

Chemical and olfactory analysis of essential oils of Hedychium gardnerianum, Hedychium flavescens, Pittosporum senacia and Psidium cattleianum from Reunion Island

Marine Canton, Marina Thierry, Sylvain Antoniotti

▶ To cite this version:

Marine Canton, Marina Thierry, Sylvain Antoniotti. Chemical and olfactory analysis of essential oils of Hedychium gardnerianum, Hedychium flavescens, Pittosporum senacia and Psidium cattleianum from Reunion Island. Journal of Essential Oil & Plant Composition, 2023, 1 (3), pp.298-311. 10.58985/jeopc.2023.v01i03.39. hal-04293587

HAL Id: hal-04293587 https://hal.science/hal-04293587v1

Submitted on 18 Nov 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

- 1 Chemical and olfactory analysis of essential oils of *Hedychium gardnerianum*,
- 2 Hedychium flavescens, Pittosporum senacia and Psidium cattleianum from
- 3 Reunion Island
- ⁴ Marine Canton¹, Marina Thierry¹ and Sylvain Antoniotti^{1,2,*}
- 5 ¹ Université Côte d'Azur
- 6 Institut d'Innovation et de Partenariats Arômes Parfums Cosmétiques
- 7 Espace J.-L. Lions, 4 traverse Dupont, 06130 Grasse, France
- 8 ² Université Côte d'Azur, CNRS
- 9 Institut de Chimie de Nice
- 10 Parc Valrose, 06108 Nice cedex 2, France
- 11 *Correspondence: <u>sylvain.antoniotti@univ-cotedazur.fr</u>
- 12

13 ABSTRACT

Four essential oils (EOs), rarely described in the literature, and never for 14 samples originating from Reunion Island, were studied by gas 15 chromatography with flame ionisation detector (GC-FID) and gas 16 chromatography coupled with mass spectrometry and olfactometry 17 (GC/MS-O). The chemical composition, as well as the main olfactory 18 properties, of the following four EOs were determined: longose 19 (Hedychium gardnerianum), yellow ginger (Hedychium flavescens), bois de 20 joli coeur (*Pittosporum senacia*), and Chinese guava (*Psidium cattleianum*). 21 The chemical compositions were found to be rich in mono- and 22 sesquiterpene hydrocarbons. The main components of H. gardnerianum 23 flowers EO was β -farnesene (12.1%), α -cadinol (9.7%) and α -farnesene 24 (7.1%). The composition of essential oil from *Hedychium flavescens* leaves is 25 reported for the first time with β - and α -pinene (47.8 and 18.7%, 26 respectively) as well as β -caryophyllene (17.5%) as the main compounds. 27 The main components of *P. senacia* leaves EO and *P. cattleianum* floral tops 28 EO was identified as nonane (36.2%) and β -caryophyllene (43.7%), 29 respectively. With such a chemical composition, herbal, citrus, green, pine 30 tree, and in some cases floral and woody odors were determined by 31 GC/MS-O. 32

Keywords: natural complex substance • chemical composition • natural
 scent • olfactometry • joli coeur

35

36

38 INTRODUCTION

The genus *Hedychium* is part of the Zingiberaceae family and includes 39 about 80 species distributed mainly in Asia. *H. gardnerianum* is a plant native to 40 the Himalayas whose stem can be 2 meters long and its leaves 30 cm long. Its 41 flowers can be pink or orange yellow [1-3]. It is considered an invasive plant on 42 most of the Azores archipelago [1]. The rhizomes of the Hedychium species are 43 known to be fleshy and aromatic. Some species are cultivated only to extract the 44 fragrant essential oil from their rhizomes. Aerial parts of the *Hedychium* species 45 can be used in the paper industry and its flowers as culinary ingredients [4]. 46 The bloom of the *Hedychium* species is very brief and usually occurs during the 47 monsoon. The chemical profile of *Hedychium sp.* EO is reported as complex and 48 comprising monoterpene and sesquiterpene derivatives. The compounds α -49 pinene, β -pinene, eucalyptol, linalool and nerolidol, although quite ubiquitous, 50 are described as markers of the genus Hedychium [4]. 51 The genus *Pittosporum* belongs to the Pittosporaceae family and 52 encompasses ca. 200 species [5]. Among these, Pittosporum senacia is a species 53 found on Indian Ocean Islands. The chemical composition of EO from the 54 whole plant from Mauritius was described in 2020 and 2021 by Jugreet et al. [5, 55 6]. In their most recent article, the distillation yield for *P. senacia* was found to 56 be 0.77%. The chemical composition mainly comprised monoterpene 57 hydrocarbons (up to 71.9%), and particularly β -myrcene (62.2%). Other 58 compounds found were germacrene D (7.8%), limonene (3.4%), and β -59

60	phellandrene (2.9%). In an earlier article from 1998, EO from the leaves of <i>P</i> .
61	senacia coursii, endemic to Madagascar, was studied [7]. With a distillation yield
62	of 0.67%, 95% of the chemical composition of the EO was determined by GC-
63	FID and GC/MS. With monoterpene hydrocarbons accounting for only 20.4%,
64	including β -myrcene (6.3%), α -terpinene (4.6%) and camphene (3%), the main
65	compounds were found to be sesquiterpene hydrocarbons and derivatives
66	(69.5%) such as α -cadinol (19%), α -muurolol (15.9%), and δ -cadinene (11.3%). In
67	the same study, the antimicrobial activity of this EO against <i>Staphylococcus</i>
68	aureus was shown to outperform streptomycin, while it was in the same order
69	of magnitude as streptomycin against Streptococcus faecalis [7].
70	The genus <i>Psidium</i> belongs to the Myrtaceae family which contains ca.
71	5500 species [8, 9]. This genus is known for presenting rich essential oil bearing
72	plants [9]. <i>Psidium cattleianum</i> is a species found in Oceania, Brazil, North
73	America and the Caribbean [8]. The shrub is typically between 1 and 4 meters
74	in height. The EO from the leaves of <i>P. cattleianum</i> has been described as having
75	antifungal activities against Candida spp. and antibacterial activities against
76	several strains such as Staphylococcus aureus, Escherichia coli, Pseudomonas
77	aeruginosa in qualitative analyses with the antibiotic ampicillin as control [8].
78	The chemical composition of EO from <i>P. cattleianum</i> leaves has been
79	studied with plants coming mainly from Brazil [8-12]. Older studies describe <i>P</i> .
80	cattleianum EO harvested in Hawaii [13], Cuba [14], and California [15].

81	As part of a project dedicated to the chemical and sensory evaluation of plants
82	from Reunion Island for applications in perfumery, the chemical composition
83	and olfactory properties of four essential oils (EOs) for which literature data are
84	scarce or non-existent were studied. The four species, from the Zingiberaceae,
85	Pittosporaceae, and Myrtaceae botanical families illustrated in Figure 1 are
86	listed hereafter:
87	- Longose (<i>Hedychium gardnerianum</i> Sheppard ex Ker-Gawl) – flowers,
88	- Yellow ginger (Hedychium flavescens Carey ex Roscoe) – leaves,
89	- Bois de joli coeur (<i>Pittosporum senacia</i> Putt.) – leaves,
90	- Chinese guava (<i>Psidium cattleianum</i> Afzel. Ex Sabine) – floral tops.
91	The aim of these studies was to determine the chemical composition of these
92	essential oils and evaluate their olfactory profile for potential applications in
93	perfumery.
94	MATERIAL AND METHODS
95	Plant materials
96	H. gardnerianum, H. flavescens, P. senacia and P. cattleianum were collected
97	in 2020 on Reunion Island, in the wild between 800 and 1300 meters of altitude
98	and their essential oils were obtained from OLICA (19 Rue Fangourin, Saint-
99	Leu 97424, La Réunion, FRANCE).

