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Optimal bounds for the analytical traveling salesman
problem

Jacek Graczyk1 and Nicolae Mihalache2 3

Abstract

We supply two optimal lower bounds for the solution of the analytical travel-
ing salesman problem in terms of Jones’ β-numbers. We prove a linear lower
bound for the length of every connecting curve in the general case. The four
corners Cantor set shows that the linear bound is attained. For connected
compact sets, we prove an exponential lower bound for their length. The
estimate is optimal by the work of Bishop and Jones [2]. Finally, we bridge
connected and disconnected cases by taking into account multiplicity of or-
thogonal projections. Applications to other areas of mathematics are briefly
discussed.

Keywords: Traveling salesman, Jones β-numbers, meta-heuristic
algorithms
2010 MSC: 30F40, 30E10, 26B15, 28A78, 28A75, 05C38

1. Introduction

1.1. Analytical version of traveling salesman problem.

The classical traveling salesman problem (TSP) is to find the shortest
itinerary between a finite collection of cities whenever a system of roads con-
necting them is given. As it is well known, TSP is NP-complete even if it is
restricted to grid-graphs. The analytical version of the problem (ATSP) con-
sists in finding the shortest rectifiable curve up to a universal multiplicative
constant containing a given compact set K ⊂ R2. The cardinal of K may
be infinite but the 1-dimensional Hausdorff measure of K is finite. Jones [8]
introduced the technique of β-numbers to study ATSP in Euclidean spaces.
The idea was to analyse planar sets in a similar way as functions in L2-theory.
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The approach resulted in several substantial contributions, see [12] and the
references therein. The main results of our paper have applications both
in geometric analysis and dynamicals systems [6, 5], see Section 1.2. The
proofs are short and self-contained except for classical estimates of Jones [8],
see formula (1). The main technical novelty is a direct estimate of length
of a crossing curve that wiggles in many scales, compare [12] and [6]. The
proof of Theorem 2 uses Theorem 1 to shortcut usual arguments. Theorem 3
provides sharp estimates in both connected and disconnected settings, giv-
ing insight into the stability problem of meta-heuristic algorithms for a time
dependent TSP [10].

Definition 1.1. Let K be a bounded set in R2, x ∈ K and r > 0. We define
βK(x, r) by

βK(x, r) := inf
L

sup
z∈K∩B(x,r)

dist (z, L)

r
,

where the infimum is taken over all lines L in R2.

It is natural to expect that a connected set which wiggles in many scales
should be of a large length. In [8], a global parameter β2

K was introduced

β2
K =

∫ ∞
0

∫
R2

β2
K(x, r)r−2dx dr

to prove that the shortest curve Γ containing a bounded set K ⊂ R2 is of
length comparable to

diam K + β2
K . (1)

Bishop and Jones proved in [2] that if β2(x, r)/r integrate to a finite
value for almost all points in the sense of 1-dimensional Lebesgue measure
then the set is contained in a countable union of rectifiable curves. In this
context, one can ask what the length of such a curve could be. Indeed, this
question has a long history, see, for example, [2] where the following upper
bound for the length of wiggly curves was obtained:

Fact 1.1. There exists C > 0 such that if K ⊂ R2 is a compact set of
diameter 1 and if for all x ∈ K,∫ 1

0
β2
K(x, t)

dt

t
≤M,

then K lies on a rectifiable curve Γ of length at most CeCM .
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Linear growth.

Let us denote by H1 the 1-Hausdorff measure and by π∗ the orthogonal
projection on R. We prove the following results.

Theorem 1. Let K ⊆ [0, 1]2 be a compact set, W ⊆ K a Borel set and
p := H1(π∗(W )). Assume that for all x ∈W ,∫ diam K

0
β2
K(x, t)

dt

t
≥M > 0. (2)

If γ ⊆ R2 is a continuum containing K, then

H1(γ) ≥ c (Mp+ diam K) ,

where c is a universal constant.

Observe that the lower bound of Theorem 1 differs substantially from
the upper bound of Fact 1.1. Still, our estimate is optimal, as the canonical
finite approximations of the planar 1

4 - Cantor set exhibit linear growth with
M (comparable with the number of steps in the construction).

