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Abstract—In recent years, the computational efficiency of 

biomimetic spiking neural networks have received increasing 

interest. Here we show how a biomimetic spiking neuron circuit 

can be used to reduce the data transfer from the embedded device 

to a nearby computer for an electrocardiogram classification. 
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I. INTRODUCTION 

Cardiovascular disease is the leading cause of death globally and 
early detection of heart dysfunction can save lives. Developing 
wearable devices that allow continuous monitoring of heart 
health would prevent catastrophic events and is therefore an 
important goal. A major challenge for all wearable health 
monitoring devices is to achieve low power consumption while 
allowing continuous operation.  

One possible solution is to employ neuromorphic circuits, 
which exhibit high energy efficiency and are therefore well-
suited for embedded electronics applications, including 
wearable devices. Recently, researchers have designed a spiking 
recurrent neural network (sRNN) consisting of leaky integrate-
and-fire (LIF) neurons to detect anomalous patterns in 
electrocardiograms (ECGs) [1]. Energy consumption in such 
continuously monitoring devices, however, is dominated by the 
wireless transmission of the raw ECG data. Therefore, to extend 
the use time, their system only transmits ECG data for in-depth 
analysis when an unspecified anomaly is detected. We 
previously showed how transmission of EEG data could be 
significantly reduced by finding the most salient features with a 
spiking neuron circuit and then transmitting just these features 
[2]. Here we propose via simulations that ultra-low power 
spiking neurons can also be used to detect ECG features and 
explore whether this information is sufficient to perform a 
classification in a nearby device.  

II. METHODS 

A. Spiking neuron circuit  

We consider a Morris-Lecar inspired neuron circuit. The 

Morris-Lecar model is one of the simplest models of biological 

neurons. It consists of two ion channels Ca++ or Na+ and K+, 
which allow the flow of ions into and out of the cell. The 

resulting change in the electrical potential of the cell membrane, 

Vm, leads to a sequence of action potentials, also known as a 

spike train. It results in two coupled non-linear differential 

equations that describe a dynamic system and variations of its 

parameters lead to different types of bifurcation. It allows, for 

instance, the observation of type I (where the frequency is a 

continuous of the applied current) and type II neurons (where 

the frequency versus applied current can be discontinuous). 

Sourikopoulos et al [3] showed how this model can be 

schematized into a very low energy consuming CMOS circuit. 
It is depicted Fig. 1, with the addition of the leak transistor NL, 

.and is the basis for the simulations considered here. Note that 

our simulations were benchmarked against the devices reported 

in [2, 3]. The neurons used are of type I.  

      We describe the basic operation of the circuit in Fig. 1. If 

Vm is at resting potential, the transistors Pna and Nk are off. As 

the input current Iexc charges the capacitor Cm, Vm increases 

gradually. Once Vm reaches a certain value, Pna turns on and 

allows a larger current to charge Cm. This causes Vm to increase 

even faster until it is large enough to turn on Nk. Nk then 

discharges Cm, causing Vm to drop quickly until it reverts to 

resting potential. If there is still a non-zero input current, the 
cycle will restart, creating an oscillating voltage or spike train.  

In a specific range of Iexc, the firing rate of the circuit increases. 

This property allows the firing rate to encode the features of the 

input data. 

      To evaluate the circuit's response to ECG signals, we 

simulate its differential equations using Python. We set the 

supply voltage Vdd to 100 mV to ensure the transistors operate 

in the deep sub-threshold regime, which optimizes energy 

efficiency. It can be described by an exponential dependence:  

                           𝐼𝑑𝑠 = 𝐺0 ∗ exp (
𝑉𝑔𝑠

𝜂 𝑉𝑡
) ∗ 𝑉𝑑𝑠                            

G0 is the device conductance which is proportional to the ratio 

of the transistor length and width, η is the subthreshold slope 
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Fig. 1. Morris-Lecar inspired neuronal model of CMOS. 

 



factor, Vt
 is the thermal voltage, Vgs and Vds are the gate-to-  

source and drain-to-source voltages. Note that the threshold 

voltage of the transistors is taken to be 0V. We define the 

different transistors by changing G0 proportionately to the 

transistor size. Note that VgL controls the leak transistor and is 
used to adjust the initial current at which the neuron begins to 

generate pulses, henceforth termed the neuron threshold. This 

adjustment allows optimizing the circuit so that it focuses on 

different parts of the input signal. However, for the sake of 

convenience in the simulation, we directly define a value for the 

leakage current instead of using a leakage transistor. 
We choose to use python code rather than SPICE because 

simulating such a dynamic system is computationally intensive. 

