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Introduction

"In statistical practice, perhaps the single biggest problem with p-values is that they are often misinterpreted in ways that lead to overstating the evidence against the null hypothesis" [START_REF] Benjamin | Three recommendations for improving the use of p-values[END_REF]. The argument that p-values exaggerate the evidence against the null hypothesis has gained ground over decades [START_REF] Berger | Testing a point null hypothesis: The irreconcilability of p values and evidence[END_REF][START_REF] Goodman | Values, Hypothesis Tests, and Likelihood: Implications for Epidemiology of a Neglected Historical Debate[END_REF][START_REF] Stang | The ongoing tyranny of statistical significance testing in biomedical research[END_REF], culminating in an initiative to reduce the level of statistical significance from 0.05 to 0.005 in certain fields of social science [START_REF] Benjamin | Redefine statistical significance[END_REF][START_REF] Machery | The alpha war[END_REF].

According to that Bayesian school of thought, as opposed to a classical frequentist school [START_REF] Mayo | Statistical significance and its critics: practicing damaging science, or damaging scientific practice?[END_REF], the ideal measure of evidence against a null hypothesis is the constant B (x ) of proportionality between the posterior odds and the prior odds of the null hypothesis:

Pr (H 0 | X = x ) 1 -Pr (H 0 | X = x ) = B (x ) Pr (H 0 ) 1 -Pr (H 0 )
, where H 0 is the null hypothesis, X is the random sample of data, and x is the observed sample of data. B (x ), called the Bayes factor, quantifies the strength of the evidence in x against H 0 [START_REF] Jeffreys | Theory of Probability[END_REF][START_REF] Kass | Bayes factors[END_REF] in the sense that lower values of B (x ) mean there is more evidence that H 0 is false, for lower values mean the posterior odds is smaller relative to the prior odds:

B (x ) = Pr(H 0 | X =x ) 1-Pr(H 0 | X =x )/
Pr(H 0 ) 1-Pr(H 0 ) .

(1)

An advantage of the Bayes factor is that it does not depend on Pr (H 0 ), the prior probability of the null hypothesis; by Bayes's theorem,

B (x ) = f 0 (x ) f 1 (x ) ,
where f 0 (x ) is the probability density of the sample conditional on H 0 , and f 1 (x ) the probability density of the sample conditional on H 1 , the alternative hypothesis that H 0 is false.

If H 0 and H 1 correspond to single values of the parameter of interest, possibly using a pseudolikelihood to eliminate any nuisance parameters, then B (x ) is called the likelihood ratio, seen as a measure of statistical evidence within a third school of thought [START_REF] Edwards | Likelihood[END_REF][START_REF] Royall | Statistical Evidence: A Likelihood Paradigm[END_REF][START_REF] Blume | Likelihood methods for measuring statistical evidence[END_REF][START_REF] Strug | A pure likelihood approach to the analysis of genetic association data: An alternative to Bayesian and frequentist analysis[END_REF], which can trace its roots to the likelihood intervals of Fisher (1973, pp. 75-76). More generally, f 0 (x ) and f 1 (x ) are called integrated likelihoods (e.g., [START_REF] Severini | Integrated likelihood functions for non-Bayesian inference[END_REF] or marginal likelihoods (e.g., [START_REF] Oaks | Marginal likelihoods in phylogenetics: a review of methods and applications[END_REF] since they integrate any parameters over prior distributions conditional on H 0 and H 1 , respectively. For example, if f 1 (x |θ 1 ) is the probability density of the sample conditional on the event that the vector parameter is equal to θ 1 , and π 1 (θ 1 )

is the prior probability density (with respect to the Lebesgue measure) of θ 1 conditional on H 1 , then

f 1 (x ) = f 1 (x |θ 1 ) π 1 (θ 1 ) dθ 1 .
The same can be written for H 0 by replacing each "1" by "0."

