START_REF] Hoede | Selection Acts on DNA Secondary Structures to Decrease Transcriptional Mutagenesis[END_REF]. We therefore also examined SNPs and SVs in these regions, based on the data of [START_REF] Hufford | De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[END_REF]. We found that lowMFE regions were less likely to contain SNPs or SVs than unstructured genic regions (Fig. 5e), which superficially discounts the idea that higher CVs for expression are caused by genetic effects due to miRNAlike regions having notably high mutation rates.

DISCUSSION

We have profiled miRNA-like secondary structure in annotated features of the maize genome. To our knowledge, this study is the first to comprehensively catalog such structures, 

Detecting miRNA-like secondary structures

For detecting secondary structure, we have included two positive controls: miRNA precursor loci [START_REF] Wang | Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes in Maize[END_REF] and Copia/RLC elements (Bousios et al., 2016). As expected, these two feature categories have extreme statistics. For example, Copia/RLC elements have the highest proportion of RF-structured elements (Table 2) and also the lowest average minMFE, reflecting previously recognized regions of strong secondary structure (Fig. 1). Our other positive control set, miRNA precursor loci, have a high proportion of RF-structure and the highest proportion of LP-hairpins (Table 2). However, these positive controls also indicate an appreciable false negative rate, because 29% (RF-structure) and 38% (LP-hairpin) of pre-miRNA loci do not have detectable miRNA-like structures. It is of course possible that misannotations of miRNA precursors contribute to these false negative rates.

The methods have additional limitations. We need to first reiterate that the approach was not designed to identify all secondary structures. Our goal was to identify regions similar to miRNA precursors, because they are thought to be involved in forming dsRNA substrates that lead to the production of smRNAs. Second, there are limitations to the TE annotation sets. For example, miniature inverted repeats (MITEs) are not included in either annotation set. MITEs are short non-autonomous elements that are characterized by their tendency to form stem-loop structures and to insert near genes (Bureau & Wessler, 1992, 1994), where they are often incorporated in read-through transcripts. They are an interesting topic for additional work, but we can provide no insights about them here. Third, we know that some summaries are biasede.g., minMFE is correlated with feature length and lowMFE regions are more likely in sequences with high G:C composition. We have addressed these biases by using multiple summary statistics, by randomizing the primary sequence to test for significant evidence of structure and by using two prediction methods. Finally, we recognize that bioinformatic predictions are approximations that may not correspond to in vivo assessments [START_REF] Ding | In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features[END_REF].

Nonetheless, despite these limitations, the two distinct prediction methods yield several similar trends, including higher smRNA mapping and methylation levels in miRNA-like regions (Table 2 andFigs 1,2). One prosaic explanation for these results is that they are caused by systematic biases in the prediction methods, but this seems highly unlikely because: i) error in secondary structure prediction should lead to randomness-i.e., inconsistent correlations, ii) the inclusion of false negatives among unstructured elements makes the measured correlations inherently conservative and iii) the results, while not identical, are largely consistent between prediction methods. Since both genes and TEs exhibit this relationship, we conclude that the association between miRNA-like structure and smRNA abundance is a general characteristic of the maize epigenome. Our work extends this relationship from a few examples to the genomewide scale.

miRNA-like regions, epigenetic signals and potential mechanisms

Given known pathways of miRNA and smRNA biogenesis [START_REF] O'brien | Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation[END_REF][START_REF] Hung | The initiation of RNA interference (RNAi) in plants[END_REF], we believe the most likely explanation for the observed association is that miRNA-like secondary structures lead directly to smRNA production via Dicer-like mechanisms. This conclusion is bolstered by the fact that smRNA skew is more pronounced for expressed genomic regions-like genes and putatively autonomous elements-for which this mechanism is expected to be most active (Fig. 3). There are likely exceptions to this pattern, though. For example, MITEs can be frequently expressed owing to their insertion near genes [START_REF] Zhang | Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize[END_REF]. We predict, then, that "expressed" non-autonomous MITEs will exhibit skews similar to autonomous elements; future work will address that hypothesis.

Based on our bioinformatic analyses, we cannot prove that the structure:smRNA relationships are caused by the formation and processing of dsRNA substrates by DCL-like mechanisms. Arguably the most-straightforward way to do so would be to map smRNA libraries from maize mutants lacking Dicer-like functions. Unfortunately, we found no such librarieswe did map the available libraries from maize RdDM mutants: mediator of paramutation1 (mop1)

and required to maintain repression2 (rmr2) [START_REF] Gent | Accessible DNA and Relative Depletion of H3K9me2 at Maize Loci Undergoing RNA-Directed DNA Methylation[END_REF][START_REF] Barbour | required to maintain repression2 is a novel protein that facilitates locus-specific paramutation in maize[END_REF]. These mutants affect the repression of TEs that have already been silenced [START_REF] Barbour | required to maintain repression2 is a novel protein that facilitates locus-specific paramutation in maize[END_REF] (Lundardon et al., 2020). We did not apply such a threshold here, because this approach necessarily assumes that some 21, 22 and 24-nt smRNAs should be ignored as biologically uninformative. We did, however, assess overlaps in genomic positions between the annotated, 21-24-nt siRNA producing loci of Lundardon et al. ( 2020) and our miRNA-like hairpin structures. Relative to random chance, we found a modest but significant enrichment in overlapping locations in genes and in all TE superfamilies except SINEs and LINEs (Table S5), which generally lack miRNA-like structures (Table 2). We repeated this exercise with a set of annotated small RNA loci that do not produce smRNAS within the canonical 21-24nt length range [START_REF] Lunardon | Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants[END_REF]; these analyses revealed lower enrichment across all features compared to 21-24nt producing loci, no notable enrichment within TEs and a very slight enrichment within mRNAs (Table S5). Altogether, these analyses suggest that a subset of our miRNA-like secondary structures correspond to loci that produce 21-24-nt siRNAs, presumably through DCL-like mechanisms.