Figure 1: Squares represent cities, diagonals are connecting roads. For 4n cities, the
shortest connecting curve has length of order n ∼ M .

In Theorem 1, H1(π∗(W )) can be replaced by the Favard length of
W [12]. By Besicovitch theorem, cf Theorem 18.1 [11], purely unrectifi-
able compact of finite length projects in almost any direction to a set of
measure zero. A compact K ⊃ C is purely unrectifiable if it intersects every
Lipschitz curve along a set of length 0. The planar 1

4 - Cantor set is an
example of such set with at least two exceptional directions along which it
projects into a closed interval. From the point of view of Theorem 1 the
extremal case is when a compact of strictly positive and finite length has
projections of zero length in every direction. This indeed can happen, see
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Exemple 9.2 in [11]. A compact which is not σ-finite with respect to H1

and projects into sets of null length in every direction was constructed in [9].
The current proof of Theorem 1 is simplified thanks to the idea from the

dimension theory of real graphs which we learnt from C. Bishop [1, 6].

Exponential growth.

The following result shows that the exponential estimate of Fact 1.1 is
optimal for connected compact sets.

Theorem 2. There exists a constant c > 0 such that for every continuum
K ⊆ R2 and M > 0, if for all x ∈ K∫ diam K

0
β2
K(x, t)

dt

t
≥M,

then
H1(K) ≥ c ecMdiam K.

Growth of length and clusters.

We will derive a more general version of Theorems 1 and 2 by subdividing
the wiggly portion W ⊂ K. In particular, the size of π∗(W ) enters into the
lower estimate of Theorem 3 counted with some multiplicity. The lower
estimate in Theorem 1 depends on the length of π∗(W ) which in many
natural situations can be 0, for example when #K < ∞. This problem is
further discussed in Section 2.2, see formula (14).

For every x0 ∈ π∗(W ) and ε > 0 define Zε(x0) to be the cardinal of
the largest ε-separated set contained in the vertical fiber W ∩ {x = x0}.
We recall that a set is called ε-separated if every two points from it are at
distance at least ε. Let ZW (α) :=

∫
π∗(W ) Zε(x)dx with ε = e−α. Clearly, if

a continuum γ contains K then H1(γ) ≥ Z∞ := limα→∞ ZW (α).

Theorem 3. Let K ⊆ [0, 1]2 be a compact set, W ⊆ K. There is a universal
constant c > 0 so that for every q ∈ (0, 1), if for all x ∈W ,∫ 1

0
β2
K(x, t)

dt

t
> M > 0

and γ ⊆ R2 is a continuum containing K, then

H1(γ) ≥ c (1− q)MZW (qM).

If K is connected and W = K then

H1(K) ≥ c ec(1−q)MZW (qM).
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If the unit square [0, 1] × [0, 1] is divided into ∼ e2M equal squares,
M � 1, and K contains a circle of radius ∼ e−M in every square then
Theorem 3 yields H1(γ) ≥ c(1−q)MeqM for any q ∈ (0, 1) while the shortest
curve γ containing K is of length H1(γ) . eM ∼ ZW (M). By putting
1− q = C

M , we recover a sharp estimate H1(γ) ≥ cZW (M − C) ∼ ZW (M).
The situation becomes more complicated if every circle in every square

of size ∼ e−M is replaced by the boundaries of 4M squares of the canonical
approximation KM of the conveniently scaled 1

4 -Cantor set (and rotated by
tan−1(2) so each of them projects onto some interval). Theorem 3, applied
with q = 1

2 and 2M instead of M , yields a correct estimate for a curve
γ ⊃ K, H1(γ) & MeM . However, if we rotate each copy of KM of size
∼ e−M by a different angle, the estimate breaks down, as the length of their
projection may drop by a factor of 2M . Notice that ZW (q2M) only counts
the number of copies of KM , that is scales above e−M . The correct estimate
can be easily recovered if we notice that the hypothesis and the claims of
Theorem 3 are bi-Lipschitz invariant.

Technical remark.. The orthogonal projection π in the claim of our the-
orems can be replaced by the projection along any smooth flow without
singular elements traversing a neighborhood of K. The universal constants
will become dependent on the flow.

1.2. Applications

Geometric analysis and complex dynamics.. In [6], a version of Theorem 1
plays a crucial role in the inductive construction of Radon sublinear measures
with bounded Menger curvature [12].

