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ABSTRACT

There is a consensus among computer education experts and
practitioners that teaching introductory programming is intrinsically
hard. In particular, the choice of the first programming language
to support learning the fundamentals of problem solving and al-
gorithmic reasoning is a hot issue that is driving a lot of attention
within the last few decades. As a side effect, the computing edu-
cation community has been long divided between supporters of
industrial relevance and advocates of educational benefits as the
prominent grounds on which a first programming language should
be elected. While the former seem to have the wind in their sails,
with popular-in-industry languages such as Java, C and C++ being
still widely used to teach introductory programming, the case is
far from being closed. In this paper, we propose to analyze the
first language choice dilemma in the light of a number of rigorous
studies carried out within and outside of the computing education
community. We show that, in the light of these studies, we can
efficiently question our choices as educators and stimulate objec-
tive discussions toward reconciling our views regarding the first
language choice. Mainly, we devise a number of criteria, all backed
up with scientific findings from different communities, according
to which a first language should be evaluated. Our conclusions con-
verge toward a justified concern vis-a-vis the use of languages such
as Java and C to teach introductory programming, and the pressing
need for a better compromise between industrial popularity and
educational advantages. To meet that need, our position gravitates
around two major opinions stemming from our cross-disciplinary
analysis: (i) Java, C and C++ should not be used to teach introduc-
tory programming and should rather be saved for more advanced
programming courses and (ii) while the recent trend of choosing
Python is justified, it is still debatable and therefore other candi-
dates, among which we propose a couple, should also be seriously
considered. Besides arguing in favor of these opinions, the primary
aim of our analysis is to trigger fruitful discussions on the subject
fuelled by cross-disciplinary research findings rather than personal
opinions.
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- Social and professional topics — Computer science educa-
tion; Computer engineering education.

KEYWORDS
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1 INTRODUCTION

Computer science CS programs are proliferating across world’s
universities. For instance, the number of undergraduate CS pro-
grams in the US and Canada has grown by 74% in a seven-year
interval [1]. Unfortunately, this expansion is contrasted with per-
sistent difficulties for students and educators alike. In particu-
lar, introductory programming is noticeably hard to teach and
learn [20, 23, 34, 39, 41] with rather stable, relatively high dropout
rates worldwide [8, 44]. While the CS education literature is rich
in debates on the “best” methodologies and languages for teach-
ing introductory programming [9, 11, 12, 26, 40], their often di-
vergent conclusions are hard to reconcile. As an example, Duke
et al. praise Java’s suitability for introductory programming [16],
whereas Meyer mocks its “magic” main (string[]args) “which you
do not understand” [32].

The aim of this paper is to set the basis for fruitful discussions
regarding the choice of the first language used as a “support” to
teach introductory programming. To that end we argue as follows.
(1) Discussions on the first language choice should be made in ac-
cordance with a final objective (while a computer science graduate
is expected to be an expert programmer [22, 41], a civil engineer
is fine with basic programming skills). We focus on introductory
programming where the objective is to form expert programmers,
which we refer to simply as IP'. (2) These discussions should feed
on cross-disciplinary (CS education, educational psychology, cog-
nitive science) existing rigorous research rather than personal and
anecdotal opinions. Points (1) and (2) are intimately linked: as we
show in the next paragraph, a preliminary analysis of the litera-
ture points to the fact that the first language choice may seriously
impede the process of acquiring expert programmer skills.

A key trait of expert programmers EP is that they “organise their
knowledge according to functional characteristics such as the na-
ture of the underlying algorithm rather than superficial details such
as language syntax” [41], which implies the valuable benign side
effect of high adaptability to new programming languages. Jenk-
ins emphasizes this adaptability suggesting that EP simply “bring
[their] knowledge to some new situation (in this case the new
language)” [22, p. 45]. Unfortunately, in the last two decades, the
trends in teaching IP seem to go against the EP objective. Gomes
and Mendes pointed out this issue: “teachers are more concen-
trated on teaching a programming language and its syntactic de-
tails, instead of promoting problem solving using a programming
language” [20]. More recent studies show further that the obser-
vations of Gomes and Mendes are particularly present in settings

!IP can be viewed as CS1 + CS2, but we prefer to clearly define what it is in order to
avoid the possible confusion the latter acronyms may entail [21].