We can think of one additional explanation for the association between miRNA-like regions and smRNAs. In Arabidopsis, miRNA target sites within mRNAs are significantly less structured than surrounding regions [START_REF] Li | Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome[END_REF], which may confer accessibility to the endoribonucleases involved in RNAi [START_REF] Vandivier | The conservation and function of RNA secondary structure in plants[END_REF]. This pattern hints that small RNA binding and RNAi could be less effective in structured regions of TEs than in non-structured regions, as is likely the case in viruses [START_REF] Gebert | Widespread selection for extremely high and low levels of secondary structure in coding sequences across all domains of life[END_REF]. If this is the case, miRNA-like regions of TEs may have evolved to protect those primary sequences from targeting through RNAi-like mechanisms. In this explanation, the regions are first highly targeted by smRNAs and then structure evolves as a component of the evolutionary arms race between TEs and their hosts.

While we cannot document a definitive mechanism, precedence suggests that processing of dsRNA substrates likely contributes to the genome-wide structure:smRNA relationship. If true, then we can add insights about its effects. First, we can estimate the relative amount of smRNAs that are produced via processing of dsRNA substrates compared to other smRNAgenerating mechanisms. Across the entire dataset of 373,485 features [START_REF] Jiao | Improved maize reference genome with single-molecule technologies[END_REF], minMFE explains 10% of the smRNA mapping results for 21-nt smRNAs (Table 3), providing a rough estimate for the proportion of smRNAs produced from dsRNA substrates. This value is larger for some metrics within specific feature categories-e.g., Q norm explained 24% of 22-nt smRNA mapping variation in genes and meanMFE explained 21% of 21nt variation for CACTA/DTC elements (Table S2). On average, across feature categories and smRNA lengths, the summary statistics minMFE, meanMFE and Q norm explained 8% of mapping variation between miRNA-like regions and non-miRNA-like regions (Table S2). These low but highly significant values are consistent with the fact that dsRNAs are only one of several routes to smRNA production [START_REF] Carthew | Origins and Mechanisms of miRNAs and siRNAs[END_REF].

Second, our data show that miRNA-like regions are associated with peaks of elevated methylation (Fig 4). Since siRNAs guide DNA methylation mechanisms [START_REF] Law | Establishing, maintaining and modifying DNA methylation patterns in plants and animals[END_REF], these peaks likely reflect causal relationships among structure, smRNAs and methylation.

It is especially notable that these peaks are elevated for CHH methylation, which is deposited de novo each generation and thus represents active methylation mechanisms [START_REF] Law | Establishing, maintaining and modifying DNA methylation patterns in plants and animals[END_REF]. Methylation in these peaks is also elevated in other contexts-e.g., the CG context (Fig. 4)-such that the peaks resemble mCHH islands. mCHH islands are short (~100 bp) regions of elevated methylation typically found both up-and downstream of genes. They were first identified in rice as associated with MITEs [START_REF] Zemach | Genome-wide evolutionary analysis of eukaryotic DNA methylation[END_REF]. In maize, mCHH islands are associated with several TE types, found near roughly half of genes, and enriched near highly expressed genes [START_REF] Gent | CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize[END_REF][START_REF] Li | RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome[END_REF][START_REF] Martin | CHH Methylation Islands: A Nonconserved Feature of Grass Genomes That Is Positively Associated with Transposable Elements but Negatively Associated with Gene-Body Methylation[END_REF]. It is not yet known if mCHH islands typically correspond to miRNA-like secondary structures, but it is a fitting topic for future investigations that may shed further insights into this mysterious epigenetic phenomenon.

TE superfamilies vary in the number and pattern miRNA-like regions

Our work was motivated, in part, by a lack of knowledge about the incipient stages of plant host recognition that leads to TE silencing (Bousios and Gaut, 2016). Since processing of dsRNA substrates remains the only recognized pathway to de novo smRNA production [START_REF] Hung | The initiation of RNA interference (RNAi) in plants[END_REF], we had hoped that characterizing miRNA-like regions would provide clues into properties of host recognition across specific TE superfamilies. Our work does not inform this mystery, except to show that most annotated TEs have some miRNA-like regions and also to provide a snapshot of variation across TE superfamilies. That snapshot shows that DNA elements generally have less evidence for miRNA-like structures than LTR elements (Fig. 1), but non-LTR RNA elements (LINEs and SINEs) contain almost no miRNA-like structures (Table 2). There is also marked variation among LTRs, because Copia/RLC exhibit a concentration of secondary structures in the LTRs, but Ty3/RLG do not show a similar locational bias (Fig. 2). Finally, Helitrons/DHH warrant separate mention because 84% are RF-structured, with a strong bias of LP-hairpins at the 3' end (Fig. 2). The lowMFE regions of Helitrons/DHH often contain the same palindrome sequence that defines structured regions of Copia/RLC elements (Bousios et al., 2016).

One cannot help but wonder why miRNA-like regions are common within TEs. If secondary structure can lead to the potential for host recognition through smRNAs, there should be selective pressure to lose structure. We suspect that there is a cost to loss related to function.

