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Abstract

This paper proposes a simple correction to the Bayesian information criterion (BIC) to

ensure that it, unlike a correction for small samples, neither overstates nor understates the evi-

dence against a null hypothesis or other tested model. The new correction raises the likelihood

ratio in the BIC to the power of 1 minus the reciprocal of the sample size (1-1/n, n>1). That

is equivalent to multiplying the loglikelihood term of the BIC by a factor of 1-1/n.

The correction is applied to the problem of calibrating p-values by transforming them to

estimated Bayes factors. The corresponding calibration in the most common case is simply

sqrt(n)/exp((1-1/n)*qchisq(1-p,df=1)/2) in R syntax, where the p-value is from a likelihood-

ratio test. That intersects the class of betting scores called e-values and, more specifically,

admissible calibrators. While all admissible calibrators neither overstate nor understate the

evidence against the null hypothesis, previous admissible calibrators are not model-selection

consistent since they do not increasingly favor the null hypothesis when it is true. The pro-

posed calibrator is consistent under general conditions, for its corrected BIC is asymptotically

equivalent to the BIC.

Keywords: corrected BIC; corrected Bayesian information criterion; calibrated p-value; calibration

of p-values; exaggeration of evidence; overstatement of evidence; strength of statistical evidence



1 Introduction

“In statistical practice, perhaps the single biggest problem with p-values is that they are often

misinterpreted in ways that lead to overstating the evidence against the null hypothesis” (Benjamin

and Berger, 2019). The argument that p-values exaggerate the evidence against the null hypothesis

has gained ground over decades (Berger and Sellke, 1987; Goodman, 1993; Stang et al., 2010),

culminating in an initiative to reduce the level of statistical significance from 0.05 to 0.005 in

certain fields of social science (Benjamin et al., 2018; Machery, 2021).

According to that Bayesian school of thought, as opposed to a classical frequentist school (Mayo

and Hand, 2022), the ideal measure of evidence against a null hypothesis is the constant B (x ) of

proportionality between the posterior odds and the prior odds of the null hypothesis:

Pr (H 0 |X = x )
1− Pr (H 0 |X = x )

= B (x )
Pr (H 0)

1− Pr (H 0)
,

where H 0 is the null hypothesis, X is the random sample of data, and x is the observed sample

of data. B (x ), called the Bayes factor, quantifies the strength of the evidence in x against H 0

(Jeffreys, 1948; Kass and Raftery, 1995) in the sense that lower values of B (x ) mean there is more

evidence that H 0 is false, for lower values mean the posterior odds is smaller relative to the prior

odds:

B (x ) = Pr(H0 |X=x)

1−Pr(H0 |X=x)/ Pr(H0)

1−Pr(H0)
. (1)

An advantage of the Bayes factor is that it does not depend on Pr (H 0), the prior probability of

the null hypothesis; by Bayes’s theorem,

B (x ) =
f 0 (x )
f 1 (x )

,

where f 0 (x ) is the probability density of the sample conditional on H 0, and f 1 (x ) the probability

density of the sample conditional on H 1, the alternative hypothesis that H 0 is false.

If H 0 and H 1 correspond to single values of the parameter of interest, possibly using a pseudo-

likelihood to eliminate any nuisance parameters, then B (x ) is called the likelihood ratio, seen as

a measure of statistical evidence within a third school of thought (Edwards, 1992; Royall, 1997;

Blume, 2002; Strug et al., 2010), which can trace its roots to the likelihood intervals of Fisher (1973,

pp. 75-76). More generally, f 0 (x ) and f 1 (x ) are called integrated likelihoods (e.g., Severini, 2007)

or marginal likelihoods (e.g., R Oaks et al., 2019) since they integrate any parameters over prior
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distributions conditional on H 0 and H 1, respectively. For example, if f 1 (x |θ1) is the probability

density of the sample conditional on the event that the vector parameter is equal to θ1, and π1 (θ1)

is the prior probability density (with respect to the Lebesgue measure) of θ1 conditional on H 1,

then

f 1 (x ) =
∫

f 1 (x |θ1)π1 (θ1) dθ1.

