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Abstract

Human activities and climate change threaten coldwater organisms in freshwater ecosystems

by causing rivers and streams to warm, increasing the intensity and frequency of warm
temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches
of relatively cool water that are used by coldwater organisms for thermal relief and short-term
survival. Globally, cohesive management approaches are needed that consider interlinked physical,
biological, and social factors of cold-water refuges. We review current understanding of cold-
water refuges, identify gaps between science and management, and evaluate policies aimed at
protecting thermally sensitive species. Existing policies include designating cold-water habitats,
restricting fishing during warm periods, and implementing threshold temperature standards or
guidelines. However, these policies are rare and uncoordinated across spatial scales and often
do not consider input from Indigenous peoples. We propose that cold-water refuges be managed
as distinct operational landscape units, which provide a social and ecological context that is
relevant at the watershed scale. These operational landscape units provide the foundation for
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an integrated framework that links science and management by (1) mapping and characterizing
cold-water refuges to prioritize management and conservation actions, (2) leveraging existing
and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive
management practices across scales. Our findings show that while there are many opportunities
for scientific advancement, the current state of the sciences is sufficient to inform policy and
management. Our proposed framework provides a path forward for managing and protecting
cold-water refuges using existing and new policies to protect coldwater organisms in the face of
global change.

Keywords

behavioral thermoregulation; climate change adaptation; lotic ecosystem management; refugia;
salmonids; temperature; thermal heterogeneity; thermal refuges

1]

INTRODUCTION

Human activities and climate change disproportionately affect freshwater ecosystems
relative to terrestrial and marine ecosystems (Birnie-Gauvin et al., 2023; Reid et al.,

2019; van Rees et al., 2022; Woodward et al., 2010). Rivers and streams are warming,
experiencing more frequent and extreme warm temperature events, and becoming more
thermally homogeneous (Arora et al., 2016; Hannah & Garner, 2015; Isaak & Rieman,
2013). These changes put organisms that are physiologically restricted to cold and cool
water (termed “coldwater organisms”) at risk. Many coldwater organisms are ecologically,
economically, and culturally significant and are particularly vulnerable to climate change
because increasing temperatures exceed their thermal limits (Barbarossa et al., 2021; Begon
et al., 2006; Pinsky et al., 2019). Homogeneous thermal conditions also make coldwater
organisms vulnerable to losing access to cool water to avoid thermal stress and to warm
water to optimize growth. Thus, homogenous water temperatures may inhibit adaptations
that can have a negative population-level response such as a decrease in survival and
productivity that, in turn, decreases coldwater organisms’ resilience (Amat-Trigo et al.,
2023; Armstrong et al., 2013, 2021; Pinsky et al., 2019; Whitney et al., 2016). To overcome
higher temperatures, organisms may move to cold areas during periods of thermal stress
(Armstrong & Schindler, 2013; Brewitt et al., 2017; Hahlbeck et al., 2022; Wilbur et al.,
2020). These areas of water that are cooler than the surrounding ambient water are referred
as cold-water patches (CWPs). When coldwater organisms use discrete CWPs within rivers
for thermal relief, the CWPs are considered cold-water refuges (CWRs; Figure 1).

Cold-water refuges protect coldwater organisms from high water temperatures and prevent
or reduce potentially life-threatening metabolic consequences of thermal stress (Breau
etal., 2011; Keefer et al., 2009). Use of CWRs by organisms also improves biotic
interactions and stabilizes population dynamics (Berryman & Hawkins, 2006; Reside et
al., 2019), particularly for individuals existing on the edge of their preferred geographic
ranges (Cordoleani et al., 2021). Cold-water refuges also are increasingly important for
sustaining native coldwater species in the context of invading non-native species. For
example, warmwater fish and nonnative salmonid species often expand their ranges in a
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warming climate (Rahel & Olden, 2008; Rubenson & Olden, 2017) and this contracts native
coldwater species’ ranges as warmer conditions decrease their ability to compete for more
suitable thermal habitat. (Hitt et al., 2017; Ramberg-Pihl, 2020).

Scientists and resource managers increasingly recognize the importance of CWRs for the
short-term survival of coldwater organisms experiencing thermal stress during the warm
season (Keppel et al., 2012; Morelli et al., 2016; Reside et al., 2019; Snyder et al., 2022;
Sullivan et al., 2021). Cold-water refuges are spatiotemporally dynamic and thermally
heterogeneous. They compose shifting mosaics of warm- and cool-water habitats that are the
result of a lack of rapid thermal and hydrodynamic mixing with the main river channel flow
and groundwater (Sullivan et al., 2021) and multidimensional connections to the adjacent
landscape (Torgersen et al., 2022). This complexity makes their identification, measurement,
protection, and management a challenge. However, progress has been made in understanding
both the physical processes that create and maintain CWRs as well as their biological
importance.

Previous reviews have focused on identifying CWRs and determining their hydrological

and ecological context to protect, manage, and restore them (Ebersole et al., 2020; Morelli
et al., 2016; Torgersen et al., 2012). However, the links between CWR science and policy
have not been clearly defined in the context of aquatic conservation; therefore, there is a
need to evaluate the effectiveness of policies aimed at conserving the physical processes that
create and maintain CWRs, the connectivity among CWRs, and thermal heterogeneity in
general (Ebersole et al., 2020). Efforts to develop a framework to integrate science, policy,
and management of CWR also have been limited (Ebersole et al., 2020) but are needed to
address impacts and potential social conflicts arising from incompatible human activities
and uses.

Here, we present the outcomes of an international workshop convened in 2021 to better
understand and address science-policy gaps in CWR management. This is the first time

an international group of scientists, environmental regulators, and resource managers have
come together to address the need to integrate science, indigenous knowledge, policy,

and management of CWRs and the species that rely on them. To inform policies and
management related to CWRs, we (1) synthesize the state of the biological, physical, and
social science, (2) identify policy and management-related research and policy gaps, (3)
compare policy and management across continents using five case studies, and (4) propose
a management and conservation framework targeted towards scientists, environmental
regulators, and resource managers. The first three sections focus on the state of CWR
science and management and identify gaps in research and management. The final section
integrates science and management and provides a framework for supporting conservation
and management actions and improving outcomes for coldwater organisms and the people
who depend on them. We use “interested groups” instead of “stakeholders” throughout the
review. The former term is more inclusive with respect to rights holders such as Indigenous
peoples and more reflective of a participatory process (Reed & Rudman, 2022). Because
of the emphasis on fish in the literature, the proposed framework uses coldwater fishes as
proxies for all mobile coldwater organisms present in global freshwaters (Figure S1).
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2| STATE OF THE SCIENCE

In this section, we synthesize the state of the physical, biological, social sciences, and recent
advances in monitoring and modeling tools available to inform ecological research and
management of CWRs. We also identify critical research gaps and opportunities to address
research and management challenges. Because inconsistent terminology can interfere with
clear communication among interdisciplinary research and management teams and can delay
the adoption of science into management and policy, we highlight differences between
terms: “refuge” and “refugium/refugia,” and “cold-water refuges,” and “cold water patches”
(CWPs).