where the language used to teach IP is chosen primarily for its in-
dustrial popularity [25, 43]. In particular, Koulouri et al. show in an
elegant study that teaching “some [popular-in-industry] program-
ming languages [with a focus on Java]” may drown beginners into
syntax issues and “distract them from learning basic programming
concepts, which may, in turn, have a lasting impact on students’
confidence” [25]. There appears therefore to be a discrepancy be-
tween the choice of languages such as Java and C (mainly for their
industrial merit) in IP courses, still popular as of today, and the
consensus that teaching IP (the objective of which is, we recall,
forming EP) must focus more on algorithmic reasoning than on
programming languages technical details [20, 22, 25]. This situation
is, to say the least, worrying, given that several studies confirm that
educators are clearly shifting from the classical debate of industrial
relevance vs. educational benefits toward settling for the former
as the most important — even the only — ground for selecting the
first language (Sect. 4). There is therefore an urgent need to recon-
cile our views on the first language dilemma somewhere between
educational fitness and industrial relevance. Even with the recent
trend of switching to Python, this urgent need is far from being
met, as reflected by the persistence of Java/C/C++ in IP courses
today (Sect. 4) and the educational pitfalls of Python (Sect. 3, 4).
Therefore, in order to question our choices as educators, we need to
establish clear, evidence-based criteria on which electing a language
for teaching IP should be based.

This paper identifies some of these criteria and discusses whether
the current choices w.r.t. the first language should be reconsidered.
While we (i) make a clear case against the use of Java, C and C++ to
teach IP and suggest saving them for later years (when students are
no longer novices) and (ii) put forward three alternative language
candidates (including Python), our main objective is to trigger
constructive discussions on the first-language choice dilemma based
on cross-disciplinary scientific findings. Note that the conclusions of
this paper rely on a procedural-first approach, without any attempt
to minimize the debate on the first-paradigm dilemma [10, 37] (more
in Sect. 4).

Following the importance and the dependency between points
(1) and (2) above, the paper is organized as follows. First, we provide
a context of a typical IP course for which a programming language
should be chosen to serve as a “support” (i.e. to implement the algo-
rithms). In particular, we discuss the educational choices made in
the course, in light of various research findings, in order to be in line
with the EP objective, regardless of the support language (Sect.2).
Second, we devise some criteria, also backed up with existing re-
search, to elect a first language to support the course presented
previously (Sect. 3). We show that languages such as C, C++ and
Java, still as of today belonging to mainstream languages used in
IP courses?, score poorly when confronted with these criteria. We
then conclude with Sect. 4 as we propose, besides Python, already
considered by many educators, two other candidates, namely Ada
and Kotlin, to possibly replace Java/C/C++. We show that (i) Python
is not necessarily the ideal undebatable replacement and (ii) lan-
guages like Ada, and perhaps Kotlin, should not be discarded a
priori, and conclude with open questions regarding the possible

ZReferences on the popularity of these languages in IP courses are further detailed in
Sect. 4

directions of future discussions where further candidates may also
be considered.

2 IP COURSE
2.1 Targeted public

The course we present is applicable to any IP (i.e. any intro-
ductory programming, first-year university course where the final
objective is to form EP, Sect. 1). It was originally implemented and
taught by educators (including ourselves) in the French Engineer-
ing School (Ecole d’Ingénieurs) INSA Toulouse®, with 21 lectures
and assignment sessions (1.25 hours each) and 11 lab sessions (2.75
hours each) overall. French Engineering Schools may be viewed as
“classical” universities except that, essentially, Science, technology,
engineering, and mathematics (STEM) programs are taught within
a denser curriculum. In the first two years, students are taught,
besides IP, a number of STEM subjects (including various physics,
chemistry, and mathematics disciplines) after which they choose
an orientation for the remaining three years. Many orientations
are within CS and Computer Engineering CE, such as Distributed
Systems and Artificial Intelligence, where at least two more program-
ming languages are taught. CS and CE graduates are expected to
easily adapt to new programming languages in order to be highly
employable, hence the EP final objective.