In Sireviruses (the principal representative of the Copia/RLC superfamily), there is evidence that palindromic motifs define the cis-regulatory region of the LTR [START_REF] Grandbastien | LTR retrotransposons, handy hitchhikers of plant regulation and stress response[END_REF]. In fact, studies of different TE families in different organisms have revealed that cis-regulatory regions are often arranged as arrays of complex, sometimes palindromic, repeats [START_REF] Vernhettes | The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences[END_REF][START_REF] Araujo | Retrolyc1 subfamilies defined by different U3 LTR regulatory regions in the Lycopersicon genus[END_REF][START_REF] Fablet | The evolution of retrotransposon regulatory regions and its consequences on the Drosophila melanogaster and Homo sapiens host genomes[END_REF][START_REF] Ianc | Hominoid composite non-LTR retrotransposons-variety, assembly, evolution, and structural determinants of mobilization[END_REF]Martinez et al., 2016), implying that secondary structures often assume a cis-regulatory function. We hypothesize that

Copia/RLC elements are engaged in a tug-of-war between the functional necessities of secondary structure and the tendency of these same regions to act as templates for smRNAs .

We presume similar dynamics apply to other TE superfamilies, although clearly this conjecture requires further detailed analyses of structure and function in specific TEs. However, the location differences between Copia/RLC and Ty3/RLG are interesting in this context (Fig. 2), because it superficially suggests that cis-regulation modules for Ty3/RLG elements have either moved or have modified function. Another potential function for miRNA-like regions relates to the fact that retrotransposons and autonomous DNA transposons need to co-opt the host's translation machinery to extend their life-cyle. miRNA-like structures may be as crucial for translation for TE transcripts as it is for genes (see below).

Genes: evidence for a trade-off

Our analyses have uncovered a few unexpected features of genes. One is that the two methods provide different insights. The RNAfold approach identifies 85% of genes as RFstructured (Table 2), with an evident bias toward 5' UTR regions (Fig. 2). This result is not unexpected, given that secondary structures in 5' UTRs are tied to crucial functions in ribosome binding and translation [START_REF] Babendure | Control of mammalian translation by mRNA structure near caps[END_REF][START_REF] Matoulkova | The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells[END_REF]. In contrast, LPhairpins are primarily found in introns. We conclude that 5' UTRs commonly have miRNA-like regions (as defined by MFEs) but apparently lack the stem-loop structures identified by LinearPartition. Nonetheless, both lowMFE regions and LP-hairpins associate positively with smRNAs and demonstrate elevated CHH methylation levels within genes (Figs.

3,4 & S11).

This is not the first such observation for plant genes, because [START_REF] Li | Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome[END_REF] discovered that Arabidopsis mRNA transcripts with more stable secondary structures had higher smRNA expression and lower genic expression. Our work expands this previous work in two ways. First, we have extended the observations to maize; it is notable that genes in maize and Arabidopsis share these trends, because maize has a larger genome with more TEs. Second, we have shown that secondary structure does not universally correlate negatively with gene expression. Rather, the relationship is tiered: there is a qualitative difference in expression between genes with and without RF-structure (Fig 4A,B), probably reflecting that secondary structure in 5' UTRs is crucial for some aspects of gene function. Among genes with RF-structure, however, genes with strong structure (as measured by minMFE) tend to be less expressed than genes with moderate RF-structure (Fig. 5B). That is, genes with particularly strong secondary structures (i.e., very low MFEs) have lower expression.

This relationship suggests that there can be "too much of a good thing" when it comes to miRNA-like structures. The potential functional consequence of "too much" is illustrated across the NAM parental genotypes, because structured genes with higher coefficients of variation tend to map more smRNAs (Fig. 5B) and have more variable expression among genotypes (Fig. 5C).

We investigated whether this observation could be explained by other features of the miRNAlike regions, such as especially high variability in chromatin accessibility. We also investigated SNPs and SVs, because some work has shown that structured regions can have higher mutation rates [START_REF] Hoede | Selection Acts on DNA Secondary Structures to Decrease Transcriptional Mutagenesis[END_REF]. Unfortunately, none of these variables have provided insights that explain higher expression variation across genotypes. In fact, the miRNA-like regions tend to have fewer SNPs and SVs than the rest of the gene (Fig. 5E), suggesting that the miRNA-like regions are under purifying selection.

Altogether, these results suggest the possibility of an evolutionary tradeoff between selection for stable secondary structure against too much secondary structure. Even so, we are still left by a paradox: if genes have miRNA-like regions that serve as a template for smRNA production, why are they not silenced? We do not have the answer, but we believe it must rely on the bevy of differences between hetero-and euchromatin. It is known, for example, that genic regions have distinct sets of chromatin markers relative to heterochromatin and also that demethylases like Increased in Bonsai Methylation 1 (IBM1) and repressor of silencing 1 (ROS1) [START_REF] Gong | ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[END_REF][START_REF] Penterman | DNA demethylation in the Arabidopsis genome[END_REF] actively demethylate expressed genes [START_REF] Saze | Negative regulation of DNA methylation in plants[END_REF][START_REF] Miura | An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites[END_REF]. Some aspects of genic methylation are under selection [START_REF] Muyle | Gene Body Methylation in Plants: Mechanisms, Functions, and Important Implications for Understanding Evolutionary Processes[END_REF], and selection will be particularly strong against mechanisms that silence genic regions. We hypothesize that these mechanisms have evolved in part to counter the potentially deleterious effects of the formation of dsRNA structures and subsequent production of smRNAs.