The four pictures of the species in Figure 1 are licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license without
modification. Authors are (1) and (4) B. Navez, (2) Forest and Kim Starr, (3)
Change-ecorce.

104

Figure 1. The four species studied: (1) *H. gardnerianum*, flowers; (2) *H. flavescens*,
leaves; (3) *P. senacia*, leaves; (4) *P. cattleianum*, floral tops.

107

108 GC/MS-FID analyses

The analyses of the four EOs chemical composition were performed on 109 an Agilent GC 7820 chromatograph coupled to an Agilent 5977B electron 110 ionization mass spectrometer and equipped with a flame ionization detector. 111 The column used was Agilent HP5-MS capillary column (30 m x 0.25 mm i.d., 112 film thickness 0.25 μ m). The sample of EO was diluted to 1% v/v in ethyl 113 114 acetate. One microliter of the sample was injected with a split ratio of 1/10. Carrier gas was helium with a flow rate of 1.2 mL/min. The temperatures of 115 injector and source was 250 °C and 230 °C, respectively. The oven temperature 116

117	was programmed to stay 4 min at 40°C, then to rise from 40 to 200°C with an
118	increase of 2 °C/min and finally from 200 to 270 °C with an increase of 8 °C/min.
119	For the MS, ionization energy was 70 eV and the range was from 35 to 350 m/z.
120	The FID detector was set at 270 °C with an air flow of 400 mL/min and a
121	hydrogen flow of 40 mL/min.
122	Characterization of the EOs
123	GC/MS was used for identification and GC-FID for quantification. The
124	identification of EO constituents was carried out by matching the retention
125	index (RI) determined against a series of C7-C40 alkanes as well as by matching
126	the EI-MS mass spectra obtained with various databases (NIST20, Wiley6n and
127	internal database).

128 GC/MS-O analyses

GC/MS-O analyses were performed on a Perkin Elmer Clarus 690 129 chromatograph coupled with a Perkin Elmer Clarus SQ8T mass selective 130 detector and equipped with a Perkin Elmer sniffing port. The column was a 131 Perkin Elmer Elite 5-MS (30m x 0.32mm i.d., film thickness 0.25µm). The sample 132 of EO was diluted to 10% v/v in ethyl acetate. One microliter of the sample was 133 injected with a split of 72 mL/min (inlet pressure: 23 psi). The split between the 134 MS and the Olfactometry detector was 1:7 (v/v). The oven temperature was 135 programmed to stay 2 min at 60 °C, to rise from 60 to 200 °C with an increase of 136 5 °C/min, then from 200 to 280 °C with an increase of 8 °C/min and finally held 137 at 280 °C for 5 min. The solvent delay was 5.5 min. Four panelists carried out 138

the GC/MS-O analysis in duplicate, on each of the four EOs. Compounds were
annotated by matching the EI-MS mass spectra obtained with databases
(NIST20).

142 **RESULTS AND DISCUSSION**

143 Hedychium gardnerianum and Hedychium flavescens

Essential oils obtained from the rhizomes of the two species H. gardnerianum 144and H. flavescens have been described in the literature [2-4, 16-18]. For example, 145 Ray et al. (2018) studied 10 species of Hedychium, including H. gardnerianum and 146 H. flavescens, cultivated under the same conditions in India [4]. After harvesting, 147 the EO of each plant was collected from the rhizomes and analyzed by GC/MS 148 and GC-FID. The distillation yield of H. gardnerianum and H. flavescens species 149 was about 0.20%, which is lower than other species of the genus such as *H*. 150 *thyrsiforme* (0.75%) and *H. gracile* (0.65%), and higher than others such as *H.* 151 flavum (0.10%) and H. greenii (0.05%). The EO of H. gardnerianum was described 152 as dark yellow and that of *H. flavescens* as dark brown. The chemical 153 compositions of the two EOs were determined, accounting for 75.9% and 92.8% 154 of oils of H. gardnerianum and H. flavescens, respectively. Both were composed 155 mainly of monoterpene derivatives, mostly β -pinene and α -pinene (28.03% and 156 21.15% for H. gardnerianum and 29.76% and 13.17% for H. flavescens, 157 respectively). Eucalyptol, one of the main compounds of *H. flavescens* (12.80%), 158 was found in a much smaller fraction in *H. gardnerianum* (0.42%) [4]. 159

160	The EO of <i>H. gardnerianum</i> flowers has been very little studied; to the best of
161	our knowledge, only two papers published in 2002 and 2003 described the EO
162	obtained from this part of the plant [1, 2] and EO extracted from the leaves of <i>H</i> .
163	flavescens has never been described. Medeiros et al. (2003) studied the chemical
164	composition of EO from <i>H. gardnerianum</i> flowers from three locations on San
165	Miguel Island in the Azores [1]. The composition of these was determined using
166	GC/MS analysis alone, accounting for 87%, 94% and 91% of the total EO from
167	the three locations, respectively. Although they came from the same island,
168	significant differences in the relative percentages of compounds were observed,
169	although GC/MS alone can hardly provide reliable quantitative information.
170	The main compounds of the three EOs were monoterpene hydrocarbons with
171	α-pinene (8.38-18.13%), β-pinene (5.06-11.99%), p-cymene (3.85-8.16%), γ-
172	terpinene (3.15-14.43%) and the sesquiterpene derivatives α -cadinol (6.42-
173	14.59%), β -caryophyllene (7.04-8.89%), δ -cadinene (4.89-8.76%) and τ -muurolol
174	(2.64-5.86%). The chemical composition of EO from <i>H. gardnerianum</i> flowers
175	from Fiji was studied by Smith et al. [2]. Up to 75% of its chemical composition
176	was characterized by GC/MS-FID analyses. β -Caryophyllene (17.4%) and β -
177	pinene (17.0%) were found to be the two main compounds.
178	Hedychium gardnerianum flowers EO analysis
179	The sample of <i>H. gardnerianum</i> flowers EO was found to be chemically
180	very complex (Figure 2). As shown in Table 1, a hundred compounds were

detected by monodimensional gas chromatography and those identified

182	accounted for more than 87% of the EO. The sample was mainly composed of
183	sesquiterpene derivatives including β -farnesene (12.05%), α -cadinol (9.71%), α -
184	farnesene (7.09%), τ -muurolol (5.89%) and δ -cadinene (5.83%). The
185	monoterpene derivatives identified accounted for ca. 20% with α -pinene, β -
186	pinene and humulene as main representatives (4.48%, 4.46% and 3.93%,
187	respectively). The sample also contained diterpene derivatives including kaur-
188	16-ene (2.42%).

Our results are in agreement with the article by Medeiros et al. (2003) 189 concerning the study of the Eos of longose leaves and flowers (H. gardnerianum) 190 from the island of San Miguel (Azores) [1]. In their study, the main compounds 191 were α -pinene, β -pinene, p-cymene, γ -terpinene, β -caryophyllene, β -cadinene 192 and α -cadinol. These compounds were all present in the sample studied herein. 193 However, β -farnesene, the main compound in our sample, was identified to a 194 much lesser extent (ca. 3%) in the study by Medeiros et al (2003). This could 195 suggested a particular role of farnesene in plant defense particular to the 196 Reunion Island territory for a compound known to be associated with insect 197 attraction [19]. 198

199

201

Figure 2. Chromatogram of *Hedychium gardnerianum* flowers essential oil.