2.2 Content

The course frames programming as a communication problem. We
have, at one end, a human speaking natural language (e.g. English
or French) and, at the other end, the computer “speaking” binary.
The problem of programming then consists in finding a way for the
human to communicate with the computer and get it do what he/she
wants i.e. execute the solution to the problem at hand. Since the gap
between the languages spoken at each end is huge, programming
languages serve as an interface (in the sense of a “compromise”) be-
tween the human and the computer. Still, a programming language
is drastically different than natural language, so we need another
“intermediary interface”: high-level solutions.

Fig. 1, taken from our teaching slides, illustrates the program-
ming problem as introduced in the course. Connecting the two ends
of the communication and the interfaces forms a chain of program-
ming “phases”: (i) specifying solutions (the specification phase), (ii)
implementing them as programs using a programming language
(the implementation phase) and (iii) compiling such programs into
binaries (the compilation phase)*.

The course explains afterwards that compilers are ready-to-use
generators: the compilation phase does not need any intervention
from the students (besides interpreting its results). It summarizes
accordingly that programming is a two-phase activity: at the speci-
fication phase, what we want the computer to do transforms from
natural language to abstract mathematical solutions, whereas the
latter become programs at the implementation phase. The course
emphasizes the importance of the specification phase as mastering

3https://www.insa-toulouse.fr (in French).

“1t is perhaps noteworthy to mention that, in a purely historical context, Friedman
presented an organization structurally similar to Fig. 1 using a ladder [19] (yet different
in content, as it had nothing to do with teaching).
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Figure 1: The programming problem.

it will make it easier for students to succeed in the different pro-
gramming languages courses in the upcoming years. It is important
to note that the organization in Fig. 1 is paradigm independent .
While this course follows a procedural-first approach, where, in
later slides, the green box content is replaced with “algorithms”,
the same organization can be used within an object-first approach
(by simply replacing “high-level solutions” with e.g. “diagrams &
algorithms” in later slides).

The course then focuses on the specification problem: how do
I specify an abstract solution to a problem described in natural-
language? In a procedural setting, the specification phase is equiva-
lent to writing algorithms. Based on Fig. 1, to program is to com-
municate with the computer, thus solutions should be written for
the computer. Therefore, an algorithm should provide a solution
that a high-level fictive computer would be able to execute. This
fictive computer has different levels of “tolerance” toward what
humans write. The tolerance-zero level is conceptual: this involves
e.g. a sequence of instructions that are both elementary (adding
two numbers is elementary, factorial is not) and unambiguous (“do
this” is clear, “do this or that” is not). The maximum-tolerance level
is syntactical, e.g. ending an instruction with either a line-break or
a semicolon is okay as long as it is consistent throughout the algo-
rithm. Thus, the course encourages the students to separate more
important aspects, that is problem solving (how to solve a problem
thinking like the fictive computer, e.g. in terms of a sequence of el-
ementary unambiguous instructions) from the less important ones,
that is syntactical details (e.g. what symbol should I use to end my
instruction?)

On this basis, the remaining course sessions (lectures and assign-
ments) cover various aspects of algorithms (e.g. types, variables,
instructions, loops and subroutines) and data structures (e.g. records
and arrays). IP is limited to static variables (dynamic variables and
pointers are covered in the second year). Implementation is intro-
duced gradually as the students encode their algorithms using a
support language. Since algorithms and data structures are classic
in IP, we do not go into their details. Rather, we emphasize some
choices made in the course and explain their motivations.

2.2.1 Algorithmic notations. Mclver and Conway referred to semi-
nal works from educational psychology and cognitive science to
argue that learning programming can be negatively affected by
unlearning existing parts of the students cognitive structures [31]
(for instance, unlearning that = means equal to, a knowledge that
first-year students hold for over 15 years). Teaching algorithms to a
beginner should connect to his/her existing cognitive structures and
involve as little unlearning as possible, preferably no unlearning at

all (see more on the effects of unlearning in Sect. 3.2.1). Thus, = re-
mains the notation for equality, whereas we use «— for assignment
(read “transfer what is on the right into what is on the left” [31]).
Similarly, we use either universal symbols or their English mean-
ings for boolean operators, e.g. A and V (or simply and and or) .
Besides being “anti-unlearning” and promoting simplicity (more
on the importance of syntax simplicity at the implementation level
is given in Sect. 3.2.2), these choices serve the purpose of building
a “universal” specification basis, independent as much as possi-
ble from programming languages. Students will thus always find
their “pivot” when moving to a new programming language, as
they implement their abstract solutions in the language (mapping
the universal symbols to their language-specific counterpart).