Definitions of the terms “refuge” and “refugium/refugia” have been discussed extensively

in aquatic ecosystems (Keppel et al., 2012; Morelli et al., 2016; Reside et al., 2019),

with numerous studies focused on thermal refuges in both freshwater and marine systems
(Bongaerts et al., 2010; Frade et al., 2018; MacDonald et al., 2018; Sullivan et al., 2021;
Torgersen et al., 2012). The most important distinction is that “refugium/refugia” refers

to conditions sufficient to ensure long-term species persistence, whereas “refuge” refers

to a habitat unit capable of aiding the short-term survival of individuals (Ebersole et al.,
2020; Sullivan et al., 2021). Cold-water patches are areas of water that are cooler than

the surrounding ambient water, distributed longitudinally, laterally, and vertically in the
water column, and variable in size and location over time (Wawrzyniak et al., 2016).

When coldwater organisms use discrete CWPs within rivers for thermal relief, CWPs

are considered cold-water refuges (e.g., shaded areas, tributaries, deep pools, groundwater
upwelling zones; Dugdale, 2016; Ebersole et al., 2003a; Torgersen et al., 1999). Recognizing
the interaction between “refuge” and “refugia,” we adopt the terminology used in Sullivan
et al. (2021), where CWRs are subsets of discrete CWPs known to be used by fish or other
cold-water adapted organisms during the warm season. When discussing physical properties,
we use the terminology CWP, whereas when we focus on their use by biota, we use CWR.

2.1| Hydrology and geomorphology

The scientific understanding of the processes that create and maintain CWPs in

the landscape are well described. These physical (geologic and landscape features),
hydrological, and atmospheric processes operate at multiple scales from the reach to the
watershed (Dugdale et al., 2015; Ebersole et al., 2003b; Mejia et al., 2020; Monk et al.,
2013; Torgersen et al., 2012). Cold-water patches have longitudinal (upstream-downstream),
lateral (in-stream and floodplain), vertical (hyporheic zone and groundwater), and temporal
connections to the adjacent landscape (Torgersen et al., 2022). Thus, the spatiotemporal
variability of hydrological connectivity, climate, land use, and geological setting affects
CWP characteristics (Dugdale et al., 2015). These characteristics include their size,
geometry, temporal persistence, spatial distribution along the river network, and type of
thermal response (Arrigoni et al., 2008; Dugdale et al., 2013, 2015; Dzara et al., 2019;
Fullerton et al., 2018; Wawrzyniak et al., 2013). Cold-water patch thermal responses can
be described in relation to differences in the mean, amplitude, and phase between the

diel temperature cycle of the CWP and ambient water. A “cooled” response indicates a
difference in means, a “buffered” response is a difference in amplitude, and a “lagged”
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response is a difference in phase between respective water temperature signals (Arrigoni et
al., 2008). Cold-water patches in rivers and streams are associated with tributary confluences
or plumes, lateral seeps, springbrooks, side channels, alcoves, hyporheic upwelling, and
wall-based channels and pools (for a thorough description of these features, see Dugdale et
al., 2013; Ebersole et al., 2003a; Torgersen et al., 2012).

Studies have suggested that under climate change, CWPs may decrease in size and number
and may become fragmented (Daigle et al., 2015; Fullerton et al., 2018). These changes
affect thermal heterogeneity in reaches with historically abundant cold-water habitats
(Fullerton et al., 2018; Kuhn et al., 2021) and may increase the distance between CWPs,
thereby limiting accessibility (Fullerton et al., 2018). Also, the capacity of CWPs to provide
effective refuge in the future may be limited by a long-term decline in groundwater storage
due to excessive withdrawals for other human uses. Groundwater discharge generates
streamflow and influences stream thermal regimes because groundwater is generally cooler
than surface water during the warm season and warmer in the cooler season (Bierkens &
Wada, 2019). Lateral seeps and springbrooks sourced by shallow groundwater may exhibit
more variable and higher temperatures over time due to climate change (Hare et al., 2021;
KarisAllen et al., 2022). Perennial streams also can become intermittent during extended
dry periods (Costigan et al., 2015; Gendaszek et al., 2020; Price et al., 2021), thereby
disconnecting CWPs from warm stream reaches in headwater systems (Briggs et al., 2022).
Cold-water patches fully mix with ambient water at high streamflow in rivers draining large
stratified natural lakes that show abrupt wind-driven drops in river temperature, leading to
the loss of discrete CWPs (Lisi & Schindler, 2015) and a reduction in CWRs. Armored

and clogged streambed sediment (i.e., the erosion-resistant layer of relatively large particles
that is established on the surface of the streambed through the removal of finer particles

by stream flow) can also impact CWPs by limiting water exchange with groundwater
(Wawrzyniak et al., 2016) and reducing groundwater discharge points that can dry out when
the water table level lowers as a result of channel incision from mining, logging, grazing,
channel straightening, and sediment starvation (Marteau et al., 2022).

Biology and ecology

Thermal requirements of coldwater fishes and their responses to temperature heterogeneity
have been reviewed extensively (Amat-Trigo et al., 2023; Kefford et al., 2022; Morash et
al., 2021; Richter & Kolmes, 2005). Here, we focus on recent advances in thermal biology
relating to stress, heat tolerance, and CWR use. We also emphasize that various CWPs can
serve as CWRs, but their refuge function for thermally stressed organisms can be difficult
to assess (Barrett & Armstrong, 2022). In the context of fish thermal requirements, research
has focused on thermal performance curves and thermal tolerances. Performance curves or
thermal niches relate to performance or fitness as a function of body temperature, whereas
thermal tolerances apply to temperature thresholds at which survival or performance changes
abruptly (Kingsolver & Buckley, 2017). Prior thermal history, time scale, and thermal
heterogeneity affect how coldwater organisms respond to temperature (Kefford et al., 2022;
Kingsolver & Buckley, 2017; Morash et al., 2021).
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Physiological processes, including energy assimilation, growth, and gonad development, are
impaired at temperatures considerably higher or lower than an organism’s range of thermal
tolerance (Beer & Steel, 2018; Devine et al., 2021; Elliott & Elliott, 2010; McCullough

et al., 2009). Most organisms require diverse thermal habitats to grow and reproduce
(Armstrong et al., 2021; Hahlbeck et al., 2022), and their thermal tolerances change
throughout their life cycle (Dahlke et al., 2020). Thus, recent studies have recommended
that river management consider thermal heterogeneity and thermal niche requirements to
protect coldwater fish populations (Armstrong et al., 2021; Ebersole et al., 2020; Snyder
et al., 2022; Steel et al., 2017). This is particularly crucial for species at the latitudinal or
altitudinal limits of their range if they also must maintain their resilience to other human
activities such as land-use change, hydropower generation, and water abstraction.