Poak #	RT	Ar02 %	Compound	Formula	DI	RI
	(min)	Alea /0	Compound	FOIIIIula	KI	litt.
1	17.625	4.48	α-pinene	$C_{10}H_{16}$	931	937
2	18.563	0.08	camphene	C10H16	945	952
3	20.344	0.15	sabinene	C10H16	971	974
4	20.493	4.46	β-pinene	$C_{10}H_{16}$	973	979
5	21.682	0.21	β-myrcene	C10H16	991	991
6	22.460	0.39	α -phellandrene	C10H16	1002	1005
7	22.853	0.04	3-carene	C10H16	1008	1011
8	23.339	0.24	α -terpinene	C10H16	1015	1017
9	23.892	1.46	<i>p</i> -cymene	$C_{10}H_{14}$	1022	1025
10	24.175	0.52	limonene	C10H16	1026	1030
11	24.363	0.08	eucalyptol	$C_{10}H_{16}O$	1029	1032
12	25.000	0.23	(Z) - β -ocimene	C10H16	1038	1038
13	25.705	2.97	(E)-β-ocimene	C10H16	1048	1049
14	26.355	2.46	γ-terpinene	C10H16	1057	1060
15	28.431	0.09	terpinolene	C10H16	1086	1088
16	28.888	0.06	methyl benzoate	$C_8H_8O_2$	1093	1094
17	29.371	2.22	linalool	$C_{10}H_{18}O$	1100	1099

Table 1. Chemical composition of *Hedychium gardnerianum* flowers essential oil.

Peak	Pook #	RT	Area %	Compound	Formula	рī	RI
	I Eak #	(min)		Compound	Formula	N	litt.
-	10	20 504	0.12	(E)-4.8-Dimethyl-	CuHu	1116	1116
	10	50.504	0.12	nona-1,3,7-triene	CIII 118	1110	1110
	19	31.954	0.01	sabinol	$C_{10}H_{16}O$	1137	1143
	20	33.804	0.09	endo-borneol	$C_{10}H_{18}O$	1164	1167
	21	34.654	0.10	terpinen-4-ol	$C_{10}H_{18}O$	1176	1177
	22	35.662	0.11	methyl salicylate	$C_8H_8O_3$	1191	1192
	23	41.904	0.06	bornyl acetate	$C_{12}H_{20}O_2$	1285	1285
	24	41.921	0.06	2-undecanone	$C_{11}H_{20}O_2$	1285	1294
	25	43.170	0.01	indole	C8H7N	1304	1295
	26	45.202	0.05	δ-elemene	C15H24	1336	1338
	27	45.945	0.16	α -cubebene	C15H24	1348	1351
	28	47.567	0.19	α-copaene	C15H24	1374	1376
	29	48.614	0.21	β-elemene	C15H24	1391	1391
	30	49.628	0.04	α-gurjunene	C15H24	1407	1409
	31	50.219	1.38	β-caryophyllene	$C_{15}H_{24}$	1417	1419
	32	51.67	0.07	guaia-6,9-diene	C15H24	1442	1443
	33	52.281	3.93	humulene	C15H24	1452	1454
	34	52.640	12.05	(6E)-β-farnesene	$C_{15}H_{24}$	1458	1457
	35	52.848	0.01	allo-aromadendrene	$C_{15}H_{24}$	1462	1461
	36	53.484	0.18	γ-gurjunene	$C_{15}H_{24}$	1472	1473
	37	53.680	0.45	γ-muurolene	$C_{15}H_{24}$	1476	1477
	38	53.914	0.96	germacrene D	C15H24	1480	1481
	39	54.061	0.21	α -curcumene	C15H22	1482	1483
	40	54 527	0.17	Bicyclosesqui-	Culla	1400	1490
	40	54.557	0.17	phellandrene	U 15 U 24	1470	1407
	41	54.822	1.67	bicyclogermacrene	C15H24	1495	1495

Dools #	RT	A mag 9/	Compound	Earmaula	DI	RI
геак #	(min)	Area %	Compound	Formula	KI	litt.
42	55.070	1.05	α-muurolene	C15H24	1499	1499
43	55.461	0.43	β-cadinene	C15H24	1506	1518
44	55.646	7.09	(3 <i>E</i> ,6 <i>E</i>)α-farnesene	C15H24	1509	1508
45	55.848	1.03	γ-cadinene	C15H24	1513	1513
46	56.449	5.83	δ-cadinene	C15H24	1523	1524
47	56.891	0.09	cadina-1,4-diene	C15H24	1531	1532
48	57.186	0.24	α-cadinene	C15H24	1536	1538
49	57.476	0.12	α-calacorene	C15H20	1542	1542
50	57.897	3.00	elemol	C15H26O	1549	1549
51	58.246	0.18	204 161 121 105 93 69	-	1555	-
52	58.548	0.14	204 161 121 109 93 41	-	1561	-
53	58.767	2.11	(E)-nerolidol	C15H26O	1564	1564
54	59.140	0.59	202 69 41 79 93 109 55	-	1571	-
55	59.372	4.33	222 161 119 105 91 81	-	1575	-
56	59.444	0.55	spathulenol	C15H24O	1576	1576
57	59.735	0.75	caryophyllene oxide	C15H24O	1582	1581
58	60.000	0.19	204 161 119 105 91 81	-	1586	-
59	60.332	0.18	202 159 97 83 69 55	-	1592	-
60	60.622	1.41	220 121 107 93 88 67	-	1597	-
61	60.851	0.26	204 122 107 93 81 69	-	1602	-
62	61.179	1.46	humulene oxide	C15H24O	1608	1604
63	61.358	0.55	222 179 105 91 69 41	-	1611	-
64	62.25	1.35	220 119 93 81 67 41	-	1628	-
65	62.413	0.97	γ-eudesmol	C15H26O	1631	1631
66	63.024	5.89	τ-muurolol	C15H26O	1642	1642
67	63.225	0.84	204 161 119 105 95	-	1646	-

Dool #	RT	Area %	Compound	Formula	זק	RI	
	Геак #	(min)	Alea %	Compound	Formula	KI	litt.
-	68	63.411	0.67	β-eudesmol	C15H26O	1649	1649
	69	63.749	9.71	α-cadinol	C15H26O	1655	1653
	70	64.460	0.16	200 157 142 123 93 69	-	1669	-
	71	64.929	0.10	cadalene	C15H18	1677	1674
	72	65.504	0.38	204 161 119 105 84 81	-	1688	-
	73	66.212	0.12	220 177 159 131 117	-	1701	-
	74	67.089	0.06	220 187 159 145 131	-	1719	-
	75	68.005	0.21	oplopanone	C15H26O2	1736	1730
	76	70.851	0.06	1-octadecene	C18H36	1792	1793
	77	71.662	0.07	147 119 91 77 69 55	-	1808	-
	78	72.253	0.10	187 159 119 107 93 77	-	1821	-
	79	74.520	0.79	benzyl salicylate	$C_{14}H_{12}O_3$	1867	1869
	80	80.459	0.06	97 91 83 69 57 55	-	1993	-
	81	81.149	0.05	(8β.13β)-kaur-16-ene	C20H32	2008	2012
	82	82.173	2.42	kaur-16-ene	C20H32	2032	2041
	83	85.762	0.11	Coronarin E	C20H28O	2123	2136
	84	87.726	0.03	207 91 83 77 69 57	-	2194	-
	85	89.042	0.04	298 146 123 91 77	-	2259	-
	86	89.229	0.04	281 109 96 81 67 55	-	2269	-
	87	89.325	0.26	9-tricosene	C23H46	2274	2278
	88	89.806	0.15	324 99 85 71 57 43	-	2299	-
	89	90.032	0.34	298 174 146 131 109	-	2313	-
	90	90.719	0.03	207 151 81 69 55 40	-	2358	-
	91	90.956	0.52	314 190 162 95 81 55	-	2373	-
	92	92.293	0.05	283 109 95 82 67 55	-	2470	-
	93	92.346	0.16	281 111 97 83 69 57	-	2475	-