A way to approximate the Bayes factor without specifying those prior distributions is to use the Bayesian information criterion [START_REF] Schwarz | Estimating the Dimension of a Model[END_REF],

BIC i (x ) = -2 ln f i x | θ i + D i ln n, (2) 
as an approximation of -2 ln f i (x ) plus an irrelevant constant term, where

θ i = arg sup θi f i (x |θ i ),
called the maximum likelihood estimate of θ i , again with i = 0 for H 0 and i = 1 for H 1 . The D i , called the dimension of θ i , is how many scalars (real numbers) over which the likelihood

function f i (x |θ i ), as a function of θ i with x fixed, is maximized. Then f i (x ) is approximated by exp (-BIC i (x ) /2
) times an irrelevant constant factor, with the result that B (x ) is approximated by

B BIC n (x ) = exp (-BIC 0 (x ) /2) exp (-BIC 1 (x ) /2) = f 0 x | θ 0 / n D0 /2 f 1 x | θ 1 / n D1 /2 = n (D1 -D0)/2 f 0 x | θ 0 f 1 x | θ 1 . (3) 
That approximate Bayes factor has been recommended as an alternative to the p-value [START_REF] Glover | Likelihood ratios: A simple and flexible statistic for empirical psychologists[END_REF][START_REF] Wagenmakers | A practical solution to the pervasive problems of p values[END_REF]. Those papers show how to compute the BIC from sums of squared errors given in the output of standard statistical software. Another readily available quantity from which B BIC n (x ) may be computed is the p-value from a likelihood-ratio test, for its test statistic is a simple function of the f 0 x | θ 0 / f 1 x | θ 1 factor in equation (3). While prior-free and widely applicable, this approach requires samples to be large enough for the approximations to be close.

This paper proposes a simple way to calibrate a p-value from the likelihood-ratio test by transforming it into a Bayes factor that is based on a new correction of the BIC for small samples.

When the unknown parameter of interest is a scalar (as opposed to a vector of two or more scalars), the calibration typically proceeds as follows. Let n denote the size of a sample of more than one observation (n ≥ 2). The calibration transforms the p-value into the Bayes factor

B ⋆ n (p) = √ n exp (1 -1/n) F -1 1 (1 -p) /2 , (4) 
where F -1 1 is the quantile function of the χ 2 distribution with 1 degree of freedom (qchisq in R or

CHISQ.INV in Excel

). As the sample size increases, 1 -1/n approaches 1, and B ⋆ n (p) approaches B BIC n (x ), the Bayes factor approximation corresponding to the BIC.

Ideally, a p-value calibration would satisfy these properties:

1. The calibration neither overstates nor understates the evidence against the null hypothesis.

What that means is defined in Section 2.

2. The Bayes factor resulting from the calibration becomes compliant with the BIC as the sample size increases. That has the advantage of sharing in the BIC's eventual selection of the correct hypothesis under broad conditions [START_REF] Neath | The Bayesian information criterion: Background, derivation, and applications[END_REF]. A corrected BIC is proposed in Section 3 to satisfy asymptotic BIC equivalence.

3. The Bayes factor resulting from the calibration can be written as a simple function of the p-value and the sample size-simple enough to easily compute on a phone (cf. [START_REF] Matthews | The p-value statement, five years on[END_REF].

The desired properties are met by equation (4), the general form of which is derived from the proposed BIC correction in Section 4. Calibrations achieving property 3 but lacking either property 1 or property 2 differ substantially from the proposed calibration, as illustrated in Section 5.

2 What does it mean to overstate the evidence against a tested model?

With the Bayes factor in mind as the measure of statistical evidence suggested by equation ( 1), the following definitions specify exactly what is meant by overstating the evidence against the null hypothesis or other tested model and, going further, quantify the extent of that overstatement or exaggeration. With X as the sample space, a measurable function B : X → [0, ∞] is called a Bayes factor estimator, where [0, ∞] is the union of the nonnegative real numbers and ∞.

H 0 and H 1 are labeled in such a way that is that H 0 is the tested hypothesis, or, in terms of Bayesian model selection and Bayesian model averaging, the "model" that is tested. The probability density functions f 0 and f 1 are Radon-Nikodym derivatives with respect to a dominating measure ν. In the case of the Lebesgue measure, the differential element dν (x ) may be written as d x .