A lower bound for ASTP is one of the key ingredients in the proof of
generalizations of Bishop and Jones result about the Hausdorff dimension
of uniformly wiggly continua [3]. For example, Theorem 1 of [6] states that
if continuum K ⊂ C is the union of two subsets K = W ∪ E, H1(E) < ∞
and H1(W ) > 0, then

dimH(K) ≥ 1 + C inf
x∈W

lim inf
r→0

∫ diamK
r β2

K(x, t)dtt
− log r

, (3)

where C is a universal constant. To get an upper bound for dimH(W ) it is
enough to increase C and replace infx∈W by supx∈K in (3), see Theorem 2
in [6]. The upper estimate is based on the exponential upper bound of ATSP
from [2] and is used to prove new geometric results and contribute to the
understanding of Yoccoz’ problem about generic continuity of the Hausdorff
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dimension of unfolding attractors/repellers in dynamical systems [5]. In
dynamical setting, often dimH(K) = dimH(W ), see [7], which yields sharp
estimates for the Hausdorff dimension. The motivation for (3) comes from
dynamical systems where one cannot expect that generic attractors/repellers
wiggle in every scale as required in [3]. The approach in [6] based on aver-
aging along scales is well suited to tackle metric problems of non-uniformly
hyperbolic systems, when only some control in many but not all scales is
possible.

Real time algorithms.. Theorems 1 and 2 indicate a strong dependence of
the solutions of ATSP on the initial geometry. The hypothesis that M > 0
is needed to guarantee a 2-dimensional character of the problem. In real-life
applications, the cities may depend on time, they can be added to or removed
from the book of orders (“on demand” version of TSP or time-dependent
vehicle routing problem (VRP) [10]). In this situation, our estimates predict
a bifurcation of the solutions of TSP from linear in M , when the cities form
hierarchical and well separated clusters, see Figure 1, to the exponential in
M when the cities are uniformly distributed or clusters have ”high multiplic-
ity” in the sense of Theorem 3. This phenomenon underlines the importance
of meta-heuristics for time-dependent TSP or VRP problems. A usage of
local parameters like

∫ 1
0 β

2(x, t)dtt in the discrete form, see Definition 2.1,
can make decomposition algorithms more efficient.

2. How to count squares

Let Q ⊂ C be a square. Unless specified otherwise, squares are consid-
ered to contain only the left and top edges. Let |Q| denote the side length
of Q. Let ∆(Q) denote the set of all dyadic sub-squares of Q and ∆k(Q)
denote the set of those with side length 2−k|Q|. For any λ > 0, let λQ be the
square with the same center as Q and with |λQ| = λ|Q|. For any x ∈ Q0,
where Q0 := [0, 1]× [0, 1], let

∆(x) = {Q ∈ ∆(Q0) | x ∈ Q}.

Let us also write ∆ for ∆(Q0) and ∆k for ∆k(Q0).
We need a discrete version of Definition 1.1.

Definition 2.1. Let K be a compact set in the plane and Q a square such
that Q ∩K 6= ∅. We define βK(Q) by

βK(Q) := inf
L

sup
z∈K∩3Q

dist (z, L)

|Q|
,
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where the infimum is taken over all lines L in the plane.

For a compact set K ⊆ Q0 is easy to check that

β2
K(x) :=

∑
Q∈∆(x)

βK(Q)2 '
∫ 1

0
β2
K(x, t)

dt

t
. (4)

We use the following reformulation of (1), if γ ⊂ Q0 is a rectifiable curve
then

β2
∞(γ) :=

∑
Q∈∆

|Q|βγ(Q)2 > H1(γ). (5)

2.1. Proof of Theorem 1

We can further relax the hypothesis of Theorem 1 using the following
well known result (see for example [4]).

Fact 2.1. There exists a universal constant C > 1 such that any continuum
K ⊆ R2 with H1(K) < +∞ is contained in a curve γ such that

H1(K) ≤ H1(γ) ≤ CH1(K).

To prove Theorem 1, by inequalities (1) and (5), it is sufficient to show
that β∞(γ) is large enough. For all Q ∈ ∆, let

S(Q) :=
∑

Q⊆Q′∈∆

βK(Q′)2.