In order to gain in computation time, we do not need the more 

complex models found in SPICE simulators but can use the 

relatively simple description of the sub-threshold behavior.   

 
Table Ⅰ. Parameters for the neuron 

 

Parameters Values 

Cm 0.05 (pF) 

Ck 0.1 (pF) 

Gna 60 (pS) 

Gk 200 (pS) 

Gp1 16 (pS) 

Gn1 15 (pS) 

Gp2 10 (pS) 

Gn2 15 (pS) 

Gp3 26 (pS) 

Gn3 15 (pS) 

Vdd  100 (mV) 

Vss -100 (mV) 

Vet  40 (mV) 

IL low threshold neuron:  0.1 (pA) 

high threshold neurons: 35-130(pA) 

 

Fig. 2 shows simulations of the neuron firing rate as it varies 
with the input current. The neuron circuit generates spikes 

within the current input range of ~10 - 600 pA. The curve shows 

how beyond a certain threshold the neuron is no longer bistable. 

Note that the relationship between firing rate and input current 

is not linear. The firing rate changes faster when the input 

current is small, and slower when the input current is large. 

These are crucial properties that allow us to identify 

electrocardiogram (ECG) features.  

B. ECG classification task 

The ECG allows a specialist to understand the functioning of 

the heart by depicting the propagation of the cardiac dipole 

resulting from the activity of polarization-depolarization of 

cardiac cells. In Fig. 3 [4] shows how a typical ECG signal      

consists of 5 ‘waves’: P, Q, R, S and T. In this polarization of 
the electrodes, the R wave is clearly the highest amplitude and 

is the most straightforward and crucial part of detection. The 

distance between R waves gives the heart rate. 

Building on previous work that explored how EEG data 

could be classified through the utilization of firing rates 

produced by spiking neurons [2], here we explore how to obtain 

ECG features from the spikes generated by spiking neurons and 

classify heartbeats based on the obtained features. 

 We use a standard ECG dataset, MIT-BIH Arrhythmia 

Database [5]. This data set has 48 half-hour excerpts of two- 

channel, 24-hour, ECG recordings obtained from 47 subjects. It 

includes normal heartbeats and a large variety of different 
anomalies, some of which are quite rare. The sampling rate of 

the signal is 360 Hz, and each heartbeat is labeled by 

cardiologists. We explore how to classify normal heartbeats and 

the four most common types of anomalous heartbeats, as 

depicted in Table Ⅱ. From the database, we chose the patients 

that exhibit many of these anomalies, as listed in Table Ⅲ. 

 
                        Table Ⅱ. Our databases with 5 types of heartbeats  

 
Heartbeat type  Training set 

(Beats) 

Test set 

(Beats) 

 A B A B 

1. Normal rhythm (N) 10969 / 9626 5484 / 4812 

2. Atrial premature beat (A) 10969 / 9626 652 / 567 

3. Premature ventricular contraction (P) 10969 / 9626 568 / 397 

4. Left bundle branch block beat (L) 10969 / 9626 2184 / 2128 

5. Right bundle branch block beat (R) 10969 / 9626 1875 / 1806 

Total 54845 / 9626 10763 / 9710 

 
Fig. 2. Variation of firing rate with input current. 

 

 
Fig. 3. Main features in ECG waveforms. Source: [3]. 

 

 

 
Fig. 4. Neuron with high threshold for detecting R-waves. The red curve 

(left axis) is the processed ECG data that is input into the circuit. The blue 

is the circuit output (right axis). 

 

 



      Before feeding the ECG signal to the neuron, we pre-

process the signal. Our process of obtaining ECG features relies 

on the amplitude of ECG signal, making it important for us to 

correct the baseline. In our simulation, we used an algorithm [6] 

to correct the baseline. Meanwhile, using a suitable bandpass 
filter like low cut-off frequency 5Hz and high cut-off frequency 

15Hz, in embedded devices can also reduce the influence of 

noise and baseline wander [7]. We then adjust the ECG signal 

to a range of input currents that can be processed by the neuron, 

in a real circuit this would be done simply by an additional 

transistor.  