The same can be written for H 0 by replacing each “1” by “0.”

A way to approximate the Bayes factor without specifying those prior distributions is to use the

Bayesian information criterion (Schwarz, 1978),

BICi (x ) = −2 ln f i

(
x |θ̂i

)
+ D i lnn, (2)

as an approximation of −2 ln f i (x ) plus an irrelevant constant term, where θ̂i = arg supθi f i (x |θi),

called the maximum likelihood estimate of θi , again with i = 0 for H 0 and i = 1 for H 1. The

D i , called the dimension of θi , is how many scalars (real numbers) over which the likelihood

function f i (x |θi), as a function of θi with x fixed, is maximized. Then f i (x ) is approximated by

exp (−BICi (x ) /2) times an irrelevant constant factor, with the result that B (x ) is approximated

by

BBIC
n (x ) =

exp (−BIC0 (x ) /2)
exp (−BIC1 (x ) /2)

=
f 0
(
x |θ̂0

)
/nD0 /2

f 1
(
x |θ̂1

)
/nD1 /2

= n(D1 −D0)/2
f 0
(
x |θ̂0

)
f 1
(
x |θ̂1

) . (3)

That approximate Bayes factor has been recommended as an alternative to the p-value (Glover

and Dixon, 2004; Wagenmakers, 2007). Those papers show how to compute the BIC from sums

of squared errors given in the output of standard statistical software. Another readily available

quantity from which BBIC
n (x ) may be computed is the p-value from a likelihood-ratio test, for its

test statistic is a simple function of the f 0
(
x |θ̂0

)
/ f 1

(
x |θ̂1

)
factor in equation (3). While prior-free

and widely applicable, this approach requires samples to be large enough for the approximations to

be close.

This paper proposes a simple way to calibrate a p-value from the likelihood-ratio test by trans-

forming it into a Bayes factor that is based on a new correction of the BIC for small samples.

When the unknown parameter of interest is a scalar (as opposed to a vector of two or more scalars),

the calibration typically proceeds as follows. Let n denote the size of a sample of more than one

observation (n ≥ 2). The calibration transforms the p-value into the Bayes factor
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B⋆
n (p) =

√
n

exp
(
(1− 1/n)F−1

1 (1− p) /2
) , (4)

where F−1
1 is the quantile function of the χ2 distribution with 1 degree of freedom (qchisq in R or

CHISQ.INV in Excel). As the sample size increases, 1 − 1/n approaches 1, and B⋆
n (p) approaches

BBIC
n (x ), the Bayes factor approximation corresponding to the BIC.

Ideally, a p-value calibration would satisfy these properties:

1. The calibration neither overstates nor understates the evidence against the null hypothesis.

What that means is defined in Section 2.

2. The Bayes factor resulting from the calibration becomes compliant with the BIC as the sample

size increases. That has the advantage of sharing in the BIC’s eventual selection of the correct

hypothesis under broad conditions (Neath and Cavanaugh, 2012). A corrected BIC is proposed

in Section 3 to satisfy asymptotic BIC equivalence.

3. The Bayes factor resulting from the calibration can be written as a simple function of the

p-value and the sample size—simple enough to easily compute on a phone (cf. Matthews,

2021).

The desired properties are met by equation (4), the general form of which is derived from the

proposed BIC correction in Section 4. Calibrations achieving property 3 but lacking either property

1 or property 2 differ substantially from the proposed calibration, as illustrated in Section 5.

2 What does it mean to overstate the evidence against a

tested model?