	рт					DI		
Peak #	(min)	Area %	Compound	Formula	RI	litt.		
94	92.402	0.19	290 108 95 79 67 55	-	2479	-		
95	92.658	0.04	327 113 99 85 71 57	-	2498	-		
Totalic	lontified	87.43						
	lentineu	%						
Monote Monote	erpenes / erpenoid s	20.28 %						
Sesqui	terpenes /	63.21						
Sequite	erpenoid	%						
RT: ret	s ention tin	ne; RI: rete	ention indices; RI litt. fr	om NIST 2020	databa	se. NI:		
Hedychii	um flaves	cens leave	s EO analysis					
Tł	ne EO sam	ple of <i>H</i> .	<i>flavescens</i> leaves was fo	ound to be rela	tively si	mple		
and to co	ontain mai	inly three	compounds: β-pinene ((47.81%) <i>,</i> α-piı	nene (18	.74%)		
and β-ca	ryophylle	ne (17.47%	%), which together acco	unted for 84.02	2% of th	le		
sample (Figure 3).	As showr	n in Table 2, in total, 96.	.26% of the EO	was			
identifie	d. In addi	tion of the	se three compounds, m	nonoterpene ar	nd			
sesquiter	sesquiterpene derivatives were found in smaller proportions such as the							
monoter								
Loursin on	pene hydi	rocarbons	D-limonene (0.60%), β-	-myrcene (0.16	9%), γ-			
terpinen	pene hydi e (0.05%) a	rocarbons and sesqu	D-limonene (0.60%), β- iterpene hydrocarbons	-myrcene (0.16 bicyclogermae	9%), γ- crene (2	.65%),		
germacre	pene hydr e (0.05%) a ene B (1.29	rocarbons and sesqu 9%) and β·	D-limonene (0.60%), β- iterpene hydrocarbons -cadinene (1.14%).	-myrcene (0.16 bicyclogermae	9%), γ- crene (2	.65%),		

Figure 3. Chromatogram of *Hedychium flavescens* leaves essential oil.

Table 2. Chemical composition of *Hedychium flavescens* leaves essential oil.

Pool #	RT	$\Delta rea \%$	Compound	Formula	DI	RI
геак #	(min)	Alea %	Area % Compound		KI	litt.
1	17.625	18.74	α-pinene	$C_{10}H_{16}$	931	937
2	18.553	0.04	camphene	$C_{10}H_{16}$	945	952
3	20.553	47.81	β-pinene	$C_{10}H_{16}$	974	979
4	21.715	0.16	β-myrcene	$C_{10}H_{16}$	991	991
5	23.562	0.05	α -terpinene	$C_{10}H_{16}$	1018	1017
6	24.093	0.02	<i>p</i> -cymene	$C_{10}H_{14}$	1025	1025
7	24.183	0.60	limonene	$C_{10}H_{16}$	1026	1030
8	24.352	0.42	eucalyptol	$C_{10}H_{18}O$	1029	1032
9	25.113	0.05	(Z)-β-ocimene	$C_{10}H_{16}$	1040	1038
10	25.799	0.05	(E)-β-ocimene	$C_{10}H_{16}$	1049	1049
11	26.391	0.05	γ-terpinene	$C_{10}H_{16}$	1058	1060
12	28.483	0.03	α -terpinolene	$C_{10}H_{16}$	1087	1088
13	29.398	0.02	linalool	$C_{10}H_{18}O$	1100	1099
14	31.920	0.01	pinocarveol	C10H16O	1137	1138
15	34.619	0.02	terpinen-4-ol	$C_{10}H_{18}O$	1176	1177
16	35.661	0.03	1-dodecene	$C_{12}H_{24}$	1191	1190

Deelt #	RT	Area %	C 1	г 1	DI	RI
Реак #	(min)		Compound	Formula	KI	litt.
17	45.195	0.90	δ-elemene	C10H18O	1336	1338
18	47.567	0.02	α-copaene	$C_{11}H_{18}$	1374	1376
19	48.606	0.24	β-elemene	$C_{15}H_{24}$	1391	1391
20	49.650	0.06	β-maaliene	$C_{15}H_{24}$	1408	1398
21	50.269	17.47	β-caryophyllene	$C_{15}H_{24}$	1418	1419
22	51.215	0.33	γ-elemene	$C_{15}H_{24}$	1434	1434
23	51.673	0.66	guaia-6,9-diene	$C_{15}H_{24}$	1442	1443
24	51.996	1.19	204 161 133 119 105	-	1447	-
25	52.257	1.20	humulene	$C_{15}H_{24}$	1452	1454
26	52.658	0.27	$(3E, 6E)$ - α -farnesene	$C_{15}H_{24}$	1458	1457
27	52.683	0.27	allo-aromadendrene	$C_{15}H_{24}$	1459	1461
28	53.430	0.12	204 161 121 105 93 55	-	1471	-
29	53.659	0.08	204 161 133 119 105	-	1475	-
30	53.902	0.55	germacrene D	$C_{15}H_{24}$	1479	1481
31	54.202	0.02	204 189 147 122 108	-	1484	-
32	54.369	0.08	β-selinene	$C_{15}H_{24}$	1487	1486
33	54.521	0.14	204 189 161 104 91	-	1490	-
34	54.818	2.65	bicyclogermacrene	$C_{15}H_{24}$	1495	1495
35	55.057	0.02	161 136 105 95 91 53	-	1499	-
36	55.298	0.45	204 147 107 93 81 67	-	1503	-
37	55.454	1.14	β-cadinene	$C_{15}H_{24}$	1506	1518
38	56.277	0.89	204 161 136 121 105	-	1520	-
39	56.647	0.02	122 119 107 91 77	-	1527	-
40	57.524	0.03	α -calacorene	C15H20	1542	1542
41	58.010	0.02	106 91 79 41	-	1551	-
42	58.235	1.29	germacrene B	$C_{15}H_{24}$	1555	1557

	R'		A 0/		т 1	DI	RI
	Реак #	(min)	Area %	Compound	Formula	KI	litt.
	43	59.428	0.07	spathulenol	$C_{15}H_{24}O$	1576	1576
	44	59.706	0.49	caryophyllene oxyde	C15H24O	1581	1581
	45	59.987	0.44	204 161 119 105 91 81	-	1586	-
	46	60.843	0.08	161 105 93 81 77 67	-	1601	-
	47	61.360	0.18	204 179 161 119 105	-	1610	-
	48	62.099	0.07	204 161 119 105 91	-	1624	-
	49	62.309	0.43	isospathulenol	C15H24O	1627	1638
	50	63.668	0.01	204 161 121 91 81	-	1651	-
	Total id	entified	96.26 %				
	Monoterpenes / Monoterpenoid		68.08 %				
	Sesquiterpenes /						
			28.16 %				
	Sequite	rpenoid					
222	RT: ret	, ention tir	ne; RI: rete	ention indices; RI litt. fro	m NIST 202	20 data	base. NI:
222	Not id	entified ('	372%) Bol	d main compounds			
223		entinea (<i>5.7 2 /0)</i> . DOI	a. mani compounds.			
224							
225	То	our know	ledge, the	chemical composition o	f the EO ob	otained	solely
226	from the le	eaves of <i>I</i>	H. flavescen	s have not been publishe	ed so far. In	the mo	ost
227	recent arti	cle on the	e EO of <i>H.</i> ;	flavescens rhizomes, 78.0	5% of a san	nple ob	tained
228	from a pla	nt grown	in India c	ould be identified.[4] Th	e main con	npound	ls
229	described	were β-p	inene (24.7	7%) and $lpha$ -pinene (11.12	7%), both p	resent i	n large
230	proportion	ns in our	sample (47	7.81 and 18.74%, respecti	vely), toget	her wit	thβ-
231	caryophyl	lene and	bicycloger	macrene.			