2.2.2  Variables. Variable-related misconceptions are a major
source of students difficulties in programming [33]. These miscon-
ceptions can form as early as the abstract introduction of variables
in IP. Clancy, for instance, shows that using a box to represent a
variable (a metaphor still commonly employed by teachers [39])
messes with the mental model of students as it makes them, for
instance, think that a variable may hold a number of things [13].
We suggest using the labelized erasable slates metaphor: a variable
is an erasable slate with a label indicating its name and type. Thus,
declaring e.g. an integer variable x creates a slate, labelized with
the variable name x and type integer, with an arbitrary integer
on it, which students may erase to write a different value instead
(assignments, including initialization). The label allows to find the
variable (the name) and prevents writing anything but integers (the

type).

2.2.3  Loops. Another widespread misconception is viewing the
while and the for loops as identical, therefore preferring one over
the other instead of comprehending that each is destined to solve a
different problem [39]. While Qian et al. link this misconception to
factors such as “which loop construct the student learned first” [39],
we show in Sect. 3.2.3 that the programming language chosen for IP
is another important factor. In the course we present, comprehend-
ing these loop constructs regardless of the language is important.
Finding an integer in an array is a while problem (browse the array
as long as the value is not found or there are more cells to browse)
whereas finding the smallest integer in an array is a for problem
(browse the whole array in any case, i.e. for each index in the array
range). Understanding the differences at this stage minimizes the
chances of students to confuse both constructs (Sect. 3.2.3).

2.2.4  Subroutines. Though distinguishing subroutines with and
without a return value may sound trivial, giving it little attention at
the specification phase has serious consequences at the implemen-
tation phase (Sect. 3.2.4). The course uses the terminology procedure
and function to denote a subroutine without and with a return value,
respectively. In addition, the course advocates the “good practices”
of writing subroutines as early as the specification phase. These
practices include the well-known “friends” of reusability (e.g. sim-
ple, hardcoding-free subroutines), but also other guidelines such as
“a return values must not be discarded” to help prevent common,
hard-to-catch code bugs (Sect. 3.2.4).

2.2.5 Analysis. Algorithms must be correct, in order to implement
correct code. Many students make mistakes (e.g. infinite whileloops)



due to violating the underlying logical properties of different algo-
rithmic concepts. Therefore, the course promotes logical reasoning
as it guides students toward deriving formal rules that help them
write correct algorithms. For example, let V (resp. I) be the set of
variables tested in the condition (resp. the set of instructions within
the body) of a while loop, and SI : I — P (V) (where P (V) is the
powerset of V) the function returning the subset of V modified by
an instruction i € I. The course drives students’ attention to the fact
thatif Vi € I : SI(i) = @ then the whileloop is either never executed
or infinite (and is thus, in the general case, misconceived). Moreover,
the course familiarizes students with program verification. In par-
ticular, students learn how to use preconditions, postconditions and
invariants to verify their algorithms. At the implementation phase,
students should be able to concretize their acquired knowledge on
program verification in lab sessions (Sect. 3.2.5).

3 FIRST LANGUAGE CHOICE

In this section, we reflect on the first language choice dilemma
in the context of the IP generic course introduced in Sect. 2. Like
it was the case for the choices made in the course, we evaluate
the support language according to several criteria in the light of
rigorous, cross-disciplinary research findings. The criteria belong to
the two traditional categories considered by computing education
experts when electing a language to support teaching IP: industrial
relevance (Sect. 3.1) and educational benefits (Sect. 3.2). In particular,
we derive five important aspects under the educational benefits
category based on previous research.

We analyse, under all criteria, six programming languages: Java,
C, C++, Python, Ada and Kotlin. These candidates are chosen in
compliance with our observations, backed up with the literature,
introduced in Sect. 1. Indeed, we evaluate Java, C and C++ to un-
derpin the concerns raised in [20, 25, 43] pertaining to the fact that
using these languages in IP, based on their sole industrial merit,
threatens attaining its EP final objective. Python is analyzed as it
has been, in the last decade, the de facto choice of educators that
wish to reconsider using Java/C/C++ (more in Sect. 4). Ada and
Kotlin are also scrutinized in order to discuss whether they could
be viable candidates to replace Java/C/C++ in IP so the latter may
be taught in later years in the curriculum, when the students are
no longer total beginners.