With the Bayes factor in mind as the measure of statistical evidence suggested by equation (1),

the following definitions specify exactly what is meant by overstating the evidence against the null

hypothesis or other tested model and, going further, quantify the extent of that overstatement or

exaggeration. With X as the sample space, a measurable function B̂ : X → [0,∞] is called a Bayes

factor estimator, where [0,∞] is the union of the nonnegative real numbers and ∞.

H 0 and H 1 are labeled in such a way that is that H 0 is the tested hypothesis, or, in terms of

Bayesian model selection and Bayesian model averaging, the “model” that is tested. The probability

density functions f 0 and f 1 are Radon-Nikodym derivatives with respect to a dominating measure

ν. In the case of the Lebesgue measure, the differential element dν (x ) may be written as d x .
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Definition 1. The evidential bias of B̂ is

bias
(
B̂
)
= E

(
1

B̂ (X )
− 1

B (X )
|H 0

)
=

∫ (
1

B̂ (x )
− 1

B (x )

)
f 0 (x ) dν (x ) ,

Three cases are possible:

1. If bias
(
B̂
)
= 0, then B̂ is evidence-unbiased.

2. If bias
(
B̂
)
> 0, then B̂ is evidence-overstating to degree bias

(
B̂
)
.

3. If bias
(
B̂
)
< 0, then B̂ is evidence-understating to degree

∣∣∣bias
(
B̂
)∣∣∣.

Technically, bias
(
B̂
)

is the prediction bias of 1/B̂ (X ) as a predictor of 1/B (X ). Its particular

form is suggested by properties of 1/B (X ) as a martingale (e.g., Feller, 1968, vol. 2, §VI.12), as

will be discussed in Remark 1.

Lemma 1. For any Bayes factor estimator B̂,

bias
(
B̂
)
= E

(
1

B̂ (X )
|H 0

)
− 1 =

∫
f 0 (x ) dν (x )

B̂ (x )
− 1.

Proof. By substitution,

bias
(
B̂
)
= E

(
1

B̂ (X )
− f 1 (X )

f 0 (X )
|H 0

)

= E

(
1

B̂ (X )
|H 0

)
− E

(
f 1 (X )

f 0 (X )
|H 0

)

= E

(
1

B̂ (X )
|H 0

)
−
∫ (

f 1 (x )
f 0 (x )

)
f 0 (x ) dν (x )

= E

(
1

B̂ (X )
|H 0

)
−
∫

f 1 (x ) dν (x )

=

∫
1

B̂ (x )
f 0 (x ) dν (x )−

∫
f 1 (x ) dν (x ) .

The claim follows since f 1, being a probability density function with respect to ν, satisfies
∫

f 1 (x ) dν (x ) =

1.

The next results are immediate consequences.

Corollary 1. For any Bayes factor estimator B̂,

1. B̂ is evidence-unbiased if and only if
∫

f 0 (x ) dν (x ) /B̂ (x ) = 1.
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2. B̂ is evidence-overstating to degree
∫

f 0 (x ) dν (x ) /B̂ (x )−1 if and only if
∫

f 0 (x ) dν (x ) /B̂ (x ) >

1.

3. B̂ is evidence-understating to degree 1−
∫

f 0 (x ) dν (x ) /B̂ (x ) if and only if
∫

f 0 (x ) dν (x ) /B̂ (x ) <

1.

All three cases will be illustrated by examples in Sections 3 and 4.

3 Correcting the Bayesian information criterion for smaller

samples

3.1 Small-sample corrections of the BIC

While the BIC performs well for sufficiently large samples, for smaller samples, it tends to be biased

toward selecting more complex models, those of higher parameter dimensions. To compensate for

that bias, McQuarrie (1999) proposed this corrected Bayesian information criterion, conventionally

abbreviated by “BICc” (Ventura et al., 2019):

BICci (x ) = −2 ln f i

(
x |θ̂i

)
+

n
n −D i −2

D i lnn, (5)

where n ≥ D i +3 to ensure that the second term is positive. The corresponding Bayes factor is