Definition 1. The evidential bias of B is bias

B = E 1 B (X ) - 1 B (X ) | H 0 = 1 B (x ) - 1 B (x ) f 0 (x ) dν (x ) ,
Three cases are possible:

1. If bias B = 0, then B is evidence-unbiased.

2. If bias B > 0, then B is evidence-overstating to degree bias B .

3. If bias B < 0, then B is evidence-understating to degree bias B .

Technically, bias B is the prediction bias of 1/ B (X ) as a predictor of 1/ B (X ). Its particular form is suggested by properties of 1/ B (X ) as a martingale (e.g., Feller, 1968, vol. 2, §VI.12), as will be discussed in Remark 1.

Lemma 1. For any Bayes factor estimator B ,

bias B = E 1 B (X ) | H 0 -1 = f 0 (x ) dν (x ) B (x ) -1. Proof. By substitution, bias B = E 1 B (X ) - f 1 (X ) f 0 (X ) | H 0 = E 1 B (X ) | H 0 -E f 1 (X ) f 0 (X ) | H 0 = E 1 B (X ) | H 0 - f 1 (x ) f 0 (x ) f 0 (x ) dν (x ) = E 1 B (X ) | H 0 -f 1 (x ) dν (x ) = 1 B (x ) f 0 (x ) dν (x ) -f 1 (x ) dν (x ) .
The claim follows since f 1 , being a probability density function with respect to ν, satisfies f 1 (x ) dν (x ) = 1.

The next results are immediate consequences.

Corollary 1. For any Bayes factor estimator B ,

1. B is evidence-unbiased if and only if f 0 (x ) dν (x ) / B (x ) = 1. 2. B is evidence-overstating to degree f 0 (x ) dν (x ) / B (x )-1 if and only if f 0 (x ) dν (x ) / B (x ) > 1.
3. B is evidence-understating to degree 1-f 0 (x ) dν (x ) / B (x ) if and only if f 0 (x ) dν (x ) / B (x ) < 1.

All three cases will be illustrated by examples in Sections 3 and 4.

3 Correcting the Bayesian information criterion for smaller samples 3.1 Small-sample corrections of the BIC While the BIC performs well for sufficiently large samples, for smaller samples, it tends to be biased toward selecting more complex models, those of higher parameter dimensions. To compensate for that bias, [START_REF] Mcquarrie | A small-sample correction for the Schwarz SIC model selection criterion[END_REF] proposed this corrected Bayesian information criterion, conventionally abbreviated by "BICc" [START_REF] Ventura | Log-symmetric regression models: information criteria and application to movie business and industry data with economic implications[END_REF]:

BICc i (x ) = -2 ln f i x | θ i + n n -D i -2 D i ln n, (5) 
where n ≥ D i +3 to ensure that the second term is positive. The corresponding Bayes factor is

B BIC n (x ) = exp (-BICc 0 (x ) /2) exp (-BICc 1 (x ) /2) = f 0 x | θ 0 / n n n -D 0 -2 D0 /2 f 1 x | θ 1 / n n n -D 1 -2 D1 /2 = n D 1 n -D 1 -2 - D 0 n -D 0 -2 n 2 f 0 x | θ 0 f 1 x | θ 1 , which, in the case of D 0 = 0, is B BICc n (x ) = f 0 x | θ 0 / n 0 f 1 x | θ 1 / n n n -D 1 -2 D1 /2 = n n D 1 2(n -D 1 -2) f 0 x | θ 0 f 1 x | θ 1 .
The second term of equation ( 5) amplifies the likelihood-penalizing term of the BIC (2) by a factor that is larger for more complex models.

Another way to correct for smaller samples is to instead multiply the first term of the BIC (2) by a factor of 1 -1/ n. The evidential Bayesian information criterion (EvBIC) and the its corresponding Bayes factor estimate are, respectively,

EvBIC i (x ) = -2 (1 -1/ n) ln f i x | θ i + D i ln n; B EvBIC n (x ) = exp (-EvBIC 0 (x ) /2) exp (-EvBIC 1 (x ) /2) = f 1-1/ n 0 x | θ 0 / n D0 /2 f 1-1/ n 1 x | θ 1 / n D1 /2 = n (D1 -D0)/2   f 0 x | θ 0 f 1 x | θ 1   1-1/ n . (6) 
In short, the BIC is corrected by raising the likelihood ratio in B BIC n (x ) to the power of the exponent