3.1 Industrial relevance

In this category, the weak candidates are, without a doubt, Ada
and, to a lesser extent, Kotlin. Indeed, Java, C and C++ are known
for being traditionally used in industry throughout the last decades,
while Python is galloping when it comes to industrial popularity.
For instance, the most recent survey of the Indeed job-application
platform places these four languages among the top-five most de-
manded languages in industry . (Another abundantly detailed
survey with similar findings is available from StackOverflow ).
However, to be fair with the weak cadidates, Ada’s and Kotlin’s lack
of popularity should not be mistaken for a total absence in industry
as it is the case for languages specifically tailored for education such

Shttps://uk.indeed.com/career-advice/career-development/coding-languages
Shttps://survey.stackoverflow.co/2023/#most-popular-technologies-language

as Eiffel and Pascal. Industrial relevance of both Ada and Kotlin is
discussed next.

Ada has a long-term ongoing history with industrial critical do-
mains worldwide’. For instance, the Ariane 4/5/6 rockets software
was written in Ada, and the Systerel company &, a major actor of
critical computing in France, regularly hires Ada experts. More-
over, the recent ESROCOS and ADE projects [4, 35], funded by the
European Space Agency, heavily relied on Ada (within the TASTE
toolbox [38]).

As for Kotlin, and since being announced as the preferred lan-
guage for developing Android applications by Google in 2017, it
gained significant popularity as other major companies such as Uber
and Pinterest adopted it for purposes that go sometimes beyond
mobile applications development [36].

3.2 Educational benefits

We compare the six languages within five non-exhaustive criteria
backed up with relatively recent scientific findings.

3.2.1 Anti-unlearning syntax. As explained in Sect. 2.2.1, unlearn-
ing existing parts of cognitive structures has negative effects on
beginners. The equal/assignment confusion is a famous unlearning
side effect where a beginner would write e.g. if (x = 5){...} (in-
stead of if (x == 5){...}) in C, C++, Java, Python or Kotlin thinking
that the body of if will be executed only if x is equal to 5 (while,
in reality, 5 is assigned to x silently as the condition of if becomes
a tautology). This issue seems to receive much less attention than
it should, as Stefik and Siebert showed in a rigorous study [43].
In particular, the authors noticed that the double-equal sign was
used correctly by beginners as little as any random sign such as
the Bang (!) which the authors invented for their experiments (less
than 2% used either sign as they should have). Stefik and Siebert
concluded that “We understand all too well why many language
designers historically made the choice of ==, but the impact on
novices is clear”. Moreover, in a more recent thorough study (data
collected over more than 37 million compilations), Altadmri and
Brown showed that the equal/assignment confusion ranked high in
terms of both frequency (") and difficulty to fix (6'") among the 18
most common errors committed by beginners [3]. Another example
of unlearning side effects is the 0 index in C, C++, Java, Python and
Kotlin, frequently at the origin of the famous off-by-one error: stu-
dents need to unlearn first being simply 1! and replace it with first
being 0th. In general, the chosen language for IP must involve as
little unlearning as possible, a criterion amply met by Ada. Contrary
to the other languages under scrutiny, Ada has an anti-unlearning
syntax: equal is =, whereas := (inherited from the educational lan-
guage Pascal) is used for assignments, and the keywords ’First and
’Last are provided for arrays boundaries.
In sum, only Ada meets this criterion.