BBIC
n (x ) =

exp (−BICc0 (x ) /2)
exp (−BICc1 (x ) /2)

=
f 0
(
x |θ̂0

)
/n

n
n −D0 −2 D0 /2

f 1
(
x |θ̂1

)
/n

n
n −D1 −2 D1 /2

= n
(

D1
n −D1 −2−

D0
n −D0 −2

)
n
2

f 0
(
x |θ̂0

)
f 1
(
x |θ̂1

) ,
which, in the case of D0 = 0, is

BBICc
n (x ) =

f 0
(
x |θ̂0

)
/n0

f 1
(
x |θ̂1

)
/n

n
n −D1 −2 D1 /2

= n
n D1

2(n −D1 −2)

f 0
(
x |θ̂0

)
f 1
(
x |θ̂1

) .
The second term of equation (5) amplifies the likelihood-penalizing term of the BIC (2) by a factor

that is larger for more complex models.

Another way to correct for smaller samples is to instead multiply the first term of the BIC

(2) by a factor of 1 − 1/n. The evidential Bayesian information criterion (EvBIC) and the its

corresponding Bayes factor estimate are, respectively,

EvBICi (x ) = −2 (1− 1/n) ln f i

(
x |θ̂i

)
+ D i lnn;
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BEvBIC
n (x ) =

exp (−EvBIC0 (x ) /2)
exp (−EvBIC1 (x ) /2)

=
f 1−1/n
0

(
x |θ̂0

)
/nD0 /2

f 1−1/n
1

(
x |θ̂1

)
/nD1 /2

= n(D1 −D0)/2

 f 0
(
x |θ̂0

)
f 1
(
x |θ̂1

)
1−1/n

.

(6)

In short, the BIC is corrected by raising the likelihood ratio in BBIC
n (x ) to the power of the exponent

1− 1/n.

3.2 Evidential biases of the BIC, the BICc, and the EvBIC

The corrections of the BIC are designed to retain the performance advantages the BIC has for large

enough samples. Asymptotic equivalence is defined here is terms of the Bayes factor estimators

that correspond to the BIC and its variants.

Definition 2. The sequence of Bayes factor estimators B̂
′
2, B̂

′
3, . . . is asymptotically equivalent to

the sequence of Bayes factor estimators B̂
′′
2 , B̂

′′
3 , . . . if, almost surely,

lim
n→∞

B̂
′
n (X )

B̂
′′
n (X )

= 1.

A sequence of Bayes factor estimators that is asymptotically equivalent to BBIC
2 (X ) ,BBIC

3 (X ) , . . .

is called, after Schwarz (1978), a Schwarz sequence. A sequence of Bayes factor estimators B̂2, B̂3, . . .

such that B̂n is evidence-unbiased at every sample size n is called evidence-unbiased. A Schwarz

sequence that is evidence-unbiased is called an evidence-unbiased Schwarz sequence.

To avoid overly complicated notation, those definitions are stated assuming the estimators are

defined for sample sizes as small as 2. The definitions extend to more general estimators by replacing

each “2” with the smallest legal sample size and each “3” with that sample size plus 1.

The likelihood-ratio statistic,

τ (X ) = 2 ln
f 1
(
X |θ̂0

)
f 0
(
X |θ̂1

) , (7)

will be used to determine the evidential bias of the BIC, the BICc, and the EvBIC. For that purpose,

it is assumed that D1 > D0 and that the conditional distribution of τ (X ), conditional on H 0, is

PrD1 −D0
, the χ2 distribution with D1 −D0 degrees of freedom.