To cope with thermal stress, juvenile and adult coldwater fishes may either resist warm
conditions by moving long distances to tributaries or short distances to behaviorally
thermoregulate in CWRs, or they may remain in river mainstems and tolerate warm
conditions (Barrett & Armstrong, 2022). Thermoregulation involves moving between
ambient water temperature and CWRs to maintain narrow temperature ranges consistent
with physiologically optimal temperatures (Amat-Trigo et al., 2023; Brewitt & Danner,
2014; Frechette et al., 2018; Gutowsky et al., 2017). Cold-water refuges thus support
species’ persistence by enabling individuals to exploit fine-scale thermal heterogeneity

in systems where ambient thermal conditions would be lethal (Armstrong et al., 2021;
Brewitt & Danner, 2014; Corey et al., 2017). However, there are trade-offs to using CWRs
because the spatial aggregation of fish may cause food resources to be locally depleted
(Armstrong & Griffiths, 2001) which, in turn, increases exploitative competition between
individuals (Brewitt et al., 2017). Therefore, individuals may need to move in and out of
the refuge to forage, digest, and avoid competition (Armstrong & Schindler, 2013; Brewitt
etal., 2017; Hitt et al., 2017). Additionally, fish density and health can influence the

spread and severity of parasites and infectious diseases (Beldomenico & Begon, 2010;
Krkosek, 2017). Cold-water refuges may decrease the spread of disease because most
parasites and bacteria grow and reproduce more rapidly at higher temperatures than those
observed in CWRs but proximity can potentially increase the spread of the diseases (Benda
et al., 2015; Chiaramonte et al., 2016). Density dependent thresholds influencing disease
spread are still poorly understood (Chiaramonte et al., 2016). Finally, CWRs can delay
movement during warm periods by causing fish to remain in cool waters where they may be
subject to increased predation or angling pressure. These behavioral changes, while enabling
individuals to escape lethal temperatures, can lower the likelihood of reaching spawning
grounds or decrease the fitness of offspring (Fitzgerald et al., 2021; Guillen, 2003; Keefer et
al., 2009), thus affecting long-term population persistence.

Human dimensions

Understanding how human activities can impact CWRs is critical for resource planning (e.g.,
mapping and prioritization), better management decision-making, and policy development
(Ebersole et al., 2020). Limited recognition of CWRs in environmental policy and
management may lead to degradation of CWRs. Social conflicts may also occur when
incompatible interests overlap and CWRs become limited. Thus, integrating human
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dimensions into CWR research and management is critical for their effective management.
However, CWRs and water temperature heterogeneity more broadly are not common
topics in the social science literature (although this is beginning to change; Hirsch, 2020;
Woelfle-Hazard, 2022). This section focuses on three major human dimensions’ topics
that can influence CWR management: historic context for the use of the term “cold-water
refuge,” potential ways humans can impact CWRs, and social conflicts that may arise from
implementing CWR conservation measures.

Indigenous and non-Indigenous peoples have long been aware of the importance of the
hydrological features that create CWRs and the biota that use them, and they have depended
on CWRs for millennia as sources of local food and cultural identity (Aboriginal Affaires,
2021; Allen, 2005; Atlas et al., 2021; Griebler & Avramov, 2015; Hirsch, 2020; Svanberg &
Locker, 2020). However, recognition of CWR as an integrated concept in the social sciences
and regulatory realm has been limited. Early use of these cold-water areas by humans

for cultural, subsistence, and recreational purposes has been documented worldwide, with
examples from Sweden (Bergman & Ramgqvist, 2018) and the Americas (Yu, 2015). The
earliest known use of the thermal refuge concept in print was Walton (1653), who observed
fish in ponds using cold-water areas in the summer and warm-water areas in the winter

to avoid thermal stress. The first known mention of CWRs in the peer-reviewed literature
was Huntsman (1942), who reported observations of Atlantic salmon (Sa/mo salar) and
brook trout (Salvelinus fontinalis) in Nova Scotia, Canada behaviorally thermoregulating

in cooler side channels. The use of the term “cold-water refuge” in aquatic ecology is
relatively recent (Kaya et al., 1977; Torgersen et al., 2012), but the concept has emerged

as an important conservation consideration for freshwater fish populations (Ebersole et al.,
2020), even though policy development has not kept pace with scientific advances in CWR
understanding.

The slow assimilation of CWR concepts into policy and limited recognition in
environmental policy and management makes it difficult to manage and regulate the impact
of competing activities that affect CWR quantity and quality including (1) surface and
groundwater withdrawals for drinking water or irrigation; (Dzara et al., 2019); (2) dam-
related flow and temperature alterations from epilimnetic and hypolimnetic releases (Ernst
et al., 2015); (3) point source discharges such as thermal effluent from power generation,
waste-water, and stormwater (Caldwell et al., 2019; Chen et al., 2021); (4) alterations to in-
stream habitat that affect hydraulic mixing and the surrounding land use (e.g., deforestation),
which in turn impacts hydrologic exchanges or shading (Bense et al., 2008; Kurylyk et al.,
2015); (5) human activities such as angling, damming, and river recreation that directly
stress or disrupt the use of CWRs by fishes (Reid, 2007); and (6) stocking of non-native
species that limit native species’ use of refuges (Ramberg-Pihl, 2020) (Figure 2). Climate
change exacerbates these human disturbances, thereby escalating competing demands for
global water resources by ecosystems and humans (van Vliet et al., 2013).