1 -1/ n.
3.2 Evidential biases of the BIC, the BICc, and the EvBIC

The corrections of the BIC are designed to retain the performance advantages the BIC has for large enough samples. Asymptotic equivalence is defined here is terms of the Bayes factor estimators that correspond to the BIC and its variants. 

lim n→∞ B ′ n (X ) B ′′ n (X ) = 1.
A sequence of Bayes factor estimators that is asymptotically equivalent to B BIC 2 (X ) , B BIC 3 (X ) , . . . is called, after [START_REF] Schwarz | Estimating the Dimension of a Model[END_REF], a Schwarz sequence. A sequence of Bayes factor estimators B 2 , B 3 , . . . such that B n is evidence-unbiased at every sample size n is called evidence-unbiased. A Schwarz sequence that is evidence-unbiased is called an evidence-unbiased Schwarz sequence.

To avoid overly complicated notation, those definitions are stated assuming the estimators are defined for sample sizes as small as 2. The definitions extend to more general estimators by replacing each "2" with the smallest legal sample size and each "3" with that sample size plus 1.

The likelihood-ratio statistic,

τ (X ) = 2 ln f 1 X | θ 0 f 0 X | θ 1 , (7) 
will be used to determine the evidential bias of the BIC, the BICc, and the EvBIC. For that purpose, it is assumed that D 1 > D 0 and that the conditional distribution of τ (X ), conditional on H 0 , is Almost surely,

Pr D1 -D0 ,
= dν (x ) B BICc n (x ) -1 = n D 0 n -D 0 -2 - D 1 n -D 1 -2 n 2 f 1 x | θ 0 f 0 x | θ 1 f 0 (x ) dν (x ) -1 = n D 0 n -D 0 -2 - D 1 n -D 1 -2 n 2 e τ (x )/2 f 0 (x ) dν (x ) -1 = n D 0 n -D 0 -2 - D 1 n -D 1 -2 n 2 ∞ 0 exp 1 2 u d Pr D1 -D0 (u) -1 = n D 0 n -D 0 -2 - D 1 n -D 1 -2 n 2 lim ε↓0 ∞ 0 exp 1 -ε 2 u d Pr D1 -D0 (u) -1 = n D 0 n -D 0 -2 - D 1 n -D 1 -2 n 2 lim ε↓0 ε -(D1 -D0)/2 -1 = n D 0 n -D 0 -2 - D 1 n -D 1 -2 n 2 ∞ -1 = ∞, establishing that B BICc
lim n→∞ B BICc n (X ) B BIC n (X ) = lim n→∞ n D 1 n -D 1 -2 - D 0 n -D 0 -2 n 2 n (D1 -D0)/2 = lim n→∞ n ( D 1 n - D 0 n ) n 2 n (D1 -D0)/2 = 1, establishing that the sequence B BICc D1 +3 , B BICc D1 +4 , . . . is also a Schwarz sequence.
A more positive result is found for the new BIC correction. 

= dν (x ) B EvBIC n (x ) -1 = n (D0 -D1)/2   f 1 x | θ 0 f 0 x | θ 1   1-1/ n f 0 (x ) dν (x ) -1 = n (D0 -D1)/2 e τ (x )/2 1-1/ n f 0 (x ) dν (x ) -1 = n (D0 -D1)/2 ∞ 0 exp 1 -1/ n 2 u d Pr D1 -D0 (u) -1 = n (D0 -D1)/2 1 n (D0 -D1)/2 -1 = 1 (D0 -D1)/2 -1 = 0,
establishing that the sequence is evidence-unbiased. Almost surely,

lim n→∞ B EvBIC n (X ) B BIC n (X ) = lim n→∞ n (D1 -D0)/2 n (D1 -D0)/2   f 0 X | θ 0 f 1 X | θ 1   1-1/ n -1 = lim n→∞   f 0 X | θ 0 f 1 X | θ 1   -1/ n = 1,
establishing that the sequence is a Schwarz sequence.