Proposition 1. The sequences BBIC
2 ,BBIC

3 , . . . and BBICc
D1 +3,B

BICc
D1 +4, . . . are Schwarz sequences,

but they are not evidence-unbiased. Rather, for every allowed n, BBIC
n and BBICc

n are evidence-
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overstating to an infinite degree:

bias
(
BBIC

n

)
= bias

(
BBICc

n

)
= ∞. (8)

Proof. For each n ≥ D1 +3, the evidential bias of BBICc
n is, by Lemma 1,

bias
(
BBICc

n

)
=

∫
dν (x )

BBICc
n (x )

− 1

= n
(

D0
n −D0 −2−

D1
n −D1 −2

)
n
2

∫ f 1
(
x |θ̂0

)
f 0
(
x |θ̂1

) f 0 (x ) dν (x )− 1

= n
(

D0
n −D0 −2−

D1
n −D1 −2

)
n
2

∫
eτ(x)/2 f 0 (x ) dν (x )− 1

= n
(

D0
n −D0 −2−

D1
n −D1 −2

)
n
2

∫ ∞

0

exp

(
1

2
u

)
dPrD1 −D0

(u)− 1

= n
(

D0
n −D0 −2−

D1
n −D1 −2

)
n
2 lim

ε↓0

∫ ∞

0

exp

(
1− ε

2
u

)
dPrD1 −D0

(u)− 1

= n
(

D0
n −D0 −2−

D1
n −D1 −2

)
n
2 lim

ε↓0
ε−(D1 −D0)/2 − 1

= n
(

D0
n −D0 −2−

D1
n −D1 −2

)
n
2 ∞− 1 = ∞,

establishing that BBICc
n is evidence-overstating to an infinite degree. Analogous steps prove bias

(
BBIC

n

)
=

∞ for every n ≥ 2.

Since the BIC is asymptotically equivalent to itself, BBIC
2 ,BBIC

3 , . . . is a Schwarz sequence.

Almost surely,

lim
n→∞

BBICc
n (X )

BBIC
n (X )

= lim
n→∞

n
(

D1
n −D1 −2−

D0
n −D0 −2

)
n
2

n(D1 −D0)/2

= lim
n→∞

n(
D1
n −D0

n ) n
2

n(D1 −D0)/2
= 1,

establishing that the sequence BBICc
D1 +3,B

BICc
D1 +4, . . . is also a Schwarz sequence.

A more positive result is found for the new BIC correction.

Theorem 1. The sequence BEvBIC
2 ,BEvBIC

3 , . . . is an evidence-unbiased Schwarz sequence.
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Proof. For each n = 2, 3, . . . , the evidential bias of BEvBIC
n is, by Lemma 1,

bias
(
BEvBIC

n

)
=

∫
dν (x )

BEvBIC
n (x )

− 1

= n(D0 −D1)/2

∫  f 1
(
x |θ̂0

)
f 0
(
x |θ̂1

)
1−1/n

f 0 (x ) dν (x )− 1

= n(D0 −D1)/2

∫ (
eτ(x)/2

)1−1/n
f 0 (x ) dν (x )− 1

= n(D0 −D1)/2

∫ ∞

0

exp

(
1− 1/n

2
u

)
dPrD1 −D0 (u)− 1

= n(D0 −D1)/2

(
1

n

)(D0 −D1)/2

− 1 = 1(D0 −D1)/2 − 1 = 0,

establishing that the sequence is evidence-unbiased. Almost surely,

lim
n→∞

BEvBIC
n (X )

BBIC
n (X )

= lim
n→∞

n(D1 −D0)/2

n(D1 −D0)/2

 f 0
(
X |θ̂0

)
f 1
(
X |θ̂1

)
1−1/n −1

= lim
n→∞

 f 0
(
X |θ̂0

)
f 1
(
X |θ̂1

)
−1/n

= 1,

establishing that the sequence is a Schwarz sequence.

In other words, EvBIC achieves desired properties 1 and 2 of Section 1. Achieving property 3

requires a simple transformation from a p-value to BEvBIC
n .