Competing activities affecting CWRs may create social conflicts that complicate
management (Figure 2). Here, we illustrate competing activities and their impact on CWRs.
For example, in times of thermal stress, fisheries are often closed to reduce the impact of
recreational fishing, specifically in rivers with existing regulations for CWRs (DFO, 2012).
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Conflicts between anglers and fish conservation have occurred in Montana (USA), where
increasingly frequent temperature and drought-related fishery closures (7= 74 imposed
from 2015 to 2017 [Montana Fish, Wildlife and Parks, 2022]) are already leading to a

shift in angler behavior and in the angling economy away from impacted waters and

toward drought-resistant, colder rivers (Cline et al., 2022). The Indian and Hudson rivers

in New York, USA provide another example of conflicts between recreational activities and
fisheries management. In the summer, periodic reservoir releases support rafting when water
temperatures frequently exceed thermal thresholds for trout survival (Ernst et al., 2015).
These surface water releases decrease the size and number of CWRs, thereby reducing
small-scale thermal heterogeneity while mean river water temperatures are unaffected.

Also, when resources are perceived as limited, there is an increased risk of conflict

between humans and wildlife that seek to use similar resources (van Rees et al., 2019;

e.g., predatory birds feeding on fish aggregation sites that are close to fishing activities;
Figure 1). Water withdrawals, reservoir storage management, and thermopeaking (i.e., sharp
intermittent alterations of stream temperature associated with hydropeaking releases from
storage hydropower plants [Zolezzi et al., 2011]) affect thermal and flow regimes and,
ultimately, the quantity and quality of CWRs. In urban rivers supporting high population
centers and industrial development opportunities, thermal heterogeneity and the quantity and
quality of CWRs are reduced by flood protection (e.g., impervious channels that transfer
heat and limit surface-groundwater interactions), water extraction (Carlson et al., 2020), and
wastewater discharge (Abdi et al., 2020; Arora et al., 2018).

Monitoring and modeling

Managing CWRs requires robust monitoring networks for water temperature and occupancy
by organisms (Table 1, Figure 2). Strategic monitoring is also necessary to evaluate
management outcomes and adjust approaches as needed. Modeling, in combination with
monitoring, can help predict or explain CWR dynamics where data are either unavailable

or insufficient. Modeling also can be used to examine large-scale patterns, predict effects

of global changes, and assess management scenarios (Table 2; Jackson et al., 2017; Ouellet
et al., 2020). We expand on recent water temperature monitoring and modeling reviews by
Benyahya et al. (2007), Dugdale et al. (2017), and Ouellet et al. (2020), which did not

focus on CWRs, and we summarize the tools specifically available for CWR monitoring and
modeling (Tables 1 and 2). We describe the spatiotemporal domain, applications, logistical
and data requirements, and limitations to help guide future work on CWRs.

Identifying the distribution of CWPs is the first step towards monitoring them and can

be facilitated through a combination of the methods outlined below, alongside local and
traditional knowledge. CWRs are four-dimensional features, but tools used to assess their
physical extent are often constrained to two or three dimensions and confined to small

to moderate spatial scales (e.g., reach to river segment). Spatial mapping tools (Table 1,
Figure 2) include remote sensing-based two-dimensional (longitudinal and lateral) mapping
of CWPs at the water surface via thermal infrared (TIR) imaging from piloted aircraft
(Dugdale et al., 2013; Fullerton et al., 2015; Wawrzyniak et al., 2016), drones (Casas-Mulet
et al., 2020; Harvey et al., 2019), ground-based cameras (Tonolla et al., 2010), and walking
surveys with hand-held cameras (Briggs et al., 2013). Mapping also can be done with fiber
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optic distributed temperature sensing (DTS; Hare et al., 2015; Rosenberry et al., 2016) or
float surveys conducted by dragging temperature probes (Vaccaro & Maloy, 2006), which
can extend monitoring into the temporal domain. Unlike TIR imaging, DTS and temperature
probes can be used at depths within the water column and thus extend monitoring to the
vertical domain.

With increasing water temperature, measuring the spatiotemporal variability of CWPs is
critical to understanding how thermal heterogeneity in rivers and streams is changing.
Conserving thermal heterogeneity is key to the climate resilience of coldwater organisms
(Kefford et al., 2022). However, most water temperature monitoring networks rely on point-
in-space temperature loggers and summarize data at coarse temporal scales (e.g., daily,
weekly, monthly), effectively limiting the detection of finer (hourly) or longer (seasonally)
temporal scale variability of CWPs. The discrete nature of loggers and small footprint (<1
m?2) also restricts the understanding of the spatial extent of CWPs. Nevertheless, monitoring
of large-scale temperature heterogeneity can be combined with fine spatial scale and high
temporal resolution data to capture both temporal dynamics and spatial heterogeneity
(Daigle et al., 2019). Loggers also can be distributed longitudinally and laterally within
river systems and vertically to capture deep CWPs and, when paired with air temperature
sensors, can be used to characterize groundwater influence on CWPs (Hare et al., 2021).
Data harmonization, that is, transforming data of the same type collected with comparable
methodology into the same variable names, unit terms, and structural formats, can combine
multiple fragmented data sources into large-scale regional analysis (Boyer et al., 2016; Isaak
etal., 2017; Jackson et al., 2020; Varadharajan et al., 2022).

Numerous water temperature models have been developed and applied to simulate reach-,
segment-, and watershed-scale river thermal regimes and their responses to perturbations
such as deforestation, dam operations, climate change (Benyahya et al., 2007; Dugdale et
al., 2017; Ouellet et al., 2020). More recently, CWP and CWR modeling have integrated
monitoring implemented at different spatiotemporal scales to predict how future changes
to river hydrology and hydraulics or cold-water input may impact the ability of a CWP to
provide refuge (Table 2). Process-based or numerical models have been applied at reach
and watershed scales to identify thermally anomalous areas or reaches (Dzara et al., 2019;
Fuller et al., 2021; Lee et al., 2020). Also, subsurface heat transfer models have been used
to investigate the impacts of climate change on groundwater flow rates and temperatures
at groundwater-sourced CWRs (KarisAllen et al., 2022; Kurylyk et al., 2014); but no in-
channel surface mixing dynamics have been considered in these studies. To our knowledge,
few studies have explicitly modeled the occurrence and dynamics of CWRs (Saadi et al.,
2022; Wang et al., 2020). Monk et al. (2013) used partial least square regression to predict
CWRs by pairing landscape variables with aerial TIR imagery in a novel application.
They found that tributary-sourced refuges could be modeled based on their location in a
river network, surrounding forest conditions, soil type, and wetland distribution. Ebersole
et al. (2015) used random forest models to predict CWP occurrence at tributary junctions
in relation to water surplus provided by snowpack and other climatic variables. Daigle

et al. (2015) combined long-term water temperature monitoring, statistical models, and
climate scenarios to project the impact of warming on rivers known to contain CWRs for
salmon in eastern Canada. Other studies have applied statistical approaches to investigate the
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hydromorphological and physical habitat drivers of CWPs in riverscapes, aiming to improve
the models’ predictive capacity (Casas-Mulet et al., 2020; Dugdale et al., 2015; Mejia et al.,
2020; O’Sullivan et al., 2019) or predict potential CWPs decline following channel changes
(Wawrzyniak et al., 2016).