232 *Pittosporum senacia* leaves EO analysis

233	The relatively simple composition of the EO from <i>Pittosporum senacia</i>
234	leaves was determined for more than 99% of the total EO (Figure 4). As
235	presented in Figure 4. Chromatogram of Pittosporum senacia leaves essential oil.
236	Table 3, its chemical profile essentially contained four compounds: the
237	C9 linear alkane hydrocarbon nonane (36.24%) and three monoterpene
238	derivatives, β -pinene (25.11%), β -myrcene (19.19%) and α -pinene (7.36%),
239	which together accounted for 87.9%. Moreover, the chemical profile included
240	monoterpene derivatives such as limonene (1.46%), (Z)- and (E)- β -ocimene
241	(0.01% and 0.09%, respectively), sesquiterpene derivatives like germacrene D
242	(3.68%), humulene (0.40%), as well as other alkanes like decane (0.09%) and
243	undecane (0.56%).

244

_

Figure 4. Chromatogram of *Pittosporum senacia* leaves essential oil.

Table 3. Chemical composition of *Pittosporum senacia* leaves essential oil.

1	15.492	36.24	nonane	C9H20	900	900
#	(min)	%	Compound	ronnula	N	Ki iitt.
Peak	RT	Area	Compound	Formula		RI li++

Peak	RT	Area	Compound	Formula	זס	DI 1;++
#	(min)	%	Compound	Formula	N I	KI IIII.
2	17.233	0.03	α-thujene	C10H16	925	929
3	17.578	7.36	α-pinene	C10H16	930	937
4	18.984	0.06	camphene	$C_{10}H_{16}$	951	952
5	20.464	25.11	β-pinene	C10H16	973	979
6	21.675	19.19	β-myrcene	C10H16	991	991
7	22.628	0.09	decane	C10H22	1004	1000
8	22.843	0.05	α -phellandrene	$C_{10}H_{16}$	1008	1005
9	23.605	0.07	α -terpinene	$C_{10}H_{16}$	1018	1017
10	24.131	0.06	<i>p</i> -cymene	$C_{10}H_{14}$	1026	1025
11	24.183	1.46	limonene	$C_{10}H_{16}$	1026	1030
12	25.145	0.01	(Z)-β-ocimene	$C_{10}H_{16}$	1040	1038
13	25.818	0.09	(E)-β-ocimene	$C_{10}H_{16}$	1050	1049
14	26.414	0.22	γ-terpinene	$C_{10}H_{16}$	1058	1060
15	28.474	0.08	terpinolene	$C_{10}H_{16}$	1087	1088
16	29.383	0.56	undecane	$C_{11}H_{24}$	1100	1100
10	20 510	0.04	(<i>E</i>)-4,8-dimethyl-	C II	1117	1117
17	30.518	0.04	nona-1,3,7-triene	C11H18	1116	1116
18	35.662	0.05	1-dodecene	C12H24	1191	1190
19	36.632	0.05	decanal	$C_{10}H_{20}O$	1205	1206
20	45.180	0.81	δ-elemene	C15H24	1336	1338
21	45.941	0.03	α-cubebene	C15H24	1348	1351
22	47.279	0.05	α -ylangene	C15H24	1370	1372
23	47.557	0.12	α-copaene	$C_{15}H_{24}$	1374	1376
24	48.602	0.56	β-elemene	$C_{15}H_{24}$	1391	1391
25	50.222	0.48	β-caryophyllene	C15H24	1417	1419
26	50.795	0.15	β-copaene	C15H24	1427	1432

Peak	RT	Area			DI	DI 114
#	(min)	%	Compound	Formula	KI	KI lit
27	51.134	0.15	γ-elemene	C15H24	1433	1434
28	51.405	0.05	α-guaiene	C15H24	1437	1439
29	51.682	0.10	guaia-6,9-diene	C15H24	1442	1443
30	52.006	0.20	161 133 105 91 79 69	-	1447	-
31	52.242	0.40	humulene	C15H24	1451	1454
32	52.842	0.03	<i>cis-</i> muurola- 4(15),5-diene	C15H24	1461	1463
33	53.910	3.68	germacrene D	C15H24	1479	1481
34	54.213	0.03	β-selinene	C15H24	1485	1486
35	54.519	0.06	161 105 91 44	-	1490	-
36	54.720	0.07	161 105 91	-	1493	-
37	55.057	0.06	α-muurolene	C15H24	1499	1499
38	55.304	0.21	α-elemene	C15H24	1503	1462
39	55.834	0.11	γ-cadinene	C15H24	1512	1513
40	56.407	0.39	cadina-1(10),4-diene	C15H24	1523	1524
41	56.650	0.03	122 43	-	1527	-
42	58.244	0.65	germacrene B	$C_{15}H_{24}$	1555	1557
43	60.289	0.10	1-hexadecene	C16H32	1591	1592
44	61.085	0.04	rosifoliol	C15H26O	1606	1600
45	63.633	0.09	τ-muurolol	C15H26O	1653	1642
46	70.847	0.03	1-octadecene	C18H36	1792	1793
Total i	dentified		99.09 %			
Monoterpenes / Monoterpenoid			53.78 %			
Sesquiterpenes / Sequiterpenoid			8.19 %			

247	RT: retention time; RI: retention indices; RI litt. from NIST 2020 database.
248	NI: Not identified (0.41%). Bold: main compounds.
249	Many of the metabolites present in the study by B. S. Jugreet et al.
250	published in 2021 on the EO of <i>P. senacia</i> (whole plant) from Mauritius [5], were
251	also identified in our sample such as β -myrcene, germacrene D, α -muurolene,
252	limonene, α -pinene, α -thujene, p-cymene, β -ocimene, β -elemene, β -
253	caryophyllene, and humulene. The alkanes nonane, decane, and undecane were
254	not reported in the article by B. S. Jugreet et al. However, some alkanes,
255	including nonane, have already been identified in the EO of the genus
256	<i>Pittosporum,</i> such as in an endemic species of the Philippines, <i>P. resiniferum</i> [20].
257	Interestingly, nonane, a compound described as insect attractant, [21] was found
258	in 36.24% in our sample.
259	Psidium cattleianum floral tops EO analysis
259 260	<i>Psidium cattleianum</i> floral tops EO analysis In the most recent study, a distillation yield of 0.83% was reported for
259 260 261	<i>Psidium cattleianum</i> floral tops EO analysisIn the most recent study, a distillation yield of 0.83% was reported forEO from <i>P. cattleianum</i> leaves [8]. A total of 68 compounds were observed
259 260 261 262	Psidium cattleianum floral tops EO analysisIn the most recent study, a distillation yield of 0.83% was reported forEO from P. cattleianum leaves [8]. A total of 68 compounds were observedwithin the oil, 60 of which could be identified. β-Caryophyllene was the main
259 260 261 262 263	Psidium cattleianum floral tops EO analysisIn the most recent study, a distillation yield of 0.83% was reported forEO from P. cattleianum leaves [8]. A total of 68 compounds were observedwithin the oil, 60 of which could be identified. β-Caryophyllene was the maincompound found in 14.7%, followed by eucalyptol (11.7%) and γ-muurolene
259 260 261 262 263 264	Psidium cattleianum floral tops EO analysisIn the most recent study, a distillation yield of 0.83% was reported forEO from P. cattleianum leaves [8]. A total of 68 compounds were observedwithin the oil, 60 of which could be identified. β-Caryophyllene was the maincompound found in 14.7%, followed by eucalyptol (11.7%) and γ-muurolene(5.6%). The second most recent paper, published in 2019, describes the EO of
259 260 261 262 263 264 265	Psidium cattleianum floral tops EO analysisIn the most recent study, a distillation yield of 0.83% was reported forEO from P. cattleianum leaves [8]. A total of 68 compounds were observedwithin the oil, 60 of which could be identified. β-Caryophyllene was the maincompound found in 14.7%, followed by eucalyptol (11.7%) and γ-muurolene(5.6%). The second most recent paper, published in 2019, describes the EO ofthe leaves of P. cattleianum. The EO was mainly composed of sesquiterpene and
 259 260 261 262 263 264 265 266 	Psidium cattleianum floral tops EO analysisIn the most recent study, a distillation yield of 0.83% was reported forEO from P. cattleianum leaves [8]. A total of 68 compounds were observedwithin the oil, 60 of which could be identified. β-Caryophyllene was the maincompound found in 14.7%, followed by eucalyptol (11.7%) and γ-muurolene(5.6%). The second most recent paper, published in 2019, describes the EO ofthe leaves of P. cattleianum. The EO was mainly composed of sesquiterpene andmonoterpene derivatives (47.8% and 28.7%, respectively). A total of 46
259 260 261 262 263 264 265 266 267	Psidium cattleianum floral tops EO analysisIn the most recent study, a distillation yield of 0.83% was reported forEO from P. cattleianum leaves [8]. A total of 68 compounds were observedwithin the oil, 60 of which could be identified. β-Caryophyllene was the maincompound found in 14.7%, followed by eucalyptol (11.7%) and γ-muurolene(5.6%). The second most recent paper, published in 2019, describes the EO ofthe leaves of P. cattleianum. The EO was mainly composed of sesquiterpene andmonoterpene derivatives (47.8% and 28.7%, respectively). A total of 46compounds were identified with β-caryophyllene (23.4%), caryophyllene oxide