4 Calibrating p-values by transforming them into Bayes fac-

tors

4.1 Calibrating p-values using exact-p Bayes factors

The Bayes factor B (x ) is what Held and Ott (2018) call a “data-based Bayes factor” since it depends

on the distribution of X . A Bayes factor that instead depends on the distribution of the p-value is

called a “p-based Bayes factor” (Held and Ott, 2018). A special case is the exact-p Bayes factor,

the constant B⋆ (p) of proportionality between the posterior odds, given the p-value, and the prior

odds of the null hypothesis:

Pr (H 0 |P = p)
1− Pr (H 0 |P = p)

= B⋆ (p)
Pr (H 0)

1− Pr (H 0)
,

8



where P is a random variable with values in [0, 1] such that the conditional distribution of P is

uniform between 0 and 1 conditional on H 0. Let f ⋆0 and f ⋆1 denote the probability density functions

of P conditional on H 0 and H 1, respectively, each with respect to the Lebesgue measure on [0, 1].

Then f ⋆0 (p) = 1 for any p between 0 and 1, and the exact-p Bayes factor is

B⋆ (p) =
f ⋆0 (p)
f ⋆1 (p)

=
1

f ⋆1 (p)
.

Regarding the p-value as a reduced sample of data, the mathematical framework of Section 2

applies without modification to exact-p Bayes factors since they are special cases of Bayes factors.

Specifically, the evidential bias of B̂⋆, any estimator of an exact-p Bayes factor B⋆, is

bias
(
B̂⋆
)
= E

(
1

B̂⋆ (P)
− 1

B⋆ (P)
|H 0

)
=

∫ 1

0

(
1

B̂⋆ (p)
− 1

B⋆ (p)

)
d p

= E

(
1

B̂⋆ (P)
|H 0

)
− 1 =

∫ 1

0

d p

B̂⋆ (p)
− 1.

by Definition 1 and Lemma 1. According to Corollary 1,

1. B̂⋆ is evidence-unbiased if and only if
∫ 1

0
d p /B̂⋆ (p) = 1.

2. B̂⋆ is evidence-overstating to degree
∫ 1

0
d p /B̂⋆ (p)− 1 if and only if

∫ 1

0
d p /B̂⋆ (p) > 1.

3. B̂⋆ is evidence-understating to degree 1−
∫ 1

0
d p /B̂⋆ (p) if and only if

∫ 1

0
d p /B̂⋆ (p) < 1.

Example 1. Setting B̂⋆ (p) = p means the p-value is used to estimate the exact-p Bayes factor.

Since ∫ 1

0

d p
p

= lim
ε↓0

∫ 1

ε

d p
p

= lim
ε↓0

ln

(
1

ε

)
= ∞,

that choice of B̂⋆ is evidence-overstating to an infinite degree. ▲

Example 2. To argue that p-values overstate the evidence against the null hypothesis, comparisons

are often made with a lower bound on the Bayes factor (e.g., Goodman, 2008, Table 3). The lower

bound B̂⋆ (p) = − exp (1) p ln p, for p < 1/ exp (1) ≈ 0.37 (Vovk, 1993; Sellke et al., 2001; Benjamin

and Berger, 2019), is commonly used due to its convenience. If B̂⋆ (p) ≥ 0 for any p ≥ 1/ exp (1),

then

∫ 1

0

d p

B̂⋆ (p)
≥
∫ 1/ exp(1)

0

d p
− exp (1) p ln p

= lim
ε↓0

∫ 1/ exp(1)

ε

d p
− exp (1) p ln p

= lim
ε↓0

ln ln (1/ε)

exp (1)
= ∞.