Overall, we have created a catalog of miRNA-like structures across many features of the maize genome. Our catalog shows that miRNA-like secondary structures are common. These regions also correlate weakly, but highly significantly, with smRNA abundance, and they associate visibly with DNA methylation, especially in the CHH context. Finally, we tentatively suggest that the dynamics of gene expression are affected by these structures and their epigenetic associations. We hope this work sparks further exploration of the roles of secondary structure in plant genome evolution, because it raises questions about unstudied TE categories (e.g., MITEs), about the strength of population genetic evidence against mutations in miRNA-like regions [START_REF] Ferrero-Serrano | Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis[END_REF], whether secondary structure characteristics are conserved among species, and whether miRNA-like regions contribute to the previously documented relationship between secondary structure and stress response [START_REF] Zhang | A Stress Response that Monitors and Regulates mRNA Structure Is Central to Cold Shock Adaptation[END_REF].

METHODS

B73 annotation and secondary structure prediction

Version 4 of the B73 maize genome and version 4.39 of the genome annotation were downloaded from Gramene (www.gramene.org). B73 TE annotations were retrieved from https://mcstitzer.github.io/maize_TEs/ [START_REF] Jiao | Improved maize reference genome with single-molecule technologies[END_REF][START_REF] Stitzer | The genomic ecosystem of transposable elements in maize[END_REF]. TE and gene annotations were cleaned for redundancy (e.g., the same feature annotated by different annotation authorities) using custom scripts, and separated into annotation files for different feature categories. BED files were then generated for each annotation feature, with a standardized naming convention for each feature: Feature Type::Chromosome:Start Position-End

Position (e.g., exon::Chr1:47261-47045).

FASTA files for each feature were generated using BEDtools v2.27 (Quinlan & Hall 2010) getFASTA. These FASTA files were divided into 110 nucleotide sliding windows (1-nt step size) for use in the secondary structure prediction program RNAfold v2.4.9 from

ViennaRNA [START_REF] Lorenz | ViennaRNA Package 2.0[END_REF]. MFE calculations per window were extracted from RNAfold predictions using a Python script, and the MFE summary metrics (minMFE and meanMFE) were calculated for each feature, based on all windows in that feature. As described in the main text, minMFE was calculated as the lowest MFE window in the feature and meanMFE was the mean of all 110 bp window MFE values. The partition function, Q, was calculated by LinearPartition.

Q norm was calculated by dividing Q by the length of each feature in R. BED files representing regions of lowMFE were created by combining all overlapping windows of <-40 kcal/mol MFE.

Overlapping MFE windows were converted to BED format using an inhouse Python script. The scripts used for MFE calculations and analyses are available on GitHub (https://github.com/GautLab/maize_te_structure).

To determine whether a feature contained significant structure, the feature sequence was randomized by shuffling the position of nucleotides across the length of the feature. This approach maintained the GC content of the feature but not the primary sequence. Randomized sequences were then subjected to identical MFE calculations-i.e., they were split into 110 bp windows for RNAfold prediction. This process was repeated five times for each feature, and the minMFE of each randomization was recorded. The significance of observed structure vs the five randomizations was assigned using a Wilcoxon one-sided test with Benjamini-Hochberg correction in R. Separately, we used LinearPartition v1.0 [START_REF] Zhang | LinearPartition: linear-time approximation of RNA folding partition function and base-pairing probabilities[END_REF] to annotate miRNA-like regions in each feature. We extracted the sequence of each feature using BED tools getFASTA and ran LinearPartition with default arguments on each sequence. The base-pairing probability files generated by LinearPartition contain estimated pairing probabilities for each pair of likelypairing positions. We used these probabilities to infer the locations of miRNA-like hairpins by searching for consecutive runs of likely pairing bases in R using functions from the IRanges and GenomicRanges [START_REF] Lawrence | Software for Computing and Annotating Genomic Ranges[END_REF], data.table [START_REF] Dowle | data.table: Extension of 'data.frame[END_REF], and tidyverse [START_REF] Wickham | Welcome to the tidyverse[END_REF] packages. We focused on bases with >0.90 pairing probabilities and search for evidence of miRNA-lik hairpin structure based on the criteria of [START_REF] Axtell | Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data[END_REF]. Specifically, we required LP-hairpins to be ≥21-nt long with <5 mismatched nucleotides (<3 of mismatches in asymmetric bulges). We did not place an upper limit on the length of predicted LP-hairpins, because we sought to find genomic regions with folding potentials equal to or greater than known miRNAs.

Small RNA Library Analysis

Small RNA-seq libraries were downloaded using NCBI SRA tools and SRAExplorer (https://github.com/ewels/sra-explorer) from the sources indicated in Table S1. Adapters, regions with low quality, and low quality reads were trimmed from small RNA RNA-seq libraries using FastQC and cutadapt v0.39 (Bolger et al., 2014). Adapter sequences varied among libraries, and so were identified and validated in each library using a custom bash script that searched for sets of known maize smRNAs of each length (21-24 nt) in each unprocessed library and confirmed the identity of the adapter sequence connected to each known smRNA sequence.