3.2.2  Simple syntax. The chosen support language should have
simple syntax, avoiding cryptic symbols [28] and “magic formu-
lae” [32]. C, C++ and Java use cryptic syntax (e.g. && for A and ||
for V), that does not intuitively connect to universal mathemati-
cal notations (Sect. 2.2.1). Moreover, writing the first program in

7See e.g. [27] and https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html
8https://www.systerel.fr/en/
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any of these languages requires beginners to use a “magic formula”
which they will likely not understand before the next year, such
as main (string [] args) in Java. Besides, these languages use semi-
colons the forgetting and misplacement of which are very common
errors among beginners (in the top fifteen of most frequent errors
according to Altadmri and and Brown’s study [3]). Both Ada and
Python enjoy simple and intuitive syntax: for instance, the English
keywords and and or are used for the obvious corresponding logi-
cal operators, and writing the first program is magic formula free
(e.g. in Ada the main program is simply a parameterless procedure).
However, contrary to Python and Kotlin, Ada uses semicolons in a
similar fashion as Java, C and C++. As for Kotlin, though it shares
cryptic syntax with Java/C/C++, a program can be written easily
in a magic-formula-free manner, and the language shares the easy
use of line-breaks to end instructions with Python, with the extra
simplicity of insensitivity to indentations.

In brief, Ada, Python and, to a lesser extent, Kotlin partially meet
this. Java, C and C++ are the weak candidates.

3.2.3  Clear concepts of loop constructs. The support programming
language should concretize the understanding of the conceptual
differences between a while and a for loop, acquired at the specifi-
cation phase (Sect. 2.2.1). This is the case of Ada, providing a clear,
unambiguous syntax for both loop constructs. The syntax of while
is similar to that of C, but the for loop construct is different: for x in
rdo ... where x is a variable and r is a range, thus the instructions
within the body of for are repeated for the whole range r. In C/C++,
the for loop simply does not exist, although a for construct is pro-
vided. Actually, the latter is a while construct written in a more
compact way: for(inst1; cond; inst2) is a while loop preceded with
instruction inst1, conditioned with the Boolean expression cond
and incorporating inst2 as the last instruction in its body. This is
surprising, and remarkably poor from a conceptual point of view:
it promotes the misconception of both loops being similar, thus
pushing the students to compare them [39]. Eventually, beginners
that will deem for better than while will end up writing a for loop
with a break (or even worse, a return) statement to solve a typical
while-loop problem. In Java, things are even worse: the for loop
(which is actually a while loop) is kept from C, and a foreach loop
construct is introduced to implement a true for loop, but it is called
also for (one can only imagine the confusion this creates in a novice
student’s mind). Python and Kotlin, on the other hand, share with
Ada a clear and nice separation between both loop constructs.

To conclude, Ada, Python and Kotlin are excellent candidates
w.r.t. this criterion, which neither Java, C or C++ meet.

3.24 Clear and rigorous concepts of subroutines. The support
language should concretize the distinction between subroutines
with and without return values (learned at the specification phase,
Sect. 2.2.4) in a rigorous manner. In Ada, the syntactical distinction
is explicit: procedure (no return value) and function (one return
value). In C, C++, Java, Python and Kotlin, it is the return type of
the subroutine that makes the difference (though less intuitive in
Python, where types are implicit). Syntactically, this is not a real
plus of Ada. However, Ada’s rigorous separation between proce-
dures and functions becomes clearly advantageous at compile-time.

N

Let us illustrate with an example. Listing 1 shows the same erro-
neous student code in Ada (right, where x has been declared integer
earlier in the program) and Python (left).

x =5 1 x:=5;

print("the factorial of", x) 2 Put("the factorial of" &
fact(x) Integer'Image(x));
print("is", x) 3 fact(x);

4 Put("is" & Integer'Image(x));

Listing 1: Discarding/ignoring return values of non-void
functions in Python (left) and Ada (right)

The student is trying to display x, update it with its factorial
fact(x), then display x again. However, he/she forgot to assign the
return value of fact(x) to x (line 3). The Python code compiles (as
its equivalent in C, C++, Java or Kotlin would), while it does not
in Ada with the compiler displaying “cannot use function fact in a
procedure call” pointing to line 3. This is a rather dummy example,
but it highlights a remarkably serious mistake (known as discard-
ing/ignoring return values of non-void functions), ranked 1% in terms
of average time to fix (> 1000 seconds) in Altadmri and Brown’s
study [3] (referenced earlier in Sect. 3.2.1, 3.2.2). Such high aver-
age would be drastically reduced with Ada, as the error is caught
by the compiler. While discarding return values in the remaining
language candidates looks like a trivial matter (easily fixable at
the compiler level), the historical choices made in these languages
makes it tricky in practice. For instance, C++17 introduced the “no
discard” attribute to explicitly denote that a method may not see
its return value discarded. Evidently, this is an additional burden
for a beginner student.