Denote ∪T = ∪Q∈TQ when T is a collection of squares. For n ≥ 1, let
Gn := {Q ∈ ∆n : S(Q) ≥M/2}. Fix n ≥ 1 such that H1(π∗(∪Gn)) ≥ p/2
and choose a minimal collection of squares G ⊆ Gn such that π∗(∪G) =
π∗(∪Gn). In particular, H1(π∗(∪G)) = 2−n#G and for all Q ∈ ∆k, k ≤ n,
we have

#GQ ≤ 2n|Q|,
where GQ := {Q′ ∈ G : Q′ ⊂ Q}. Therefore,

β∞(γ) ≥
∑
Q∈∆

βK(Q)2|Q| ≥
∑

G3Q′⊆Q∈∆

βK(Q)2|Q|

≥ 2−n
∑

G3Q′⊆Q∈∆

#GQβK(Q)2 = 2−n
∑
Q′∈G

S(Q′)

≥ M

2
2−n#G =

M

2
H1(π∗(∪G)) ≥ Mp

4
.
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2.2. Proof of Theorem 3

Let q ∈ (0, 1). Without loss of generality qM & 1, otherwise Theorem 3
is contained in Theorems 1 and 2. Also, (1 − q)M & 1, otherwise we use
the lower bound Z∞ for H1(γ). By definition, if W ⊆ K ⊆ [0, 1]2, for all
x ∈ [0, 1], Zε(x) ≤ 1

ε+1, so ZW (M) < eM+1. For every z ∈W , let n(z) ∈ N
be minimal such that ∫ 1

2−n(z)

β2
K(z, t)

dt

t
≥ 1 + q

2
M. (6)

We can find X ⊂ W such that r := supz∈X n(z) + 10 < ∞ and ZX(qM) ≥
1
2ZW (qM). Denote by Qj(z) the square from ∆j , j ≤ r, containing z ∈ X,
Gj is the collection of all these squares Qj(z), z ∈ X. Inequality (6) remains
valid with 2−n(z) replaced by 3|Qr(z)|.

Let γ be a continuum containing K and Wj :=
⋃
Q∈Gj

γ ∩ 3Q. Since
Kr := K ∪Wr ⊃ K, for every z ∈Wr,∫ 1

0
β2
Kr

(z, t)
dt

t
≥
∫ 1

3|Q(z)|
β2
K(z, t)

dt

t
≥ 1 + q

2
M.

Let m be the largest integer such that 2−m ≥ e−qM , so r−m� 1. Then
every Q from Gr is contained in some Q′ from ∆m. If Q′ ∈ ∆m then for
every z ∈Wr ∩Q′, ∫ 1

|Q′|
β2
Kr

(z, t)
dt

t
≤ qM

and ∫ |Q′|
0

β2
Kr

(z, t)
dt

t
≥ 1− q

2
M. (7)

If 3Q ∩ γ 6= ∅, Q ∈ ∆m, then γ must traverse at least one dyadic square
from ∆m contained in 5Q. Let E(Q) be the set of all connected components
of γ ∩ 5Q that intersect 3Q. For every γQ ∈ E(Q), diam γQ ≥ |Q|. Since
each square from Gm is counted at most 25 times,

H1(γ) ≥ 1

25

∑
Q∈Gm

H1(γ ∩ 5Q) ≥ 1

25

∑
Q∈Gm

∑
γQ∈E(Q)

H1(γQ). (8)

Let T (Q) := ∂Q ∪ ∂3Q ∪ S, where S is a segment of length |Q| connecting
∂Q to ∂3Q. Since T (Q) ∪

⋃
γQ∈E(Q) γQ is connected and contains γ ∩ 3Q,

Theorem 1 and estimate (7) imply that
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∑
γQ∈E(Q)

H1(γQ) + 17|Q| & (1− q)MH1(π∗(Q ∩Wr)). (9)

We have also a trivial estimate∑
γQ∈E(Q)

H1(γQ) ≥ |Q| ,

that together with (9) yield∑
γQ∈E(Q)

H1(γQ) & (1− q)MH1(π∗(Q ∩Wr)). (10)

Combining (8) and (10),

H1(γ)

(1− q)M
&

∑
Q∈Gm

H1(π∗(Q ∩Wr))