The list of adapters derived for each library is included in Table S6. Trimmed reads were then filtered and split based on size matching 21, 22 and 24 nucleotides in length, creating three FASTQ files for each library. We identified the unique smRNA sequences, which we refer to as 'species', following previous methods (Bousios et al., 2016[START_REF] Bousios | Considerations and complications of mapping small RNA high-throughput data to transposable elements[END_REF].

smRNA species were mapped using Bowtie 2 v2.4.2 [START_REF] Langmead | Fast gapped-read alignment with Bowtie 2[END_REF] to the B73 genome, preserving only perfect alignments. SAM tools v1.10 ( [START_REF] Danecek | Twelve years of SAMtools and BCFtools[END_REF] was used to convert and sort the alignment output. BED tools bamtoBED was used to convert the sorted BAM file to BED files. smRNAs from each library were mapped separately for all three lengths, generating a total of 72 (3 sizes ൈ 24 libraries) alignment files. Both uniquely and nonuniquely mapping smRNAs were used to calculate the number of smRNA species corresponding to each genomic locus [START_REF] Bousios | Considerations and complications of mapping small RNA high-throughput data to transposable elements[END_REF], and strand was not taken into account. Thus, any

given position in the genome can be overlapped by several smRNA species, up to two-times the length of the smRNA size class in question (21, 22, or 24).

Bedtools was used to find intersections and coverage counts (per nucleotide) between the smRNA alignment BED files for each library and the MFE region bed files. Subsequently, the smRNA alignment BED files were split into two categories: alignments that intersected low (<-40 kcal/mol) MFE regions and those that did not. Coverage and count files were subsequently generated that contained information of how many smRNA species aligned at each nucleotide, and coverage files contained a normalized count per nucleotide for classification. Normalization was performed by summing the counts and dividing by the length of the region in nucleotides.

For correlations between smRNA species density vs. MFE measurements of features (Table 3), linear models of smRNA species per nucleotide as a function of secondary structure metrics (minMFE, meanMFE, etc) were fitted using the base R (v4.1.0) lm() function. To fit these models, smRNA species were summed across all 24 libraries for each feature so that observed smRNA species had an equal weight across libraries. These linear models can be expressed as:

log(smRNA counts per kb across feature + 1) ~ MFE metric

To test the significance of differences in smRNA species density between high and low MFE regions within features, mixed effects models were fit for each smRNA size class using the R package lme4 [START_REF] Bates | Fitting Linear Mixed-Effects Models Using lme4[END_REF]. In these models, smRNA mapping counts from each library were not combined, meaning that each smRNA library:feature pair was counted individually.

These mixed effects models can be expressed as: For these calculations, feature-library pairs with zero smRNA species in either non-structured or structured regions were removed from each dataset. We further tested skew differences from zero using Wilcoxon one-sided tests in R. 

Methylation analyses

Pre-processed B73 genome-wide methylation data from [START_REF] Hufford | De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[END_REF] were downloaded from https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotati on_Jan2021_release/DNA_METHYLATION_UMRs/DNA_methylation_coverage_bigwig_files /NAM_methylation_coverage_on_B73v5_coordinates. These data originated from enzymatic methyl-seq (EM-seq) and were mapped against the B73 V5 reference. For this analysis, coordinates of miRNA-like regions annotated using the B73 V4 reference genome were converted to the V5 reference using the EnsemblPlants CrossMap (v0.6.4) converter.

The methylation data were downloaded as bigW ig files; we converted these data to genome-wide coverage files by multiplying EM-seq coverage at each cytosine position by proportion of methylated and unmethylated reads at each position (yielding, for each cytosine, a number of methylated and unmethylated reads at that position). For each region with miRNAlike structure, we calculated the weighted methylation level for each cytosine sequence context (CG or CHH) by dividing the number of methylation-supporting mapped cytosines by the total number of cytosines in the reference within that region (see [START_REF] Schultz | Leveling" the playing field for analyses of single-base resolution DNA methylomes[END_REF]. To find random control regions for comparison, we separated nucleotide positions in each feature into two groups: those that fell within miRNA-like regions and those that did not. For each miRNA-like region in each feature, we randomly assigned a region of equal size to that miRNA-like region but which did not overlap with the miRNA-like region. We did not consider methylation of miRNA-like regions in features where over half of the features fell within miRNA-like regions, because control regions could not be determined by this method.

B73 RNA-seq analyses

B73 gene expression data were downloaded from the ATLAS expression database (www.ebi.ac.uk/gxa/) in transcripts per million (TPM) based on RNA-seq data from 23 maize tissues (E-GEOD-50191) [START_REF] Walley | Integration of omic networks in a developmental atlas of maize[END_REF]. The statistical significance of differences between expression of genes in different structure classifications was determined using unpaired t-tests between structured and unstructured genes, implemented with t.test() in R. Linear models of expression versus each measurement of secondary structure were separately fit for expression in each tissue type with lm() in R and graphed using ggplot2 [START_REF] Wickham | ggplot2: Elegant Graphics for Data Analysis[END_REF]. These linear models can be expressed as:

Log(Gene expression +1) ~ MFE metric

For each of the downstream analyses, we focused on genes with Sorghum bicolor syntelogs. We relied on a list of syntelogs in Table S10 of [START_REF] Muyle | Gene capture by transposable elements leads to epigenetic conflict in maize[END_REF]. The coefficient of variation (CV) of expression was calculated for each gene between the 26 lines using the normalized RPKM expression data from [START_REF] Hufford | De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[END_REF]. For each gene, CV was defined as the standard deviation of its expression across lines divided by its mean normalized across lines. We calculated CV using the sd() and mean() functions in base R. We plotted CVs between categories of structure (RF-structured and RF-unstructured) using ggplot2 [START_REF] Wickham | ggplot2: Elegant Graphics for Data Analysis[END_REF]) and determined statistical significance of differences between categories using unpaired t-tests in R. We measured these differences in two different ways: first, using all genes and, second, removing genes with CV = 0 (920 genes, 3.3% of genes). We also built a linear model with lm() in R to correlate the magnitude of gene expression in B73 with the CV of that gene across lines. This linear model can be expressed as: a region that commonly contained miRNA-like structures. All panels share the same x-axis, which is represented proportionally across the length of features, from 0.00 (5' end) to 1.00 (3' end). This figure shows these locations for a subset of the 15 categories in Table 2; the remainder of the categories are shown in Figure S4. We assigned a control window to each hairpin in the dataset by choosing a random window of the same size as the hairpin within the same element. The red line corresponds to methylation patterns around these randomized control loci. -16 ). The graph also reports CV among B73 tissues, which does not differ significantly between structured and unstructured genes (P = 0.32). D. smRNA mapping to structured and unstructured genes and for three smRNA lengths. For all three lengths, the difference is significant (P < 2.22 x 10 -16 ). The violin plots show the distributions of smRNA counts, and the boxplots are formatted the same as in (A.) E. Epigenetic and genetic features in lowMFE regions of genes. The plots plot the number of expected and observed features overlapping (or not-overlapping) the lowMFE region. For example, the number of ACRs (left graph) overlapping lowMFE regions is very similar to the number expected, based on the distributions along genes.

Comparative analyses among NAM founders

log(B73 expression + 1) ~ NAM line CV

In contrast, the numbers of observed SVs (middle) and SNPs (right) are highly underrepresented in lowMFE regions. Measures the relative proportion of distinct smRNAs that map to miRNA-like regions of a sequence compared to the remainder of that sequence. Ranges from -1.0 to 1.0, where 1.0 denotes that smRNAs map only to miRNA-like regions. 

  each feature category, we separately mapped the positions of lowMFE regions and LP-hairpins along their lengths (Fig 2). Consistent with previous work (Bousios et al., 2016), both lowMFE and LP-hairpins were concentrated within the LTRs of Copia/RLC elements. In contrast, Ty3/RLG elements generally lacked an obvious peak for miRNA-like structures. Most DNA transposon superfamilies had relatively uniform distributions of lowMFE regions across their lengths (Fig S4), but LP-hairpins were biased heavily towards the terminal inverted repeats for TIR elements like Mutator/DTM (Fig 2), hAT/DTA and CACTA/DTC elements (Fig. S4). Finally, Helitrons/DHH had a distinct 3' bias for both lowMFE regions and LP-hairpins (Fig 2).

  palindrome, CACCGGACNNNGTCCGGTG (Fig S5) as the most abundant motif in Copia/RLC elements (MEME e-value = 5.3x10 -677 ). This motif appeared in 42.9% of RLC structured regions. This same palindrome was also the most abundant motif in Helitron/DHH transposons (MEME e-value = 1.0e-165), appearing in 5,231 DHH structured regions (10.7%).

  more smRNAs to map to LP-hairpins (Fig 3a,b) and the lowMFE regions of RF-structured elements (Fig S7). As just one example, Copia/RLC elements had positive skews, with slightly higher skews for 22-nt smRNAs as opposed to 21 and 24-nt smRNAs (Fig 3a). These results

  investigate, we separated DNA transposons into nonautonomous and autonomous elements using transposase homology data[START_REF] Stitzer | The genomic ecosystem of transposable elements in maize[END_REF](see Methods), and then repeated our skew and linear model analyses. In most cases, non-autonomous elements had notably less smRNA skew towards miRNA-like regions than autonomous elements (Fig3b), as we had predicted. This pattern was consistent among Helitron/DHH (autonomous mean skew among all smRNA lengths = 0.91, non-autonomous mean = 0.37), CACTA/DTC (autonomous mean = 0.44, nonautonomous mean = 0.34), Harbinger/DTH elements (autonomous mean = 0.37, nonautonomous mean = 0.27), and Mutator/DTM (autonomous mean = 0.51, non-autonomous mean = 0.05), but it was particularly notable for 21 and 22-nt smRNAs (P < 7.5 x 10 -31 ) among Helitrons/DHH and

  possess regions with stable RNA secondary structure (Figs 1&2), and this secondary structure coincides with the presence of smRNAs (Fig 3c & Table S3-S4) and methylation (Fig 4 & S11

  Fig 5a), and this was true for all tissues (Fig S12) as well as for genes that contained LP-hairpins (Fig S13).

  and we have done so by applying two bioinformatic prediction methods. The methods rely on different algorithms (RNAfold vs. LinearPartition), different approaches (overlapping windows vs. no windows) and on different characteristics to define miRNA-like regions. By design, the LinearPartition analyses relied on a narrower definition (Fig 2), and so there were fewer observations. Yet, the two methods provide largely concurrent insights about miRNA-like regions, including their relative abundances among TE superfamilies (Table2); their locational biases in some TE superfamilies (Fig 2); their association with elevated smRNA counts in TEs and genes (Fig 3); and their genome-wide correspondence to peaks of methylation (Fig 4).

For

  plotting the location of lowMFE regions across features (Figs 2 & S4), we split each feature into 100 equally-sized bins across the length of the feature from 5' to 3' end and counted the number of < -40 kcal/mol regions overlapping each bin. To find motifs in lowMFE regions of different feature types, BED files from concatenated low MFE regions were extracted using BEDtools v2.27 getFASTA. These FASTA files were fed into the MEME motif finder (v5.4.0)(Bailey & Elkan 1994) with the DNA alphabet in Classic mode (i.e., enrichment of sequences in a single reference sequence and no control sequence) for each feature category. We selected the top 10 overrepresented sequences.

  log(smRNA counts per kb across region + 1) ~ structure designation + (1|feature) Skew measurements (Fig 4) were calculated separately for each TE superfamily

Figure 2 .