To summarize, Ada is the only candidate that satisfies this crite-
rion.

3.2.5  Verification support. Finally, a good language for IP is also a
language that promotes writing correct code [28] (which connects
to specifying correct algorithms, Sect. 2.2.5). Ada is known for its
strong typing and strict compiler, both promoting writing correct
programs. One example on strict compiler benefits is the discard-
ing/ignoring return values error, which only Ada catches at compile-
time (Sect. 3.2.4). Let us now give an example on how strong typing
can help catch errors at runtime. Consider the Kaprekar routine,
where students store, in an array A, the digits of a number N, then
use them to perform some computations. A hard-to-catch mistake is
when e.g. a two-digit number is put in one of A’s cells. Ada’s strong
range subtyping can help. It suffices to write subtype Digit is Natural
range 0..9; then define A as an array of Digit, then, at runtime, if
any instruction attempts to put a value outside of 0..9 in a cell of
A, the execution stops with the message “constraint check failed”,
pointing to the culprit instruction. In contrast, range subtyping
does not exist per se in C, C++, Java or Kotlin (despite some online
projects that claim to implement it), which would entail, for e.g.
the Kaprekar example, longer classic debugging through inserting
print/printf statements. In Python, things are more complicated as
the language uses a sort of implicit typing.

Let us consider another example where a student is supposed
to implement a function that computes the factorial fact(n) of a
number n. Here, the fact function should implement its classical



mathematical counterpart fact : N — N, that is fact is only defined
for positive integers, and always returns a positive integer. In Ada,
this is easily feasible through defining both the only parameter of
the function and its return value as naturals:
function fact (n : Natural) return Natural
A direct advantage of strong subtyping here is avoiding, by de-
sign, ill-typed instructions (for instance calling the function above
with a negative integer) and return values outside of the func-
tion’s range. But strong subtyping benefits go beyond this direct
advantage. In this example, it allows for a rigorous mapping of a
function, as a mathematical object at the specification phase, to
a function, as a programming concept. To explain this, let us see
how the C/C++ header of the same “function” would look like:
int fact (int n)

But, strictly speaking, fact above is not a function to begin with
(simply because it is not left total), contrary to the Ada imple-
mentation. For a novice programmer, using a language that allows
precise mapping of high-level solutions (algorithms) and their math-
ematical foundations (e.g. functions) to programs promotes writing
correct code. This is not the case in the other candidate languages,
especially in Python because of the absence of explicit typing.

Strong (sub)typing put aside, Ada has solid foundations in pro-
gram verification: its SPARK subset/toolset [6]. C, C++, Java, and
Kotlin verification support is more or less comparable to SPARK
(e.g. the state-of-the-art KeY theorem prover for JavaCard [2]). As
for Python, Nagini has been recently proposed [17]. However, it
requires a strictly typed version of Python, which clashes with the
“simplicity” induced by the implicit typing philosophy of Python.

In fewer words, Ada is an ideal candidate under this criterion.
C, C++, Java and Kotlin are more difficult to use to write correct
code (due to typing/subtyping limitations), but they may be still fit
thanks to their verification support. Python is the weak candidate
due to the absence of explicit typing.

4 DISCUSSION & CONCLUSION

When it comes to choosing a programming language for IP, the
CS education community has been long polarized with advocates
of industry relevance opposed to those of educational benefits, and
the former seem to have the wind in their sails. Many studies show
that teachers first criterion to choose a language for IP is indus-
try relevance, even before pedagogical suitability [14, 15, 28]. As
a consequence, languages such as Java, C and C++ are still very
popular in IP courses today, despite the recent ascension of Python.
For example, and according to the most recent rigorous surveys
that we could find on the most popular languages used to teach IP,
Java and C appear among the top-three of such languages in the
UK and Australia [30] and Ireland [7], and C is overwhelmingly
dominant in IP courses in Portugal (according to a 2019-2020 data
shared by public Portuguese universities and reported in [42]) and
in Greece [5]. This is a sad state of affairs, as such choices are more
dangerous than one may think (Sect. 1, Sect. 3). It is thus perhaps
about time to revisit the “industry-relevance-first” choice, and re-
serve these languages for teaching programming at more advanced
levels (second-year students and above). With the rise of Python, it
is now clearer than ever that to avoid a never-ending war (in which
“the loudest professors always win” [24]), the right posture to adopt