The dearth of water temperature modeling studies specifically considering CWRs may be
due to the lack of modeling tools that can be leveraged to simulate CWRs, particularly
across multiple spatiotemporal scales and domains (e.g., groundwater flowing to surface
water). One-dimensional river temperature models do not capture the complex and
multidimensional processes associated with CWRs, and this makes it difficult to accurately
simulate these dynamics. Furthermore, modeling studies that specifically focus on CWRs
demand detailed, high-resolution spatiotemporal data of CWR dynamics and physiographic,
hydromorphic, and meteorological data. Mechanistic modeling of CWR space-time
distribution over multiple scales, that is, reaches to riverscapes, is complex in terms of

data and computational capacity requirements, and thus there is limited understanding of the
interaction between processes driving CWP distribution.

From an ecological modeling perspective, CWR modeling also has integrated aquatic
organisms’ behavior including predation and parasite risk to quantify the benefits and
energetic and ecological costs of fish using CWRs (Armstrong et al., 2021; Brewitt &
Danner, 2014; Chiaramonte et al., 2016; McCullough et al., 2009; Snyder et al., 2019, 2020,
2022). New model applications such as Lee et al. (2020) have been implemented to inform
CWR management by combining predictions from a mechanistic model and a salmon life
cycle vulnerability analysis. However, human dimensions such as angler behavior, cultural
beliefs, and social conflicts (all of which may impact management of CWRs) have yet to be
incorporated into assessing impacts of human interactions on CWRs.

Challenges and opportunities for integration

We found that although CWR research is increasing globally, large geographic, taxonomic,
and conceptual gaps exist (Figure 3). Most research has focused on salmonid fishes

in the northern temperate regions and has strictly considered physical or ecological
questions relating to CWRs rather than integrated/interdisciplinary ones. Notwithstanding
the need for greater geographic representation in CWR research, the research gaps that we
identified can be grouped into overarching themes focused on understanding the interactions
among CWRs’ physical, hydrological, atmospheric, and biological processes, ecology,

and humans (Figure 3). Narrowing these gaps may help to develop better strategies for
conserving, restoring, and managing CWRs, with the overarching goal of improving species’
climate resilience. Additionally, more integration across tools, approaches, and disciplinary
boundaries is needed to design studies to monitor and manage CWRs and the species

using them. Social sciences that focus on governance, environmental policies, culture, and
economics may help institutions, policies, and practitioners develop collaborative CWR
management approaches focused on integrating multiple interacting resources, tribal, state,
and federal governments, interested groups, jurisdictions, and scales (Figure 3).

Scientists and managers may integrate tools, methodologies, and disciplines to capture
the inherent complexity of CWPs and CWRs that makes it challenging to identify them
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and predict where and under what conditions they will occur. Scientific and technological
advances in data integration are being made (Hare et al., 2021; Johnson et al., 2020)

but have not been applied in a management context. This requires integrating data across
multiple domains (i.e., air temperature, surface water, and groundwater) and tools (e.g.,
loggers, remote sensing) into routine water temperature monitoring networks and modeling
CWRs (Figure 3, Themes 1 and 2). However, this is further complicated by problems of
implementation scale and financial or institutional constraints. Nevertheless, scientists and
managers now have opportunities to use new tools and methodologies to improve their
understanding of CWRs.

Changes in size, distribution, and spatial configuration of CWPs will influence how
coldwater organisms detect and use them. Combining fine—spatial scale and high—-temporal
resolution mapping with temperature sensing tags of individual organisms can address
questions regarding the use of CWPs and intra- and inter-specific interactions within CWRs
(Figure 3, Theme 3). Understanding the size and distribution of CWPs, as well as the
consequences of decreased thermal heterogeneity, are also critical to answer management
questions at a population level and in a landscape context (Figure 3, Theme 4; Breau

etal., 2011; Fullerton et al., 2018; White et al., 2019; Woolnough et al., 2009). Thus,
scientists and managers may combine modeling techniques to assess long-term effects of
CWR use, including life cycle models, individual-based models, spatially explicit models,
and behavioral and physiological models. Such techniques may also broaden the scientific
understanding of how CWR use by individuals translates to population-level effects, and
how ecological interactions among multiple species and landscape settings affect the

costs and benefits of CWR use. Addressing these gaps also may provide information on
cumulative heat stress effects and impacts on body growth, survival, reproductive success,
and population persistence (Snyder et al., 2020, 2022).

MANAGEMENT AND CONSERVATION

Despite the importance of water temperature to the health of freshwater ecosystems, many
countries do not have explicit, ecologically relevant water temperature and CWR standards
or guidelines. This presents challenges for managing and conserving CWRs and thermal
heterogeneity. Globally, adoption of water quality standards or guidelines for protecting
aquatic life is mostly limited to high-income countries such as Australia, New Zealand,
Canada, Japan, European Union (EU) countries, and USA (Sun et al., 2021; United Nations
Environment, 2017).

The United Nations Environment Program (UNEP) links national-level monitoring to global
assessments and advises countries to develop water quality guidelines for ecosystems
through the International Water Quality Guidelines for Ecosystems (IWQGE) program

and the Global Environment Monitoring System for Freshwater (GEMS Water; United
Nations Environment Programme, 2018). Enrollment in the IWQGE program is voluntary,
and guidelines only encourage monitoring of physical and chemical stressors such as

water temperature. The IWQGE uses remote sensing to monitor changes in surface area

of waterbodies over time in aquatic ecosystems but does not monitor or protect specific
habitats or biota of cultural, economic, or ecological importance, such as salmonids. The
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GEMS program, one of the largest global databases of in-situ measurements of water quality
(Desbureaux et al., 2022), collects river water temperature from 72 countries, of which 38
have salmonids. The UNEP proposed benchmarks for “high integrity systems” to ensure no
deviation from water temperature background values or identifying optimum temperature
ranges of relevant species (United Nations Environment, 2017). Large-scale and long-term
integrative programs such as GEMS Water (with 267 basins and 5081 river stations) are
critical to track water temperature changes in transboundary rivers.