 2 Figure 2. Landscapes of miRNA-like regions across feature types. Each row represents a metaprofile that combines data from all members of each feature type, based on structured members. Features were divided into 100 equally sized bins from the 5' end to the 3' end. The left column shows the number of features with lowMFE (<-40 kcal/mol) windows, while the right column shows the number of features with LP hairpins. A peak in the landscape represents

Figure 3 .

 3 Figure 3. The distribution of skew for smRNA mapping in different feature categories. Skew is presented on the x-axis. Height on the y-axis represents the Gaussian estimated kernel density of skew values. Skew measures the relative enrichments of smRNAs in miRNA-like regions compared to non-miRNA regions and ranges from 1.0 (enrichment in miRNA-like regions) to -1.0 (enrichment in non-miRNA-like regions. All panels use the same x-axis. The dotted vertical line represents zero where smRNA density is not skewed to either low or high MFE regions. A. Skew for retrotransposons for 21, 22 and 24-nt smRNAs, separately for Copia (RLC), Ty3

Figure 4 .

 4 Figure 4. Methylation at LP-hairpins. The left column shows methylation in the CG context (mCG) and the right shows methylation in the CHH context (mCHH). Each row represents a different feature type. The blue lines summarize the patterns of methylation in the hairpin (variable sizes, median = 25 nt) across all hairpins in a given feature type (e.g., all TIR hairpins, gene hairpins, etc.) and their flanking regions, divided into 40 nonoverlapping 100 bp windows.

Figure 5 .

 5 Figure 5. Expression between structured and unstructured genes, as defined by RNAfold analysis, in B73. The expression data are based on combined data across 23 tissues. A.Difference in the overall magnitude of expression in all structured (n=27,034) vs unstructured (n=5054) genes and in structured vs. unstructured genes with a syntelog in S. bicolor. The box plots report the range of the middle quartiles, whiskers report the range, and lines represent the median. B. Expression as a function of minMFE for structured (dashed line) and unstructured genes with a S. bicolor syntelog (solid line). Both lines report the linear regression; both slopes are highly significant, as indicated by P-values on the figure. C. The coefficient of variation (CV) of gene expression across the 26 NAM parents compared between structured vs unstructured genes with a S. bicolor syntelog. The two categories differ significantly (P < 2.22 x 10 -16 ). The graph also reports CV among B73 tissues, which does not differ significantly
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	Just as the prevalence of miRNA-like regions varied across RNA-based superfamilies,
	they also varied among DNA-based TE superfamilies. Mutator/DTM elements were especially
	notable for the high percentage of elements with LP-hairpins, at up to 62.82%, while 32.52% of
	CACTA/DTC elements contained LP-hairpins. Fewer than half of the annotated Tc1-
	Mariner/DTT and PIF-Harbinger/DTH elements were RF-structured or contained LP-hairpins
	(Table 2), but this corresponded to thousands of elements in these superfamilies that contain
	miRNA-like regions.
	It is worth making two overarching observations from the analyses reported in Table 2.
	First, the percentage of sequences identified by RNAfold and LinearPartition were correlated
	across the 15 feature categories (R=0.65; p<0.001), suggesting again that the two methods
	identified similar characteristics in most superfamilies. Second, the expanded TE dataset of
	Stitzer et al. (2021) exhibited similar trends to the Jiao et al. (2017) annotation dataset (R=0.96;
	p<0.001). For example, LINEs, SINEs and hAT/DTA elements generally had low proportions of
	elements with LP-hairpins in both annotation sets, while LTR superfamilies had high proportions
	in both annotation sets.

Table S3 &

 S3 S4).

	Comparisons of overall smRNA mapping densities between miRNA-like
	regions and other regions in genes and TEs can be seen in Figs S8 (lowMFE) & S9 (LP-
	hairpins).

  but we did not observe any clear or consistent patterns across smRNA lengths or TE superfamilies. These comparisons relied on single libraries and are thus more subject to sampling variability than our other observations, which were based on joint consideration of dozens of smRNA libraries.

	Since we cannot prove that processing of dsRNA substrates is a causal mechanism, it is
	worth considering alternative explanations. For example, structure:smRNA correlations could
	reflect abundance rather than production; one way this could occur is if smRNAs generated from
	miRNA-like regions degrade less quickly. It is hard to imagine how this might happen, but it is
	known that smRNAs that are loaded onto AGO have biases (Mi et al., 2008) and thus some may
	be more stable with longer half-lives. Another possibility is that these structures correlate with
	degradation through other, non-DCL pathways. Some studies have attempted to correct for
	degradation and other effects by focusing only on genomic regions where the proportion of 21,
	22 and 24 nt smRNAs exceed an arbitrary threshold compared to smRNAs of all lengths

; they are thus not particularly good candidates to test the dsRNA-substrate model. We nonetheless assessed the effect of mutants on skew by comparing mutant smRNAs to WT individuals from the same study (Fig S16),

  Expression, ATAC-seq, SNP data and SV data for each NAM line were downloaded with

	B73 coordinates from CyVerse at
	https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotati
	on_Jan2021_release (Hufford et al., 2021). Secondary structure predictions were performed in
	B73 assembly V4, so gene IDs were converted to V5 using the EnsemblPlants ID History
	Converter web tool (https://plants.ensembl.org/Zea_mays/Tools/IDMapper). Coordinates of TEs
	and structured regions were converted using the EnsemblPlants CrossMap (v0.6.4) converter
	with the B73_RefGen_v4 to Zm-B73-REFERENCE-NAM-5.0 parameter. Only genes shared
	across all lines were included.
	Normalized expression data were downloaded in RPKM format from merged RNA-seq
	libraries from CyVerse at

https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotati on_Jan2021_release/SUPPLEMENTAL_DATA/pangene-files. Only data from genes shared among all lines (as determined by

Hufford et al.) 

were included. These data include RNA-seq normalized across eight tissues in each line: primary root and coleoptile at six days after planting, base of the 10th leaf, middle of the 10th leaf, tip of the 10th leaf at the Vegetative 11 growth stage, meiotic tassel and immature ear at the V18 growth stage, anthers at the Reproductive 1 growth stage. Details for how these data were normalized can be found in

[START_REF] Hufford | De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[END_REF]

.