Peak	RT	Area %	Compound	Formula	RI	RI
#	(min)					litt.
1	16 610	0.03	5,5-Dimethyl-1-	$C_{10}H_{12}$	916	921
1	10.010	0.05	vinylbicyclo[2,1,1]hexane	C101 116	910	921

Peak	RT	$\Lambda mag 0/$	Compound	Formula	DI	RI
#	(min)	Aled /0	Compound	Formula	KI	litt.
2	17.214	0.15	α-thujene	$C_{10}H_{16}$	925	929
3	17.611	4.50	α-pinene	$C_{10}H_{16}$	931	937
4	18.920	0.01	camphene	$C_{10}H_{16}$	950	952
5	20.475	0.19	β-pinene	$C_{10}H_{16}$	973	979
6	21.677	4.67	β-myrcene	$C_{10}H_{16}$	991	991
7	22.467	0.24	α -phellandrene	$C_{10}H_{16}$	1002	1005
8	22.864	0.14	3-carene	$C_{10}H_{16}$	1008	1011
9	23.360	0.12	4-carene	$C_{10}H_{16}$	1015	1009
10	23.901	0.19	<i>p</i> -cymene	$C_{10}H_{14}$	1022	1025
11	24.181	1.07	limonene	$C_{10}H_{16}$	1026	1030
12	24.984	3.23	(Z)-β-ocimene	$C_{10}H_{16}$	1038	1038
13	25.710	0.56	(<i>E</i>)-β-ocimene	$C_{10}H_{16}$	1048	1049
14	26.346	0.63	γ-terpinene	$C_{10}H_{16}$	1057	1060
15	28.421	2.98	terpinolene	$C_{10}H_{16}$	1086	1088
16	40.039	0.23	linalyl acetate	$C_{12}H_{20}O_{2}$	1257	1257
17	45.984	0.27	161 136 121 105 93 67	-	1349	-
18	47.293	0.44	α-ylangene	C15H24	1370	1372
19	47.581	1.18	α-copaene	C15H24	1374	1376
20	48.127	0.07	α-bourbornene	C15H24	1383	1384
21	48.598	0.12	204 121 108 93 81 55	-	1391	
22	49.495	0.03	tetradecene	$C_{14}H_{28}$	1405	1392
23	49.641	0.03	204 189 161 119 105	-	1408	-
24	50.374	43.68	β-caryophyllene	C15H24	1420	1419
25	50.818	0.42	γ-elemene	C15H24	1427	1434
26	51.387	0.07	aromadendrene	C15H24	1437	1440
27	51.672	0.10	204 161 133 119 105 91	-	1442	-

-	Peak	RT	A mag. 9/	Common d	Eamarda	DI	RI
	#	(min)	Area %	Compound	Formula	KI	litt.
-	28	52.009	0.16	204 161 119 105 91 79	-	1447	-
	29	52.278	6.49	humulene	C15H24	1452	1454
	30	52.709	0.18	9-epi-caryophyllene	C15H24	1459	1466
	31	53.640	2.32	γ-muurolene	$C_{15}H_{24}$	1475	1477
	32	53.874	0.50	α -amorphene	$C_{15}H_{24}$	1479	1482
	33	54.197	1.27	β-selinene	C15H24	1484	1486
	34	54.307	0.29	204 133 119 107 93 79	-	1486	-
	35	54.517	0.25	204 189 161 133 91	-	1490	-
	36	54.727	1.70	204 161 133 119 105 93	-	1493	-
	37	55.059	0.34	α -muurolene	C15H24	1499	1499
	38	55.454	0.51	204 161 134 119 105	-	1506	-
	39	55.575	0.26	122 109 93 79 69	-	1508	-
	40	55.837	0.87	β-bisabolene	$C_{15}H_{24}$	1513	1509
	41	56.175	0.88	γ-cadinene	C15H24	1519	1513
	42	56.401	2.38	cadina-1(10),4-diene	$C_{15}H_{24}$	1523	1524
	43	57.015	2.35	204 189 161 133 105 91	-	1533	-
	44	57.184	0.74	204 189 161 133 105	-	1536	-
	45	57.385	2.06	selina-3,7(11)-diene	$C_{15}H_{24}$	1540	1542
	46	57.987	0.11	161 109 95 91 79 69	-	1551	-
	47	58.238	1.84	germacrene B	C15H24	1555	1557
	48	58.604	0.17	204 189 133 119 105	-	1562	-
	49	58.749	0.33	nerolidol	C15H26O	1564	1564
	50	58.978	0.19	204 161 123 111 69 55	-	1568	-
	51	59.701	1.67	caryophyllene oxyde	$C_{15}H_{24}O$	1581	1581
	52	60.284	0.44	204 161 119 105 91 79	-	1591	-
	53	60.593	0.07	204 161 119 107 93 79	-	1597	-

	Peak	RT	A 0/		F 1	DI	RI
	#	(min)	Area %	Compound	Formula	KI	litt.
	54	60.746	0.10	161 133 121 93 82 77	-	1600	-
	55	60.956	0.09	204 161 133 119 105 95	-	1603	-
	56	61.162	0.17	147 138 109 96 93 67	-	1607	-
	57	61.623	0.29	202 187 131 123 91	-	1616	-
	58	62.084	0.71	204 161 119 105 91	-	1624	-
	59	62.221	0.78	204 161 119 105 91	-	1627	-
	60	62.424	0.54	204 179 161 119 105	-	1631	-
	61	62.642	0.14	159 136 107 91 79 69	-	1635	-
	62	62.969	1.09	τ-cadinol	C15H26O	1641	1640
	63	63.198	0.36	204 161 119 105 93	-	1645	-
	64	63.489	0.41	202 187 121 105 91	-	1651	-
	65	63.630	0.87	τ-muurolol	C15H26O	1653	1642
	66	64.190	0.20	204 189 161 133 107	-	1664	-
	67	65.113	0.06	126 119 111 77 55	-	1681	-
	68	65.807	0.49	eudesm-7(11)-en-4-ol	C15H26O	1694	1692
	Total id	lentified	88.41 %				
	Monote Monote	rpenes / rpenoids	18.70 %				
	Sesquite Sequite	erpenes / rpenoids	69.99 %				
283	RT	: retention	time; RI:	retention indices; RI litt. fro	om NIST 20	20 data	abase.
284	NI:	Not ident	tified (11.6	61%). Bold: main compound	ls.		
285							
286	Ol	factory ar	alysis				
287	Ol	factory ev	aluation c	of the four essential oils was	performed	l by a p	oanel
288	of 4 perso	ons by GC,	/MS-O and	alysis. The objective was to	obtain an c	overvie	w of

the main contributors to the overall scent of each EO which was found to be
 generally woody, a family of olfactory properties highly priced in modern
 perfumery.