Overview of CWR regulatory structure

We reviewed policies and management practices that directly and indirectly affect water
temperature and CWRs (i.e., water quality, fishing, wetlands, riparian, and groundwater).
We focused on five case studies from North America, Europe, and Australia (Table 3; see
https://conservationrefuge.com/ for more details) where the authors have local knowledge.
We compared policy and management differences and inferred the level of integration or
lack of policies and management by reading and conducting a text mining analysis (Table
4) on 58 environmental regulations and management documents (Table S1; see methods and
results described in Table 4 and Figure S2).

We determined that CWRs were not identified in regulatory frameworks in most countries
(except USA and Canada). The establishment of temperature standards and guidelines and
fishing regulations are the two main ways by which water temperature, CWRs, and the

fish that use them are managed or regulated directly. Temperature standards and guidelines
are critical components of the assessment of water quality or ecological status for many
countries. However, water temperature is not always a metric that is included in water
quality assessments (United Nations Environment Programme, 2014). Fishing restrictions
due to warm summer water temperatures are in place in many cold-water rivers, regardless
of “formal” CWR designations in North America and parts of Europe, such as Spain, which
was not a case study.

Policies may indirectly affect CWRs and water temperature by addressing key drivers

of river thermal regimes (Figure 2). In the case studies, we identified three policy and
management categories that indirectly affect the physical aspects of CWRs. The first
category is associated with instream flows and may include water transfers and diversions,
dam and hydropower plant releases, and base flows. The second category is related

to groundwater connectivity and hyporheic exchange and may include aquifer recharge/
discharge or storage and wetland and floodplain management. The third category is
associated with riparian buffer management along riparian corridors that may be managed
differently depending on adjacent land-use practices, such as agriculture, forestry, or
urban development. We also identified policies and management actions that relate to the
biological aspects of CWRs, such as management of species occupying these features, and
the trade-offs between protecting one set of species versus another. Species management
also requires consideration of potential sources of conflict, such as conservation status or
invasive status, and their cultural, recreational, provisioning, and economic values.

There are multiple policies that can affect the physical and biological aspects of CWRs. For
example, we found that many regulations and policies affect directly CWRs by managing
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the organisms that use CWRs during thermal stress and protecting species of conservation
interest via fishing restrictions. Most regulations and policies do not protect the cold-water
patch per se, except in the Restigouche River case study. In the Restigouche River,
protections of the confluence plume and tributary drainage area were established at the
local level to protect CWPs under the provincial wetlands and watercourse management
plan (MRC Avignon, 2022). Lastly, policies and regulations may specify river temperature
guidelines or standards but rarely contain specific CWR guidelines, except for the Lower
Columbia River case study.

The Lower Columbia River in the state of Oregon (USA), is the only place in the world

that has a CWR standard and a temperature standard for the mainstem of the river. The
Oregon Department of Environmental Quality (ODEQ) set a water temperature standard

of 20°C for the Lower Columbia River to protect migrating salmon and steelhead listed
under the Endangered Species Act. It also defines CWRs as “those portions of a water body
where, or times during the diel temperature cycle when, the water temperature is at least 2°C
colder than the daily maximum temperature of the adjacent well mixed flow of the water
body” (OAR 340-041-0002(10)). Regulations by ODEQ further stipulate that the Lower
Columbia River “must have cold-water refugia sufficiently distributed so as to allow salmon
and steelhead migration without significant adverse effects from higher water temperatures
elsewhere in the water body.” However, like all temperature standards based on maximum
temperatures, this does not fully incorporate the spatiotemporal variability of the thermal
regime (Poole & Berman, 2001). This variability is important to fish growth at times of the
year when fish are not thermally stressed (Armstrong et al., 2021).

In the Lower Columbia River case study, CWR and temperature standards are integrated,

in part, into fishing regulations and designation of cold-water habitat as an aquatic resource
of special concern under the Oregon Department of State Lands (Rule 141-085-0510),
which can affect the permitting of impacts to “cold-water habitat” designated areas and
compensatory mitigation requirements for those unavoidable permitted impacts. For CWRs
provided by tributaries, maintenance of CWR function can be partially achieved through
riparian shade management implemented through various waterbody-specific plans that
target meeting temperature standards. Still, CWRs are not yet integrated into groundwater or
wetland policies, which have been associated in the literature with CWR persistence (Monk
et al., 2013; Wawrzyniak et al., 2016) or sufficiency (Fullerton et al., 2018; Snyder et al.,
2020).

Existing water temperature and CWR policies and management

In the text mining analysis, we found that terms or keywords associated with CWRs

were not used frequently in the documents that we examined (Table 4). Also, the term
“temperature” was mainly associated with water quality standards and salmonids. In
contrast, the term “refuge” was broadly associated with other keywords and its associations
were inconsistent across case studies. Reading through the documents helped us establish
the context where these terms were mentioned, and we determined that the term “refuge”
generally was related to stressors such as flooding and temperature, or it was used to
describe wildlife management areas. The environmental regulations and planning documents
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of the case studies also confirmed that most keywords associated with CWRs (except
temperature) were found in only two documents related to fishing regulations and water
quality standards in North America; this suggested a lack of policies that specifically
addressed CWRs. Moreover, we identified that large watersheds crossing state or provincial
boundaries were inconsistently covered by some policies, such as fishing restrictions or
closures. For example, warm water protocols are only on the New Brunswick portion side
of the Restigouche River (and not on the Quebec side), thermal angling sanctuaries are only
on the Oregon State side of the Lower Columbia River (and not on the Washington State
side), and summer fishing closures are in state-designated “Trout Management Areas” that
include nine cold-water tributary confluences only in the portion of the Housatonic River in
Connecticut (and not in New York State).