 After this data processing, we input the ECG into two 

neuronal circuits with different neuron thresholds, adjusted 

using the leakage current IL, from 35pA to 130pA for different 

patients. Due to individual differences, there are differences in 

the amplitude of the R-wave, and in a practical device, we need 

an adaptive system to eliminate the effects of this variability. 
Homeostasis circuit is a good direction to solve the problem [8]. 

 We use a high threshold neuron so that pulses are produced 

only in the region of each R-wave, as shown in Fig. 4. As the 

amplitude of the red ECG signal increases, it becomes apparent 

that the spacing between the blue pulses decreases gradually. 

For each R-wave generated pulse group, we find the position 

with the closest spacing between spikes, which represents the 

highest signal amplitude of the R-wave.  

      We lower the threshold by decreasing the value of leakage 

current IL to 0.1pA to detect other small-amplitude features, 

The low threshold neuron produces pulses in all parts of the 
ECG and can detect the small amplitude waves. To determine 

the Q-wave, for example, from our observations of the 

database, for a normal ECG the distance between the Q- and R-

waves of the same heartbeat is typically within 0.01s ~ 0.03s. 

We extend this range to 0.01s ~ 0.07s to detect the possible 

locations of the Q-wave when the heartbeat is abnormal like 

PVCs, as shown by the orange lines in Fig. 5. We then find the 

change in the distance between spikes, as described for the R-

wave, and identify the location with the lowest amplitude as 

that with the largest inter-pulse interval.  

      In our initial study, we obtained 15 features for each 

heartbeat: the time of P, Q, S and T waves relative to the R-
wave of the same heartbeat, the amplitude of the P, Q, R, S and 

T wave, expressed here as the frequency of the spikes, the 

duration of R-wave, Pre-RR and Post-RR: the time difference 

between each R-wave and the previous and next R-wave, 

Variable-RR: average of current Pre-RR and Post-RR, Local- 

RR: average of the previous 10 Pre-RRs, Average RR: average 

of the previous 60 Pre-RRs. Fig. 6 shows an example of the 

positions of the P, Q, R, S and T waves obtained by this method. 

However, to compare the traditional method of extracting ECG 

features offline in the next step, we do not use information 

about P-wave, T-wave, and duration of R-wave. 

      To determine the detection accuracy, we set an error 

tolerance for determining whether the found R-wave is that of 
an R-wave. If it occurs within 0,05s of the time of the real R-

wave, then it is considered to be correctly detected. The results 

for the R-waves (present in the original database classification) 

are summarized in Table III, under A in the table).  

To perform the machine learning classification, we prepared 

a training set by padding the observed anomalies so that they 

all had an equal number of occurrences and left the initial ratio 

in the test set as shown in Table II (label A). To ensure 

standardization, only the first 1800 seconds (30 minutes) of 

each file were extracted, leaving approximately 5 seconds 

unused. 

      Using the features obtained from our method, we fit the data 
using the sci-kit learn package [9].  In order to use same data to 

compare other people’s technologies, we chose an open-source 

Python implementation of QRS complex detector for ECG 

signals [10], based on the Pan-Tomkins algorithm [7]. 

Importantly, the programs provided online did not implement 

all the features in the article, like fiducial mark on filtered data, 

use of another set of thresholds based on the filtered ECG, 

irregular heart rate detection, and missing QRS complex 

detection search-back mechanism. In addition, we added two 

functions to detect Q-wave and S-wave, the principle is to find 

the minimum value within a reasonable range for each R-wave.  
 

III. RESULTS 

 Table III displays the number of unrecognizable heartbeats 
for each file: our approach(A) / Pan-Tomkins’s algorithm(B). 
The results show that our method has a very high accuracy in 
detecting the QRS complex with > 99% overall accuracy, 
confirming the interest for this method. While here we observed 
our accuracy to be greater than the Pan-Tomkins algorithm, note 
that, as discussed in the methods section, the QRS detector was 
missing some of the features in [10]. Most notably, the lack the 
dual-threshold technique (to find missed beats, and thereby 
reduce false negatives) and irregular heart rate detection 
mechanism in the original paper, there may be a considerable 
number of undetectable heartbeats when premature atrial 
contractions (PACs) and premature ventricular contractions 
(PVCs) are present in the ECG like file 209, 214, 221 and 228, 
which will impact the comparison of the classifications. 

 
 

        Fig. 5. Neuron with low threshold for detecting other waves. 

 

 
Fig. 6. Example of the positions of P, Q, R, S, T waves obtained using 

the method of the spiking neurons. 