In Table 5, the main aroma-active compounds and their odor properties are presented.

	RT	рі ,	Annotated compound	Scent
	(min)	Klapolar	Annotated compound	description
н	9.55	1144	Sabinol*	Floral
11. gardnerianum,	17.23	N.D.	Unknown**	Woody
flowers EO	22.48	16.94	Unknown	Floral
H. flavescens.	8.55	1093	Terpinolene	Woody
leaves, EO	17.35	1512	<i>trans</i> -α-bisabolene	Woody, rose
P. senacia.	6.61	N.D.	β-pinene	Pine, Green
leaves, EO	8.53	1092	Terpinolene	Woody
Р.	6.42	979	β-pinene	Pine, Green
cattleianum,	8.26	1078	Unknown**	Woody
EO	11.80	1261	Unknown	Citrus, spicy

Table 5. Overview of the main contributors of the four EOs.

*Tentative assignation. **No peak detectable.

296

295

Hedychium gardnerianum flowers EO presented three characteristic areas,
 a woody area identified by 2 panelists out of 4, and two floral area for 2
 panelists out of 4.
 GC/MS-O analysis of EO from *Hedychium flavescens* leaves revealed a

³⁰¹ main contributor with a fresh, woody and green scent which was annotated as

γ-elemene. The presence of woody, earthy, and green area was highlighted by 5
 panelists out of 5, floral and rose area by 4 panelists out of 5 and mint, herbal,
 and citrus area by 2 panelists out of 5.

Main aroma-active compounds of *Pittosporum senacia* leaves EO were annotated as β -myrcene with a green, woody and spicy scent and as terpinolene with a moss and woody scent. The GC/MS-O analysis revealed herbal, and pine tree area for 5 panelists out of 5 as well as floral and citrus area for 5 panelists out of 5.

Finally, Psidium cattleianum floral tops EO showed three characteristic 310 scents with β -myrcene and two unknown compounds, eluting at 8.9 min and 311 13.25 min, respectively, both with floral scent. In addition of these markers, 312 pine tree scent was found by 4 panelists out of 4, woody, and earthy area by 4 313 panelists out of 4, floral area by 2 panelists out of 4, and citrus with 314 mossy/earthy area by 2 panelists out of 4. In addition to these main 315 contributors, others smaller contributors as linalool, with floral and fresh scent, 316 was detected in each of the four EOs GC/MS-O analyses. 317

318

319 CONCLUSION

In general, the chemical composition of an EO varies according to many factors such as the year of harvest, the geographical area, the climate, the storage of the raw material, the duration of storage of the plant before extraction, the extraction process [22]. Two EOs from the same species may

324	therefore have a different chemical composition. Nevertheless, the chemical
325	profile and chemical markers may be specific to a given plant or chemotype.
326	The analysis and authentication tasks can be sometimes complicated by
327	conformity or adulteration issues [23, 24].
328	In this context, the main goal of our work was to characterize for the first
329	time the EOs of the four species harvested on Reunion Island and to compare
330	their chemical profiles with those described in the literature with samples
331	collected in other locations. We used two complementary analyses, gas
332	chromatography coupled with mass spectrometry (GC/MS) and with flame
333	ionization detector (GC-FID), to obtain the most complete description.
334	Additionally, an olfactory analysis was performed on these four EOs by gas
335	chromatography coupled with mass spectrometry and olfactometry (GC/MS-
336	O). The chemical composition of each essential oil was identified in more than
337	87.43% for <i>H. garderianum</i> flowers, 96.26% for <i>H. flavescens</i> leaves, 99.09% for <i>P.</i>
338	senacia leaves and 88.41% for <i>P. cattleianum</i> floral tops.
339	The chemical composition of <i>H. gardnerianum</i> EO, mostly composed of
340	mono- and sesquiterpene hydrocarbons of low complexity, was found to be
341	consistent with other EOs within natural variability due to differences in their
342	geographical origin (islands from Atlantic, Pacific, and Indian oceans). The
343	sample was mainly composed of sesquiterpene derivatives including β -
344	farnesene (12.05%), α-cadinol (9.71%), α-farnesene (7.09%), τ-muurolol (5.89%)

345	and δ -cadinene (5.83%). The monoterpene derivatives identified accounted for
346	about 20% (mostly α -pinene, β -pinene and humulene).

For the EO from *H. flavescens* leaves, our study provided the first 347 description of its chemical composition, which appeared to be rather simple 348 and to contain mostly hydrocarbons. The main compounds were found to be β -349 pinene (47.81%), α -pinene (18.74%) and β -caryophyllene (17.47%), which 350 together accounted for 84.02% of the sample. 351 For the *P. senacia*, while β -myrcene was found to be an important 352 constituent of the EO, as was the case for material from Madagascar and 353 Mauritius, which are geographically close to French Reunion, the composition 354 was different but consistent, and the striking difference was the presence of 355 nonane. The oil primarily contained nonane (36.24%), β -pinene (25.11%), β -356 myrcene (19.19%) and α -pinene (7.36%), together accounting for 87.9% of the 357 composition. 358

Lastly, the composition of the *P. cattleianum* EO was very consistent with
 other studies, with 70% sesquiterpene derivatives including the main
 compound, β-caryophyllene, present at 43.68%.

With these compositions mostly based on mono- and sesquiterpene hydrocarbons, it came as no surprise that the panelists described the scent of these EOs as herbal, citrus, green, pine tree, and in some cases floral and woody.

366	With these results in hand, these endemic essential oils from Reunion
367	could receive in the future further attention for applications in fragrance and
368	cosmetic products. Future work could include the determination of odor impact
369	molecules by aroma extract dilution analysis based on the GC-O studies
370	presented herein.

371 AUTHOR CONTRIBUTIONS

372 CONCEPTUALIZATION, M.C AND S.A.; METHODOLOGY, M.C AND S.A.;

- 373 INVESTIGATION, M.C, M.T. AND S.A.; RESOURCES, S.A.; DATA
- 374 CURATION, M.C, M.T. AND S.A.; WRITING ORIGINAL DRAFT
- 375 PREPARATION, M.C AND S.A.; WRITING REVIEW & EDITING, M.C, M.T.
- 376 AND S.A.; SUPERVISION, S.A.; PROJECT ADMINISTRATION, M.C, M.T.
- 377 AND S.A.

378 ACKNOWLEDGEMENTS

- ³⁷⁹ This work was supported by Université Côte d'Azur, CNRS and
- 380 Technopole de la Réunion in the framework of the Insola Scent project (Sophie
- ³⁸¹ Afchain). We are grateful to Charlotte Richard and Julie Abdalla for
- ³⁸² contributing to the olfactory evaluation during GC-O analyses and Dr.
- 383 Catherine Buchanan for proofreading.
- 384 CONFLICTS OF INTEREST
- ³⁸⁵ The authors declare no conflict of interest.