In conducting this review, we found that policies or management actions generally do not
explicitly recognize the physical, hydrological, and atmospheric processes that create and
maintain thermal heterogeneity and CWRs. Therefore, they are not incorporated into active
CWR management. There are rare exceptions as part of waterbody-specific implementation
plans under the Clean Water Act or in the relicensing of hydropower projects in the USA.
For example, in the Housatonic River case study, CWRs had been identified as part of
“Trout Management Areas.” In the current North American context, Indigenous peoples and
local interested groups also have limited opportunity to provide input for CWR protection
because protection is primarily driven by top-down policies, but there are exceptions, such as
the Restigouche River’s county-level protections (MRC Avignon, 2022). In the Restigouche
River case study, interested groups have willingly gone beyond the federal and provincial
(large scale) mandates and created local protections that surpass existing regulations. This

is an example of top-down regulatory structure where large-scale regulatory structures are
flexible to anticipate responses that can vary from one jurisdiction to another (Chang et al.,
2014). Creating and restoring physical processes that conserve thermal heterogeneity and
CWRs may be accomplished through a bottom-up approach when communities engage, and
community priorities align with top-down conservation priorities. For example, restoring
thermal heterogeneity and CWRs may be a by-product of restoring other processes or
habitats at different scales. However, a bottom-up approach can have drawbacks when there
is not a strong regulatory or incentive framework or external funding (Gaymer et al., 2014).

TOWARDS BUILDING A CWR CONSERVATION FRAMEWORK

Other reviews on conserving, enhancing, and restoring CWRs have mentioned the need

for scientists and resource managers to work together to link science and management

to support CWR conservation (Ebersole et al., 2020; Morelli et al., 2016; Torgersen

etal., 2012). Here, we propose a framework that integrates CWR science, policy, and
management and adapts to the changing science and environment. The framework (see Table
3 with framework components and their connections to case studies; Table 5 summarizes
framework components and linkages) creates possibilities to safeguard coldwater organisms
against the effects of climate change by embedding CWRs within larger considerations

of thermal heterogeneity (Poole et al., 2004) and other environmental stressors that may
affect cold-water organisms in the future (Myers et al., 2017). The framework integrates
information on how to evaluate CWR resilience to climate change and future management
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needs (Figure 4) and calls for coordination among regulatory jurisdictions (Figure 5) and
incorporating adaptive management (Figure 6).

Together, Figures 4 through 6 build the foundation of our proposed CWR conservation
framework. Figure 4 presents a sequential approach to help researchers and managers
identify and evaluate CWRs and their biological linkages to implement protection and
conservation actions. Coordination across multiple regulatory jurisdictions at the watershed
scale is challenging but is necessary to align consistent strategies guided by common
socioeconomic values and objectives of all interested groups (Figure 5). Finally, there is

an abundant literature on adaptive management, but this concept has yet to be applied to
CWR conservation as described in Figure 6. The triple-loop approach is appropriate given
the dynamic nature of CWRs, in that it allows for the periodic re-evaluation of assumptions
and considers whether to alter rules for decision-making and changing governance.

Collaborative research between scientists and managers, termed “co-production of
knowledge” (Cook et al., 2013; Cooke et al., 2021; Djenontin & Meadow, 2018; Kurle et al.,
2022), occurs early in the proposed framework when the focus is on identifying management
goals and characterizing CWRs (Figure 4). It is important to adopt a common terminology
across disciplines (sensu Sullivan et al., 2021) to define CWRs, distinguish between CWRs
and CWPs, and apply consistent CWR classifications (Dugdale et al., 2013; Ebersole et

al., 2003a; Torgersen et al., 2012). The framework accounts for human dimensions and
integrates traditional ecological and cultural knowledge (sensu Dunham et al., 2018). Using
multiple sources of knowledge can provide a nuanced context and develop trust among
interested groups (Reid et al., 2021). For instance, Indigenous peoples and river users (e.g.,
kayakers, anglers) can identify CWR locations and share information on CWRs to help
guide management. In addition, economic and cultural values and competing uses from
multiple interested groups affect the protection, management, and restoration of CWRs.
Thus, clear and transparent discussions generate trust and reciprocity, and promote sharing
of cultural knowledge, conflict resolution, and the development of an effective framework
for CWR conservation and management (Ebersole et al., 2020).

Where temperature regulations do not exist, some jurisdictions may designate areas as “cold
water habitats” or “habitats of special concern” through fishing, water resource, or habitat
protection regulations rather than setting temperature standards. These areas are important
because they provide functions, values, and habitats that are limited in quantity or have been
disproportionately lost due to prior impacts. Additionally, integrating CWR management
within existing policies that influence the formation and persistence of CWRs (e.g., riparian
buffers, wetlands, groundwater, water use management) may require either a modification of
existing policies recognizing their interdependencies with other policies or the development
of new policies (Dunham et al., 2018; Ebersole et al., 2020). Policy modifications or
creation of new policies also may help manage CWRs as part of watershed management and
coldwater species conservation programs.

In regions where temperature standards exist, it is important to define CWR standards
(e.g., the Lower Columbia River case study) after reconciling inconsistencies regarding
thermal thresholds of target species. It is also essential to propose definitions that enable
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enforcement (where applicable) and to explicitly acknowledge the dynamic nature of CWRs
while supporting management objectives. For example, salmonids respond to temperature
changes of less than 1°C (Berman & Quinn, 1991), yet some assessment tools have a
margin of error greater than 1°C (Whittier et al., 2020). Furthermore, the physiological
consequences of thermal exposure (frequency and magnitude) vary depending on life

stages and species-specific tolerances. This creates challenges when dealing with multiple
thermally sensitive species. Thus, it may be helpful to define CWRs as areas that (1)

have lower warm-season water temperature (at least 1°C baseline) than the mainstem, (2)
maintain temporal persistence, and (3) have thermal thresholds (magnitude difference or
thermal sensitivity of the targeted species) that minimize cumulative effects of heat stress.

Temporal persistence and threshold criteria for the CWR definition may need to be adjusted
through a process involving interested groups and a spatially or temporally dynamic adaptive
management approach (Figure 6). While it is difficult to provide a universal standard given
the highly species-specific and geographically dependent nature of thermal and habitat
requirements, an overarching goal can be to maintain thermal heterogeneity at multiple
temporal scales (i.e., acute, diel, seasonal) and to promote functional thermal niches for
aquatic life (McCullough, 2011). As mentioned above in the section on direct and indirect
policies and management, the only example of a CWR temperature standard is in the Lower
Columbia River case study. Using the thermal requirements of the most sensitive coldwater
organisms that currently exist—or historically existed—may ensure that CWRs provide
sufficient protection to all affected species.

Physical and hydrological processes, that is, incomplete mixing of thermally and
hydrologically distinct flows or thermal stratification, and the geomorphological settings
that create and sustain cold water, such as channel slope, channel confinement, floodplain
geometry, and planform patterns, are maintained by multi-dimensional connections to the
adjacent landscape (Dugdale et al., 2015; Sullivan et al., 2021; Torgersen et al., 2012).