In other words, EvBIC achieves desired properties 1 and 2 of Section 1. Achieving property 3 requires a simple transformation from a p-value to B EvBIC [START_REF] Held | On p-values and Bayes factors[END_REF]. A special case is the exact-p Bayes factor, the constant B ⋆ (p) of proportionality between the posterior odds, given the p-value, and the prior odds of the null hypothesis:

Pr (H 0 | P = p) 1 -Pr (H 0 | P = p) = B ⋆ (p) Pr (H 0 ) 1 -Pr (H 0 )
,

where P is a random variable with values in [0, 1] such that the conditional distribution of P is uniform between 0 and 1 conditional on H 0 . Let f ⋆ 0 and f ⋆ 1 denote the probability density functions of P conditional on H 0 and H 1 , respectively, each with respect to the Lebesgue measure on [0, 1].

Then f ⋆ 0 (p) = 1 for any p between 0 and 1, and the exact-p Bayes factor is

B ⋆ (p) = f ⋆ 0 (p) f ⋆ 1 (p) = 1 f ⋆ 1 (p)
.

Regarding the p-value as a reduced sample of data, the mathematical framework of Section 2 applies without modification to exact-p Bayes factors since they are special cases of Bayes factors.

Specifically, the evidential bias of B ⋆ , any estimator of an exact-p Bayes factor B ⋆ , is bias

B ⋆ = E 1 B ⋆ (P ) - 1 B ⋆ (P ) | H 0 = 1 0 1 B ⋆ (p) - 1 B ⋆ (p) d p = E 1 B ⋆ (P ) | H 0 -1 = 1 0 d p B ⋆ (p) -1.
by Definition 1 and Lemma 1. According to Corollary 1, 1. B ⋆ is evidence-unbiased if and only if

1 0 d p / B ⋆ (p) = 1.
2. B ⋆ is evidence-overstating to degree

1 0 d p / B ⋆ (p) -1 if and only if 1 0 d p / B ⋆ (p) > 1.
3. B ⋆ is evidence-understating to degree 1 -

1 0 d p / B ⋆ (p) if and only if 1 0 d p / B ⋆ (p) < 1.
Example 1. Setting B ⋆ (p) = p means the p-value is used to estimate the exact-p Bayes factor.

Since

1 0 d p p = lim ε↓0 1 ε d p p = lim ε↓0 ln 1 ε = ∞,
that choice of B ⋆ is evidence-overstating to an infinite degree. ▲ Example 2. To argue that p-values overstate the evidence against the null hypothesis, comparisons are often made with a lower bound on the Bayes factor (e.g., [START_REF] Goodman | A dirty dozen: Twelve p-value misconceptions[END_REF], Table 3). The lower bound B ⋆ (p) = -exp (1) p ln p, for p < 1/ exp (1) ≈ 0.37 [START_REF] Vovk | A logic of probability, with application to the foundations of statistics[END_REF][START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF][START_REF] Benjamin | Three recommendations for improving the use of p-values[END_REF], is commonly used due to its convenience. If B ⋆ (p) ≥ 0 for any p ≥ 1/ exp (1),

then 1 0 d p B ⋆ (p) ≥ 1/ exp(1) 0 d p -exp (1) p ln p = lim ε↓0 1/ exp(1) ε d p -exp (1) p ln p = lim ε↓0 ln ln (1/ε) exp (1) = ∞.
It follows that any such choice of B ⋆ is evidence-overstating to an infinite degree; see [START_REF] Vovk | E-values: Calibration, combination and applications[END_REF]. ▲ Remark 1. Reciprocals of evidence-understating and evidence-unbiased estimators of the p-exact

Bayes factor largely overlap with martingales used in game-theoretic probability [START_REF] Shafer | Author's reply to the discussion of ẗesting by betting: A strategy for statistical and scientific communication by glenn shafer[END_REF]Vovk, 2001, 2019). The approaches intersect in the special case that H 0 is simple as opposed to composite, the case in which the null hypothesis corresponds to a single, non-mixture probability distribution as opposed to a mixture of distributions over a prior distribution. Then the reciprocal 1/ B ⋆ of a Bayes factor estimator of a p-exact Bayes factor, as a function on