:

  Characteristics of miRNA-like secondary structure across two methods. (A) A schematic contrasting the two prediction methods for a genic region on C hromosome 2. The LinearPartition (LP) method focuses on identifying small regions with hairpin characteristics, while the RNAfold method focuses on regions with low Minimum Free Energy (MFE). This example illustrates lowMFE regions in red, with overlapping LP-hairpins in blue. Note that lowMFE regions exceed 110 bp, because they represent the concatenation of overlapping windows with MFE < -40 kcal/mol. (B) The correlation between meanMFE and Q norm based on 39,179 genes. (C) The distributions of three summary statistics-minMFE, meanMFE and Q norm -across seven feature categories. In the key, helitrons correspond to DHH elements (see Table2for the three letter designations); LTRs consist of RLC, RLG and RLX; LINEs are the RIL and RIT elements; SINEs are RST; and terminal repeat elements consist of DTA, DTC, DTH, DTM, and DTT elements.

Table 1 :

 1 Terms defined in the text and that are used to describe and characterize miRNA-like regions.

	Term	Method	Explanation
	minMFE	RNAfold	The Minimum Free Energy (MFE) of the 110 bp window
			with the lowest MFE score within an individual TE or gene
			sequence
	meanMFE	RNAfold	The average estimated MFE across all 110 bp windows in
			any TE or gene sequence
	lowMFE	RNAfold	A region or regions of a TE or gene that is defined by
			concatenating overlapping windows of MFE< -40/kcal/mol
	RF-structured RNAfold	Designates any TE or gene that has a significantly lower
			minMFE value than randomized sequences
	LP-hairpin	LinearPartition Putative hairpin structure identified by combing base-
			pairing probabilities from LinearPartition with miRNA
			hairpin criteria
	Q		

norm LinearPartition The LinearPartition function reports Q, a summary of secondary structure across an entire sequence. Q norm adjusts Q by the length of the sequence skew Both

Table 2 :

 2 Fifteen feature categories and accompanying statistics. The statistics include the number of individual features in each category, based on two annotation versions for TEs, and the percentage of features that have miRNA like structure (structured) based on RNAfold or detectable LP-hairpins.

	Feature type	No 1	RF 2	LP 3	No 4	LP
	Genes	39,179	69.00%	29.82%	39,179	29.82%
	mRNA	133,812 64.80%	5.02%	133,812 5.02%
	miRNA precursor	107	71.00%	66.36%	107	66.36%
	Helitrons/DHH	49,235	84.00%	13.00%	22,339	6.43%
	hAT/DTA	5,602	59.60%	4.15%	5,096	4.28%
	CACTA/DTC	1,264	79.00%	32.52%	2,768	41.76%
	PIF-Harbinger/DTH	4,971	38.80%	17.57%	63,216	6.22%
	Mutator/DTM	1,319	60.30%	62.82%	928	57.54%
	Tc1-Mariner/DTT	458	43.90%	16.69%	67,533	6.75%
	L1 LINE/RIL	36	0.00%	0.00%	477	2.73%
	Rte LINE/RIT	29	0.00%	0.00%	296	3.04%
	Copia/RLC	45,009	98.20%	58.04%	44,242	55.88%
	Ty3/RLG	72,976	88.00%	40.57%	70,165	38.47%
	Unclassified-LTR	18,457	85.90%	38.18%	16,205	32.98%
	/RLX					
	SINEs/RST	1,031	0.00%	1.74%	892	1.46%

Table 3 :

 3 Correlation value (with FDR corrected p-value in parentheses) between secondary structure summary statistics and numbers of smRNA species across all 373,485 features.

	Summary Metric	21-nt smRNA	22-nt smRNA	24-nt smRNA
	minMFE	0.091 (0.00)	0.103 (0.00)	0.074 (0.00)
	meanMFE	0.017 (0.00)	8.6 x 10 -3 (0.00)	0.004 (5.01 x 10 -227 )
	Q norm	0.101 (0.00)	0.133 (0.00)	0.089 (0.00)

We also measured epigenetic and genetic features across the NAM lines, and tracked their overlap with miRNA-like regions. For the former, we concatenated ACRs that overlapped positions between lines, producing a set of merged ACRs. We produced these merged sets using the R libraries IRanges and GenomicRanges (Lawrence et al., 2013). We extracted the positions of SNPs from the filtered VCF file from Hufford et al. (2021). The expected overlap was calculated as the proportional of genic space taken up by low MFE regions * the total length of features. We assessed overlap between ACRs/SVs/SNPs and miRNA-like regions using GenomicRanges in R. Custom scripts for these analyses can be found at https://github.com/GautLab/maize_te_structure, and additional supplementary files can be found at https://figshare.com/projects/siRNAs_and_secondary_structure_in_maize_genes_and_TEs/1507 14.
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