Table Ⅲ. Our method to detect QRS complex (A) compared with [8] (B) FP 

means false positive: a heardbeat was detected but was not identified by the 

cardiologist and FN means false negative means a heartbeat was not 

detected but was identified by a cardiologist. 

 

File Total 
(1800s) 

(Beats) 

FP 

(Beats) 

FN 

(Beats) 

Failed 
Detection 

(Beats) 

Failed 
Detection 

(%) 

  A B A B A B A B 

109 2522 16 / 6 19 / 21 35 / 27 1.4 / 1.1 

111 2118 4 / 7 36 / 7 40 / 14 1.9 / 0.7 

116 2404 7 / 3 24 / 30 31 / 33 1.3 / 1.4 

118 2271 7 / 2 16 / 8 23 / 10 1.0 / 0.4 

119 1981 2 / 1 4 / 0 6 / 1 0.3 / 0.1 

209 2997 3 / 1 3 / 181 6 / 182 0.2 / 6.1 

212 2740 0 / 1 0 / 0 0 / 1 0 / 0 

214 2251 24 / 10 26 / 135 50 / 145 2.2 / 6.4 

215 3352 2 / 1 6 / 133 8 / 134 0.2 / 4.0 

220 2041 0 / 0 0 / 21 0 / 21 0 / 1.0 

221 2420 10 / 1 18 / 185 28 / 186 1.2 / 7.7 

228 2047 57 / 1 48 / 1737 105 / 1738 5.1 / 84.9 

231 1565 0 / 2 0 / 2 0 / 4 0 / 0.3 

232 1775 2 / 4 2 / 4 4 / 8 0.2 / 0.5 

Total 32484 134 / 40 202 / 2464 336 / 2504 1.0 / 7.7 

Total 
excluding 

228 

30437 77 / 39 154 / 727 231 / 766 0.7 / 2.5 

      We report the classified the heartbeat with ten normalized 

features based on the QRS detection: Q-time, S-time, Pre-RR, 

Post-RR, Q-amplitude, R-amplitude, S-amplitude, Variable-

RR, Local-RR, Average-RR. The confusion matrix is shown in 

Fig. 7. We find that the k-nearest neighbors (KNN) algorithm 

has a 96% overall accuracy using the ECG features obtained 

through the neurons and 95% overall accuracy using the ECG 

features obtained through [8]. 

 

IV. DISCUSSION AND CONCLUSION 

      In this first result, our neuron parameters are not very 

energy efficient, as the large number of spikes generated by the 

low threshold neuron compared to the high threshold neuron 

would result in it consuming a larger energy. This could easily 

be optimized, however, by changing the neuron parameters in 

Table Ⅰ so that fewer spikes are emitted. Although reducing the 

firing rate results in fewer spikes, it should be noted that 

excessively low firing rate may results in larger errors. A 
compromise must be found between the firing rate and the 

desired level of accuracy.  

Despite the relatively high number of spikes generated by 

the low threshold neuron, the energy consumption per spike 

will be very low (~ 4-fJ/Spike in an ideal case) [3] and would 

be on the order of 10s of pJ resulting in ~10 nW per heartbeat 

cycle. While the circuits that would enable the feature detection 

to be obtained from the spiking neurons would need to be 

detailed to obtain the total energetic cost of this 

implementation, our purpose here, however, is to demonstrate 

the validity of using rate encoding to extract ECG features and 

show that they can provide an accuracy comparable to an 
automated detection of features.  

We note that the primary source of energy consumption is 

still likely to originate from the transfer of data to a nearby 

computer or portable device and is ~ 10 µ W for the best 

detector. With just 6 features transmitted (Time and amplitude 

of Q, R and S waves) for each heartbeat instead of ~300, the 

total power consumption will be significantly reduced. In the 

future tuning of the neuron, different neuron parameters would 

enable different firing rates so that the firing rate of the low 

threshold neuron is reduced.  
      We have explored the use of spiking neurons to probe 

features of ECG data. We find that we can realize and excellent 

classification of the different heart anomalies using the features 

from the spiking neurons and performing a nearest neighbor 

classification. This suggests that spiking neurons provide a low 

energy route towards realizing ECG detection for continuous 

heart monitoring. 
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            Fig. 7. Left: confusion matrix using features generated from the 

spiking neurons. Right: confusion matrix based on features generated 

using the QRS detection based on the method in [8] (For more information 

about the categories A,L,N,R,V see Table II) 
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