& ZWr(m log 2) & ZX(qM) & ZW (qM). (11)

If K is connected and W = K then we can apply Theorem 2 instead of
Theorem 1 to get a better estimate than (10),∑

γQ∈E(Q)

H1(γQ) & ec(1−q)M |Q|. (12)

We may assume that K joins the left and the right edges of the unit square,
π∗(K) ⊃ [0, 1]. In the estimates below, γ = K and the organization of
squares through Gj , j ≤ r, is not used. Combining (8) and (12), similarly
as it was done to obtain (11),

H1(γ) e−c(1−q)M &
∑

Q∈∆m:Q∩K 6=∅

|Q| & ZK(qM).

Remark.. We can have a meaningful estimate of H1(γ) when every pro-
jection of W is of zero length. To this aim define Pr :=

⋃
Q∈Gr

∂Q. Ev-
ery component of Wr that intersects Q ∈ Gr has length at least |Q| =
H1(π∗(Q ∩ Pr)). Hence, without loss of generality, we may assume that
Wr ∩ 3Q contains a horizontal segment of length |Q|. Let Q̂ ∈ Gm. Since
each square Q ⊂ Q̂ from Gr is counted at most 9 times,

H1(π∗(Q ∩Wr)) &
∑

Q̂⊃Q∈Gr

H1(π∗(3Q ∩Wr)) & H1(π∗(Q̂ ∩ Pr)). (13)

Using (11) and adding (13) over all Q̂ ∈ Gm,

H1(γ) & (1− q)MZPr(qM) > 0. (14)
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3. An inductive construction proves Theorem 2

The proof of Theorem 2 is by induction and relies on a construction à la
Jones combined with an a priori estimate of Theorem 1.

Denote D := B(0, 1) and by λB(x, r) := B(x, λr) for all x ∈ R2 and
λ, r > 0. The following technical result is the main inductive step.

Proposition 1. There exists N ≥ 1 with the following property. Let S ⊆ 2D
be a compact set containing 0 and let S′ := S ∩ D. If S′ ∪ ∂D is connected
and for all x ∈ S′ ∫ 1

0
β2
S(x, t)

dt

t
≥ N,

then there exists a collection of balls Bi := B(xi, ri), i = 1, . . . , n, with the
following properties:

(i) for all 1 ≤ i ≤ n, xi ∈ S′ and ri < 10−3,
(ii) S′ ⊆

⋃n
i=1 10Bi and the balls 2Bi are disjoint,

(iii) for all i and y ∈ S ∩ 10Bi,
∫ 1
ri
β2
S(y, t)dtt ≤ N ,

(iv)
∑n

i=1 ri > 10.

Proof of Theorem 2. Theorem 2 is an immediate consequence of Proposi-
tion 1. Let x, y ∈ K be such that |x − y| = diam K. By rescaling, we
can normalize K so that x = 0 and y = 1. Denote S0 := K and de-
fine Si11 := S0 ∩ 2Bi1 , where Bi1 are balls produced by Proposition 1 for
S0. For consistency put Bi1

1 := Bi1 . We continue by induction, normaliz-
ing and applying Proposition 1 to every already constructed compact Si11 ,
i1 = 1, . . . ,m1, at least p := [M/N ]−1 times, where [α] is the integer part of

α. We end up with a collection (B
kp
p )kp=1,...,mp of disjoint balls, centered at

points of S0 with the sum of the radii at least 10p, by (iv) of Proposition 1.
As S0 is a continuum, setting N ≥ 10 log 10 and choosing c := log 10

N proves
Theorem 2.

Basic continuity properties of β-numbers.. Before proving Proposition 1,
we gather some basic facts about β-numbers. Let x, y ∈ R2, A ⊆ R2 and
r, r′ > 0 such that B(x, r) ⊆ B(y, r′). Then

r

r′
βA(x, r) ≤ βA(y, r′).

As β numbers are bounded by 1, for all α > 1 we have∫ αr

r
β2
A(x, t)

dt

t
≤ logα. (15)
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Combining the above inequalities, if |x− y| ≤ r and R > r,∫ R

r
β2
A(x, t)

dt

t
≤ 3 + 2

∫ R

r
β2
A(y, t)

dt

t
. (16)

Lemma 3.1. Let A ⊆
⋃n
i=1B(xi, ri), x ∈ A such that 2ri ≤ r for all

i = 1, . . . , n. Then √
3

4
βA(x, r) ≤ βD(x, r), (17)

where D = {x} ∪
⋃n
i=1 ∂B(xi, ri).