It follows that any such choice of B̂⋆ is evidence-overstating to an infinite degree; see Vovk and
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Wang (2021). ▲

Remark 1. Reciprocals of evidence-understating and evidence-unbiased estimators of the p-exact

Bayes factor largely overlap with martingales used in game-theoretic probability (Shafer and Vovk,

2001, 2019). The approaches intersect in the special case that H 0 is simple as opposed to composite,

the case in which the null hypothesis corresponds to a single, non-mixture probability distribution

as opposed to a mixture of distributions over a prior distribution. Then the reciprocal 1/B̂⋆ of a

Bayes factor estimator of a p-exact Bayes factor, as a function on [0, 1] with values in [0,∞], is a

p-to-e calibrator if B̂⋆ (p) is increasing as a function of p and if
∫ 1

0
d p /B̂⋆ (p) ≤ 1; if, in addition,∫ 1

0
d p /B̂⋆ (p) = 1, if B̂⋆ is lower semicontinuous, and if B̂⋆ (0) = 0, then 1/B̂⋆ is an admissible

p-to-e calibrator (Vovk and Wang, 2021, Proposition 2.1). It follows that the reciprocals of such

calibrators are not evidence-overstating, and that the reciprocals that are admissible are evidence-

unbiased. Moving from functions of P to functions of X , the reciprocal of what Shafer (2021) calls a

“betting score” (what Grünwald et al. (2023) call an “e-value”) is a data-based Bayes factor estimator

B̂ that is not evidence-overstating, and the reciprocals of e-values that satisfy the property of “a

unit bet against” the simple null hypothesis (Ramdas et al., 2023) are evidence-unbiased Bayes

factor estimators.

Example 3. Consider B̂⋆ (p) = −1/ logb p for some b > 1. Greenland (2023) recommends

1/B̂⋆ (p) = − logb p as the surprisal (cf. Bickel, 2023). Since

bias (−1/ logb) =

∫ 1

0

− logb p d p −1 =
1

ln (b)
− 1,

there are three cases:

1. B̂⋆ is evidence-unbiased if b = exp (1). Shafer (2021) notes that − ln p is a betting score,

albeit not one that brings traditional thresholds of frequentist and Bayesian inference into as

close agreement as does p−1/2 −1. (Achieving that agreement remains a challenging problem,

for reasons summarized in Remark 2.)

2. B̂⋆ is evidence-overstating to degree 1/ ln (b) − 1 if b < exp (1). For instance, −1/ log2 is

evidence-overstating to degree 0.44. Greenland (2023) interprets − log2 p as the number of

bits of information against the null hypothesis. Shafer (2021) mentions that − log2 p is not a

betting score.

3. B̂⋆ is evidence-understating to degree 1 − 1/ ln (b) if b > exp (1). For instance, −1/ log10

10



is evidence-understating to degree 0.57. Gibson (2021) argues that − log10 p measures the

strength of the evidence against the null hypothesis.

▲

Remark 2. As the p-to-e calibrators suggested in the literature do not depend on the sample size,

they cannot form Schwarz sequences. Nor can they satisfy the generally weaker condition of model

selection consistency (Neath and Cavanaugh, 2012). For, when the null hypothesis is true, their

reciprocals (the corresponding Bayes factor estimates) do not increase with the sample size. As a

result, the corresponding posterior probabilities of the null hypothesis do not approach 1 as the

sample size increases. Those difficulties reflect fundamental differences in how p-values and Bayes

factors depend on the sample size, as explained in Efron and Gous (2001) and epitomized as the

Lindley paradox (cf. Naaman, 2016; Cousins, 2017).

4.2 Calibrating p-values using the evidential Bayesian information cri-

terion

Recall that the p-value of a likelihood-ratio test given x is

p = 1− FD1 −D0
(τ (x )) , (9)

where τ is the function defined by equation (7), and FD1 −D0 is the cumulative distribution function

of the χ2 distribution with D1 −D0 degrees of freedom. Access to such a p-value from software or

the literature enables recovering the likelihood ratio, thereby facilitating calculation of the Bayes

factor estimated from the BIC, BICc, or the EvBIC. The EvBIC case is shown next.