[0, 1] with values in [0, ∞], is a p-to-e calibrator if B ⋆ (p)
is increasing as a function of p and if 2023) call an "e-value") is a data-based Bayes factor estimator B that is not evidence-overstating, and the reciprocals of e-values that satisfy the property of "a unit bet against" the simple null hypothesis [START_REF] Ramdas | Game-Theoretic Statistics and Safe Anytime-Valid Inference[END_REF] 2. B ⋆ is evidence-overstating to degree 1/ ln (b) -1 if b < exp (1). For instance, -1/ log 2 is evidence-overstating to degree 0.44. [START_REF] Greenland | Divergence versus decision p-values: A distinction worth making in theory and keeping in practice: Or, how divergence p-values measure evidence even when decision p-values do not[END_REF] interprets -log 2 p as the number of bits of information against the null hypothesis. Shafer (2021) mentions that -log 2 p is not a betting score.

1 0 d p / B ⋆ (p) ≤ 1; if, in addition, 1 0 d p / B ⋆ (p) = 1, if B ⋆ is lower semicontinuous, and if B ⋆ (0) = 0, then 1/ B ⋆
3. B ⋆ is evidence-understating to degree 1 -1/ ln (b) if b > exp (1). For instance, -1/ log 10 is evidence-understating to degree 0.57. [START_REF] Gibson | The role of p-values in judging the strength of evidence and realistic replication expectations[END_REF] argues that -log 10 p measures the strength of the evidence against the null hypothesis.

▲

Remark 2. As the p-to-e calibrators suggested in the literature do not depend on the sample size, they cannot form Schwarz sequences. Nor can they satisfy the generally weaker condition of model selection consistency [START_REF] Neath | The Bayesian information criterion: Background, derivation, and applications[END_REF]. For, when the null hypothesis is true, their reciprocals (the corresponding Bayes factor estimates) do not increase with the sample size. As a result, the corresponding posterior probabilities of the null hypothesis do not approach 1 as the sample size increases. Those difficulties reflect fundamental differences in how p-values and Bayes factors depend on the sample size, as explained in [START_REF] Efron | Scales of evidence for model selection: Fisher versus Jeffreys[END_REF] and epitomized as the Lindley paradox (cf. [START_REF] Naaman | Almost sure hypothesis testing and a resolution of the jeffreys-lindley paradox[END_REF][START_REF] Cousins | The Jeffreys-Lindley paradox and discovery criteria in high energy physics[END_REF].

Calibrating p-values using the evidential Bayesian information criterion

Recall that the p-value of a likelihood-ratio test given x is

p = 1 -F D1 -D0 (τ (x )) , (9) 
where τ is the function defined by equation ( 7 

⋆ n (p) = n (D1 -D0)/2 exp (1 -1/n) F -1 D1 -D0 (1 -p) /2 , ( 10 
)
and 1/ B ⋆ n is an admissible p-to-e calibrator.

Proof. From equations ( 7) and (9), Substitution into equation ( 6) gives

f 1 x | θ 1 f 0 x | θ 0 = e τ (x )/2 = e F -1 D 1 -D 0 (1-p)/2 .
B ⋆ n (p) = n (D1 -D0)/2 1 exp F -1 D1 -D0 (1 -p) /2 1-1/ n .
Since B ⋆ n is evidence-unbiased (Theorem 1), continuous, and increasing with p, and since B ⋆ n (0) = 0, it follows that 1/ B ⋆ n meets the sufficient conditions for an admissible p-to-e calibrator given in Remark 1.

Comparisons of simple Bayes factor estimators

The Bayes factor estimator based on the EvBIC is related to two classes of other simple estimators:

1. Schwarz sequences that are evidence-overstating (compared in Section 5.1) 2. Evidence-unbiased Bayes factor estimators that do not form Schwarz sequences (compared in Section 5.2)

Figure 1 lists some cases of each class.

Comparisons of simple Schwarz sequences

Using 

Comparisons of simple evidence-unbiased calibrations

Definition 2 .