The framework identifies CWRs to be recognized and treated as distinct operational
landscape units that are separate from the mainstem and have their own unique management
considerations that integrate landscape level processes (e.g., physical and hydrological)
that drive CWR formation and maintenance (Merhoeven et al., 2008). Using operational
landscape units also raises managers’ awareness of the importance of spatial processes and
connectivity in the landscape (Bernhardt et al., 2017; Verhoeven et al., 2008), which are
fundamentally important to CWR management and conservation. In this manner, CWRs
may be identified and characterized as part of larger watershed or basin management
efforts. Managers may find it instructive to prioritize these operational landscape units
using physical and biological criteria by considering spatial tradeoffs when distributions
shift under varying conditions. Physical criteria may include size (areal extent and volume),
temporal persistence, mainstem connectivity, and thermal response magnitude. Biological
criteria may include use by target species, prey availability within CWRs and adjacent
habitats, and presence of predators.

Managers may be able to improve coordination and prioritization across jurisdictions by
adapting the scale of protection and management. For example, such an approach may
involve setting goals and monetary structures, sharing resources and technical expertise,
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and following the nested hierarchical organization of CWRs. Small- and medium-scale or
bottom-up organizations, such as watershed groups and local governments, may find it
useful to concentrate on protecting and restoring processes that create and maintain CWRs.
At broader scales, large or top-down organizations, such as federal and transboundary
entities and governments, may be able to provide the legal framework to develop regulatory
or incentive-based structures to promote multi-objective policies (Figure 5). The proposed
framework incorporates the inherently multidimensional nature of CWRs by linking science,
policy, and management across scales in space and time (Table 5).

CONCLUSIONS

Bridging the gap between science and management of CWRs requires interdisciplinary
approaches to understanding complex interactions among physical, ecological, social, and
cultural factors. This review showed that, while there are many opportunities for scientific
advancement, the current state of the sciences is sufficient to begin informing policy and
management. However, most of the available research on CWRs has focused on salmonids
in northern temperate regions, and current modeling tools do not capture the complex

and multidimensional processes associated with CWRs. Addressing critical research gaps
is essential to support CWR adaptive management. Areas in need of further investigation
include interactions among physical, hydrological, and atmospheric processes that affect
CWRs and the adjacent landscape and among multiple species (including humans) and
ecological communities using CWRs.

Our review of policies and management practices revealed that many countries lack
ecologically relevant water temperature guidelines. Where they do exist, these guidelines

are often not integrated with other regulations that may affect CWRs. Furthermore, the
guidelines may not be coordinated within watershed management plans. There also is a
disconnect between the ecological understanding of water temperature and the policies that
ultimately affect the ability of practitioners to conserve CWRs. The framework outlined here
is a path forward for managing CWRs using existing and new policies.

We identified four tasks to address thermal heterogeneity and CWR policy needs. First,
addressing science gaps requires an interdisciplinary approach with collaboration among
physical, biological, and social scientists as well as with policymakers and resource
managers. Open conversations about legislation and funding mechanisms can foster better
coordination. Such collaboration is essential to address research gaps, increase knowledge
transfer, facilitate targeted funding, and improve engagement in CWR conservation.
Second, CWR policy intersects with diverse interested groups, policies, territories, and
institutions. Some measures to protect CWRs may be controversial or involve trade-offs.
Early participation by a wide range of interested groups—including Indigenous peoples—
is important for identifying common values and building trust, which can help to avoid
conflicts as policies are implemented (Chapman et al., 2020). Third, regulatory, incentive-
based, and monetary structures can promote multi-objective policies. Fourth, management
and regulation of CWRs as operational landscape units integrated into watershed and species
conservation efforts may be a particularly effective approach.
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Specific measures to conserve CWRs include designating “cold-water habitats,” restricting
or closing fishing during warm periods, and having temperature standards or guidelines.
Existing water temperature standards also may be modified to include a CWR definition that
is specific, clear, implementable, and recognizes their dynamic nature. Cold-water refuges
are a key element of cold-water habitat and species management that has been largely
overlooked but could prove essential in a changing climate. Managers may not be able to
control rising water temperatures due to global change, but conserving and restoring CWRs
and thermal heterogeneity, and the processes that create and maintain them, may improve
short-term survival of fish and other coldwater organisms during warm periods.
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FIGURE 1.
Brown trout (Sa/mo trutta) observed behaviorally thermoregulating in a cold-water refuge

(CWR) to avoid high water temperatures in the Upper Housatonic River in Connecticut,
USA (a). Designated areas are closed to anglers and delineated by signs posted (b). Thermal
infrared (TIR) image of the surface water temperature of the cold-water plume entering

the river (c). Images courtesy of Christopher Sullivan and Nancy Marek, University of
Connecticut, USA.
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FIGURE 2.
Linking science and policies to protect, enhance, and restore cold-water refuges and thermal

heterogeneity: (a) identification of cold-water refuges through monitoring and modeling to
map and prioritize areas of interest, (b) assessment of potential conflicts among interested
groups to align policies and management, and (c) assessment of legal and institutional
constraints by identifying direct and indirect management approaches and policies.
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current and future climate, and different Solutions
management scenarios
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FIGURE 3.
Overarching research gap themes, outstanding general questions, and proposed solutions to

improve resilience of cold-water patches (CWPs) and cold-water refuges (CWRS).
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Step 6
Implementation and
evaluation
Evaluate CWP and CWR
distribution. Protect existing
CWPs, CWRs and formative
processes

Reach to river scale
implementation as part of
large-scale planning

S—

Sequential approach to implement and evaluate science-based management and policies
related to cold-water refuges and thermal heterogeneity.
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FIGURE 5.
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Page 35

Share
information
and resources

Spatial alignment of policies and management strategies of cold-water refuges (CWRs).
Example shows: (a) watershed with multiple jurisdictions and interested groups (as
represented by different colors and boxes) with potentially conflicting values and objectives
that lead to unstructured and inconsistent management and policies; (b) watershed as the
planning unit, where strategies align to create a consistent management plan guided by
common socioeconomic values and converging objectives of all interested groups (multiple
jurisdictions and interested groups are still in place); and (c) scales of organization with

corresponding management prioritization.
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FIGURE 6.
Triple-loop learning adaptive management approach showing the different pathways and

outcomes of cold-water refuge (CWR) policies. Policy provides a baseline to support
management, while implementing an adaptive management approach to account for the
spatial and temporal variability of CWRs. Each loop involves reevaluating assumptions to
decide whether to alter the decision-making framework. Figure adapted from Kittinger et al.
(2011) and Morelli et al. (2016).
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