must be more flexible: both educational and industry relevance are
important [15]. Perhaps, Python is slowly conciliating the two ex-
tremes as it is both gaining popularity in industry and regarded as
education friendly [29], but the case is not yet closed. First, besides
its advantages that our analysis confirms to some extent, Python is
still far from being the ideal, undebatable replacement as we have
shown through the same analysis. Second, the fact that Java/C/C++
are still widely used in IP courses, as detailed above, attests to the
lack of unanimity regarding the trend of switching to Python.

Our category-based analysis on educational fitness (Sect. 3.2)
shows a clear advantage of Ada, followed by Python, and to a
lesser extent Kotlin, with C, C++ and Java lagging behind. The
analysis is not exhaustive, but still covers fundamental criteria of
educational fitness, long-established by educational psychologists
(e.g. categories one, Sect. 3.2.1 and two, Sect. 3.2.2) and/or crucial to
avoid the underlying misconceptions of the most tenacious mistakes
of first-graders reported in rigorous research (e.g. category four,
Sect. 3.2.4). Ada’s educational superiority over Python and Kotlin,
mainly stemming from its anti-unlearning syntax, strong typing
and strict compiler, is contrasted with an industrial relevance that
seems to be tied to critical applications (Sect. 3.1), making it the less
desirable language form an industry-relevance angle especially with
the exploding popularity of Python (and the rising one of Kotlin).
While our positive observations on Python are corroborated by
Koulouri et al’s rigorous analysis [25], we did not find any work
that includes Ada as a first language candidate (except for a couple
of over 30-year-old publications [18, 45]), although the language
is used, at least in a number of French universities, to support IP
courses. As for Kotlin, its timid to non-existent appearance as an
IP candidate in previous research is probably due to it being the
youngest among our candidates. Yet, according to our criteria, it is
still noticeably behind Ada (educational-fitness-wise) and Python
(industry-relevance-wise). Perhaps, we could sum up accordingly
the takeaway of our analysis in the three following conclusions:
(1) Java/C/C++ should be avoided in IP courses, (2) the trend of
using Python, while somewhat justified, is clearly debatable and (3)
Ada, and perhaps Kotlin, should receive more attention as potential
candidates (the former might have been discarded too quickly, and
it might be about time to start considering the latter).

At this stage, we would also like to (re)emphasize the context
in which our analysis remains valid. As explained in Sect. 1, the
objectives of the IP course are a crucial parameter toward electing a
first language. In other words, the way we, educators, “split” learn-
ing objectives between IP and higher-level programming courses
is a determining factor for choosing the first language. Our analy-
sis is carried out with, in mind, a broadly brushed final objective
of forming expert programmers (Sect. 1, Sect. 2), with the hope
that its results remain in line with the smaller objectives resulting
from the decomposition of the eventual one. Similarly, and in a
closely connexe scope, the choice of the first paradigm is equally
important and may greatly influence the usefulness of our analysis.
This is, however, out of the scope of this paper where we assume a
procedural-first approach, without any intention, nevertheless, to
minimize the importance of the first-paradigm dilemma.

As explained in the introduction, this paper is not about personal
opinions, it rather seeks triggering discussions based on scientific
evidence. The three overall conclusions above are thus meant to



set some flexible bases for such discussions. We wrap up therefore
with the following questions to serve as stimulating headlines:

o Are we ready, as educators, to keep taking the risk of think-
ing in terms of “industrial relevance first” and thus using
languages such as Java, C and C++ to teach IP knowing their
serious educational drawbacks?

e If no, how do we define a balance between industrial popu-
larity and educational advantages?

e Does Python realize this balance despite its implicit typing,
porous compiler and unlearning-friendly syntax?

o Is Ada a viable candidate even with a rather poor industrial
relevance?

e Could Kotlin be envisaged as a serious candidate regard-
less of its unfriendly syntax and yet-to-be-proven industrial
prosperity? What about other modern languages like Rust?
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