 2 The sequence of Bayes factor estimators B ′ 2 , B ′ 3 , . . . is asymptotically equivalent to the sequence of Bayes factor estimators B ′′ 2 , B ′′ 3 , . . . if, almost surely,

  the χ 2 distribution with D 1 -D 0 degrees of freedom. . and B BICc D1 +3 , B BICc D1 +4 , . . . are Schwarz sequences, but they are not evidence-unbiased. Rather, for every allowed n, B BIC n For each n ≥ D 1 +3, the evidential bias of B BICc n is, by Lemma 1, bias B BICc n

n

  is evidence-overstating to an infinite degree. Analogous steps prove bias B BIC n = ∞ for every n ≥ 2. Since the BIC is asymptotically equivalent to itself, B BIC 2 , B BIC 3 , . . . is a Schwarz sequence.

  . is an evidence-unbiased Schwarz sequence.Proof. For each n = 2, 3, . . . , the evidential bias of B EvBIC n is, by Lemma 1, bias B EvBIC n

4

  Calibrating p-values by transforming them into Bayes factors 4.1 Calibrating p-values using exact-p Bayes factors The Bayes factor B (x ) is what Held and Ott (2018) call a "data-based Bayes factor" since it depends on the distribution of X . A Bayes factor that instead depends on the distribution of the p-value is called a "p-based Bayes factor"

  is an admissible p-to-e calibrator (Vovk and Wang, 2021, Proposition 2.1). It follows that the reciprocals of such calibrators are not evidence-overstating, and that the reciprocals that are admissible are evidenceunbiased. Moving from functions of P to functions of X , the reciprocal of what Shafer (2021) calls a "betting score" (what Grünwald et al. (

0 -

 0 are evidence-unbiased Bayes factor estimators. Example 3. Consider B ⋆ (p) = -1/ log b p for some b > 1. Greenland (2023) recommends 1/ B ⋆ (p) = -log b p as the surprisal (cf. Bickel, 2023). Since bias (-1/ log b ) = 1 log b p d p -1 = 1 ln (b) -1, there are three cases: 1. B ⋆ is evidence-unbiased if b = exp (1). Shafer (2021) notes that -ln p is a betting score, albeit not one that brings traditional thresholds of frequentist and Bayesian inference into as close agreement as does p -1/2 -1. (Achieving that agreement remains a challenging problem, for reasons summarized in Remark 2.)

  ), and F D1 -D0 is the cumulative distribution function of the χ 2 distribution with D 1 -D 0 degrees of freedom. Access to such a p-value from software or the literature enables recovering the likelihood ratio, thereby facilitating calculation of the Bayes factor estimated from the BIC, BICc, or the EvBIC. The EvBIC case is shown next. Theorem 2. If B ⋆ n (p) = B EvBIC n (x ) for a p-value of a likelihood-ratio test given x and for any n ≥ 2, then B

Figure 1 :

 1 Figure 1: Simple Bayes factor estimators from left to right: B BIC ⋆ n

  D 1 -D 0 = 1, Figures 2-3 compare the proposed B ⋆ n (p) to B BICc ⋆ n (p) and B BIC ⋆ n (p), the two quantities defined in the caption of Figure 1. While the three Bayes factor estimates are asymptotically equivalent, B ⋆ n (p) is evidence-unbiased (bias (B ⋆ n ) = 0), whereas the other two are

Figure 2 :

 2 Figure 2: Bayes factor estimates B ⋆ n (p), B BICc ⋆ n

Figure 3 :

 3 Figure 3: Bayes factor estimates B ⋆ n (p), B BICc ⋆ n

Figures 4 -

 4 Figures 4-5 compare the proposed B ⋆ n (p), in the D 1 -D 0 = 1 case, to the two evidence-unbiased Bayes factor estimates discussed in Example 3, item 1. Since -1/ ln p and 1/ p -1/2 -1 do not depend on n, they do not have B ⋆ n (p)'s Schwarz-sequence property of asymptotic equivalence tothe Bayes factor estimate that corresponds to the BIC (Section 1, property 2; see Remark 2). They do satisfy properties 1 and 3 of Section 1.

Figure 4 :

 4 Figure 4: Bayes factor estimates B ⋆ n (p), -1/ ln p, and 1/ p -1/2 -1 , as functions of n, for p = 0.05, 0.005.

Figure 5 :

 5 Figure 5: Bayes factor estimates B ⋆ n (p), -1/ ln p, and 1/ p -1/2 -1 , as functions of p, for n = 2, 4, 8, 16.
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