Theorem 2. If B⋆
n (p) = BEvBIC

n (x ) for a p-value of a likelihood-ratio test given x and for any

n ≥ 2, then

B⋆
n (p) =

n(D1 −D0)/2

exp
(
(1− 1/n)F−1

D1 −D0
(1− p) /2

) , (10)

and 1/B⋆
n is an admissible p-to-e calibrator.

Proof. From equations (7) and (9),

f 1
(
x |θ̂1

)
f 0
(
x |θ̂0

) = eτ(x)/2

= eF
−1
D1 −D0

(1−p)/2.

11



Figure 1: Simple Bayes factor estimators from left to right: BBIC ⋆
n , BBICc ⋆

n , B⋆
n , −1/ ln p, and

1/
(
p−1/2 −1

)
, where BBIC ⋆

n (p) and BBICc ⋆
n (p) are the calibrations defined in analogy with B⋆

n in
equation (10), following the proof of Theorem 2, except with the EvBIC replaced with the BIC and
the BICc, respectively.

Substitution into equation (6) gives

B⋆
n (p) = n(D1 −D0)/2

(
1

exp
(
F−1

D1 −D0
(1− p) /2

))1−1/n

.

Since B⋆
n is evidence-unbiased (Theorem 1), continuous, and increasing with p, and since B⋆

n (0) = 0,

it follows that 1/B⋆
n meets the sufficient conditions for an admissible p-to-e calibrator given in

Remark 1.

5 Comparisons of simple Bayes factor estimators

The Bayes factor estimator based on the EvBIC is related to two classes of other simple estimators:

1. Schwarz sequences that are evidence-overstating (compared in Section 5.1)

2. Evidence-unbiased Bayes factor estimators that do not form Schwarz sequences (compared in

Section 5.2)

Figure 1 lists some cases of each class.

5.1 Comparisons of simple Schwarz sequences

Using D1 −D0 = 1, Figures 2-3 compare the proposed B⋆
n (p) to BBICc ⋆

n (p) and BBIC ⋆
n (p), the

two quantities defined in the caption of Figure 1. While the three Bayes factor estimates are

asymptotically equivalent, B⋆
n (p) is evidence-unbiased (bias (B⋆

n) = 0), whereas the other two are

12



Figure 2: Bayes factor estimates B⋆
n (p), BBICc ⋆

n (p), and BBIC ⋆
n (p) according to the EvBIC, BICc

(with D0 = 0), and BIC, respectively, as functions of n, for p = 0.05, 0.005.

Figure 3: Bayes factor estimates B⋆
n (p), BBICc ⋆

n (p), and BBIC ⋆
n (p) according to the EvBIC, BICc

(with D0 = 0), and BIC, respectively, as functions of p, for n = 2, 4, 8, 16. The BICc curve is
missing in the n = 2 plot since BBICc ⋆

n (p) is only defined for n ≥ 4 in this case.

evidence-overstating to an infinite degree (8), as seen in Theorem 1 and Proposition 1. Thus,

BBICc ⋆
n (p) and BBIC ⋆

n (p) satisfy properties 2 and 3 of Section 1 but not property 1.

5.2 Comparisons of simple evidence-unbiased calibrations

Figures 4-5 compare the proposed B⋆
n (p), in the D1 −D0 = 1 case, to the two evidence-unbiased

Bayes factor estimates discussed in Example 3, item 1. Since −1/ ln p and 1/
(
p−1/2 −1

)
do not

depend on n, they do not have B⋆
n (p)’s Schwarz-sequence property of asymptotic equivalence to

the Bayes factor estimate that corresponds to the BIC (Section 1, property 2; see Remark 2). They

do satisfy properties 1 and 3 of Section 1.

13



Figure 4: Bayes factor estimates B⋆
n (p), −1/ ln p, and 1/

(
p−1/2 −1

)
, as functions of n, for p =

0.05, 0.005.

Figure 5: Bayes factor estimates B⋆
n (p), −1/ ln p, and 1/

(
p−1/2 −1

)
, as functions of p, for n =

2, 4, 8, 16.
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