Proof. The closure H of the rβD(x, r)-neighborhood of some line L includes
B(x, r) ∩ D 3 x. If βA(x, r) > βD(x, r), then A 6⊆ H. Otherwise, there is
nothing to prove. As H is convex, it contains Conv(B(x, r)∩D), the convex
hull of B(x, r)∩D. Fix y ∈ A\H and let q be such that y ∈ Bq := B(xq, rq).

As y ∈ Bq but y 6∈ Conv(B(x, r) ∩ ∂Bq), ∂B(x, r) ∩ ∂Bq = {a, b} ⊂ H.

There are two points a′, b′ ∈ ∂B(x, r)∩∂H in the closed arc (ab) of ∂B(x, r),
contained in Bq. As dist (a, b) ≤ 2rq ≤ r, we have

βD(x, r) ≥ dist (x, [a′, b′])

2r
≥ dist (x, [a, b])

2r
≥
√

3

4
.

The trivial bound βA(x, r) ≤ 1 completes the proof.

Proof of Proposition 1. Let T > 2 log 10 be a large number that will be
specified later and let N := 2T + 6. For all x ∈ S′ we define

r(x) := inf

{
r ∈ (0, 1) :

∫ 1

10r
β2
S(x, t)

dt

t
≤ T

}
.

By the hypothesis, for all x ∈ S′, r(x) > 0. By compactness and a standard
covering lemma, there exist xi ∈ S′, i = 1, . . . , n such that

S′ ⊆
n⋃
i=1

B(xi, 10r(xi)),

and the balls B(xi, 2r(xi)), i = 1, . . . , n, are pairwise disjoint. We denote
ri = r(xi) and Bi = B(xi, ri) and prove the proposition for this collection of
balls. By the lower bound for T , inequality (15) and the above construction,
the first two claims are satisfied. By the choice of N and inequalities (15)
and (16), the third claim is also satisfied.
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Figure 2: Extremal case for inequality (17)

We only need to prove that we can choose some universal T > 10 such
that

∑n
i=1 ri > 10. For every i = 1, . . . , n let

Hi := ∂(10Bi) ∪ [xi − 10ri, xi + 10ri],

where [xi − 10ri, xi + 10ri] is the horizontal diameter of 10Bi. Observe that
for all i

H1(Hi) < 100ri. (18)

We may assume that the cover (10Bi)
n
i=1 of S′ is minimal, that is, if

i 6= j, then 10Bi 6⊆ 10Bj . Let H :=
⋃n
i=1Hi. Observe that Γ := H ∪ ∂D is

a continuum. Let W := H ∩ 1
2D. We show that for all x ∈W∫ 1

0
β2
H(x, t)

dt

t
≥ 3

32
T − 1. (19)

12



As Γ is a continuum, there exists a line L 3 0 such that H1(πL(W )) ≥
1
2 − 10−3. By Theorem 1, this means that if T is large enough,

H1(Γ) ≥ 1000 + 2π.

By inequality (18), we obtain
∑n

i=1 ri > 10 and the proof is complete.
To show inequality (19), let x ∈ W and choose 1 ≤ k ≤ n such that Bk

is the largest ball such that x ∈ 30Bk. By inequality (17),∫ 1

0
β2
H(x, t)

dt

t
≥
∫ 1

3

30rk

β2
H(x, t)

dt

t
≥ 3

16

∫ 1
3

30rk

β2
S′(x, t)

dt

t
.

By inequalities (16) and (15) and the choice of rk,∫ 1
3

30rk

β2
S′(x, t)

dt

t
≥ 1

2

∫ 1
3

30rk

β2
S′(xk, t)

dt

t
− 3

2
≥ 1

2
(T − 2 log 3− 3),

because rk < 10−3, xk ∈ 2
3D, hence∫ 1

3

30rk

β2
S′(xk, t)

dt

t
=

∫ 1
3

30rk

β2
S(xk, t)

dt

t
.
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