386 **References**

[1] Medeiros, J.R., Campos, L.B., Mendonça, S.C., Davin, L.B. and Lewis, N.G.
Composition and antimicrobial activity of the essential oils from invasive species of the
Azores, *Hedychium gardnerianum* and *Pittosporum undulatum*. Phytochemistry 2003,
64, 561-565.

[2] Ali, S., Sotheeswaran, S., Tuiwawa, M. and Smith, R.M. Comparison of the
 composition of the essential oils of *Alpinia* and *Hedychium* species-essential oils of Fijian
 plants, Part 1. J. Essent. Oil Res. 2002, 14, 409-411.

- ³⁹⁴ [3] Weyerstahl, P., Marschall, H., Thefeld, K. and Subba, G.C. Constituents of the ³⁹⁵ essential oil from the rhizomes of *Hedychium gardnerianum* Roscoe. Flavour Fragr. J.
- ³⁹⁶ 1998, 13, 377-388.
- [4] Ray, A., Sudipta, J., Basudeba, K., Ambika, S., Pratap, C.P., Sanghamitra, N. and
 Namita, M. Volatile metabolite profiling of ten *Hedychium* species by gas
 chromatography mass spectrometry coupled to chemometrics. Ind. Crops Prod. 2018,
 126, 135-142.
- [5] Jugreet, B.S., Ibrahime, S.K., Zengin, G., Abdallah, H.H. and Mahomoodally, M.F.
 GC/MS profiling, in vitro and in silico pharmacological screening and principal
 component analysis of essential oils from three exotic and two endemic plants from
- 404 Mauritius. Chem. Biodiv. 2021, 18, e2000921.
- [6] Jugreet, B.S. and Mahomoodally, M.F. Essential oils from 9 exotic and endemic
 medicinal plants from Mauritius shows in vitro antibacterial and antibiotic potentiating
 activities. S. Afr. J. Bot. 2020, 132, 355-362.
- 408 [7] Mananjarasoa, E., Mananjarasoa, E., Rakotovao, M., Ramanoelina, A.R.P.,
- Andriantsiferana, M.H. and Ravaonindrina, N. Composition and antimicrobial activity of
 leaf oil of *Pittosporum senacia* var. coursii Cufodontis. J. Essent. Oil Res. 1998, 10, 459462.
- [8] Savoldi, T.L., Glamoćlija, J., Soković, M., Gonçalves, J.E., Ruiz, S.P., Linde, G.A., Gazim, Z.C. and Colauto, N.B. Antimicrobial activity of essential oil from *Psidium*
- 414 *cattleianum* Afzel. ex Sabine leaves. Blacpma 2020, 19, 614-627.
- [9] Vasconcelos, L.C., de Souza Santos, E., de Oliveira Bernardes, C., da Silva Ferreira,
- 416 M.F., Ferreira, A., Tuler, A.C., Carvalho, J.A.M., Pinheiro, P.F. and Praça-Fontes, M.M.
- 417 Phytochemical analysis and effect of the essential oil of *Psidium* L. species on the initial
- development and mitotic activity of plants. Environ. Sci. Pollut. Res. 2019, 26, 2621626228.
- [10] Scur, M.C., Pinto, F.G.S., Pandini, J.A., Costa, W.F., Leite, C.W. and Temponi, L.G.
- Antimicrobial and antioxidant activity of essential oil and different plant extracts of
 Psidium cattleianum Sabine. Braz. J. Biol. 2016, 76, 101-108.
- [11] Castro, M.R., Victoria, F.N., Oliveira, D.H., Jacob, R.G., Savegnago, L. and Alves,
- D. Essential oil of *Psidium cattleianum* leaves: antioxidant and antifungal activity. Pharm. Biol. 2015, 53, 242-250.
- [12] Marques, F.A., Wendler, E.R., Sales Maia, B.H.L.N., Coffani-Nunes, J.V., Campana, J. and Guerrero, P.G. Volatile oil of *Psidium cattleianum* Sabine from the
- Brazilian atlantic forest. J. Essent. Oil Res. 2008, 20, 519-520.
- [13] Chen, J., Lichwa, J. and Ray, C. Essential oils of selected Hawaiian plants and associated litters. J. Essent. Oil Res. 2007, 19, 276-278.
- 431 [14] Pino, J.A., Bello, A., Urquiola, A., Marbot, R. and Martí, M. Leaf oils of *Psidium*
- 432 *parvifolium* Griseb. and *Psidium cattleianum* Sabine from Cuba. J. Essent. Oil Res. 2004,
- 433 16, 370-371.

- 434 [15] Tucker, A.O., Maciarello, M.J. and Landrum, L.R. Volatile leaf oils of American
- 435 Myrtaceae. III. *Psidium cattleianum* Sabine, P. friedrichsthalianum (Berg) Niedenzu, *P*.
- 436 guajava L., P. guineense Sw., and *P. sartorianum* (Berg) Niedenzu. J. Essent. Oil Res.
- 437 1995, 7, 187-190.
- 438 [16] Suksathan, R., Sookkhee, S., Anuntalabhochai, S. and Chansakaow, S. Chemical
- composition and antibacterial activity of rhizome oils from five *Hedychium* species. Nat.
 Prod. Commun. 2013, 8, 519-522.
- [17] Sabulal, B., Varughese, G., Dan, M. and Pradeep, S. Chemical composition and
 antimicrobial activities of the essential oils from the rhizomes of four *Hedychium* Species
 from South India. J. Essent. Oil Res. 2007, 19, 93-97
- 443 from South India. J. Essent. Oil Res. 2007, 19, 93-97.
- [18] Gurib-Fakim, A., Maudarbaccus, N., Leach, D., Doimo, L. and Wohlmuth, H.
 Essential oil composition of Zingiberaceae species from Mauritius. J. Essent. Oil Res.
 2002, 14, 271-273.
- ⁴⁴⁷ [19] Wang, Q., Liu, H., Zhang, M., Liu, S., Hao, Y. and Zhang, Y. MdMYC2 and ⁴⁴⁸ MdERF3 positively co-regulate α-farnesene biosynthesis in apple. Front. Plant Sci. 2020,
- 449 11,
- 450 [20] Alimboyoguen, A.B., Castro-Cruz, K.D., Altena, I.v. and Ragasa, C. Triterpenes
- from *Pittosporum resiniferum* Hemsl. Int. J. Toxicol. Pharmacol. Res. 2016, 8, 261-262.
- ⁴⁵² [21] Mendesil, E., Bruce, T.J.A., Woodcock, C.M., Caulfield, J.C., Seyoum, E. and ⁴⁵³ Pickett, J.A. Semiochemicals used in host location by the coffee berry borer,
- 453 Pickett, J.A. Semiochemicals used in host location by the coffee 454 *Hypothenemus hampei*. Journal of Chemical Ecology 2009, 35, 944-950.
- 455 [22] Arruda, M., Viana, H., Rainha, N., Neng, N.R., Rosa, J.S., Nogueira, J.M.F. and
- Barreto, M.d.C. Anti-acetylcholinesterase and antioxidant activity of essential oils from
- 457 *Hedychium gardnerianum* Sheppard ex Ker-Gawl. Molecules 2012, 17, 3082-3092.
- [23] T. K. T. Do, F. Hadji-Minaglou, S. Antoniotti and Fernandez, X. Essential oil
 authenticity. Trends Anal. Chem. 2015, 66, 146–157.
- ⁴⁶⁰ [24] Pierson, M., Fernandez, X. and Antoniotti, S. Type and magnitude of non-
- 461 compliance and adulteration in neroli, mandarin and bergamot essential oils purchased
 462 on-line: potential consumer vulnerability. Sci. Rep. 2021, 11, 11096.