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There is a consensus among computer education experts and practitioners that teaching introductory programming is intrinsically hard. In particular, the choice of the first programming language to support learning the fundamentals of problem solving and algorithmic reasoning is a hot issue that is driving a lot of attention within the last few decades. As a side effect, the computing education community has been long divided between supporters of industrial relevance and advocates of educational benefits as the prominent grounds on which a first programming language should be elected. While the former seem to have the wind in their sails, with popular-in-industry languages such as Java, C and C++ being still widely used to teach introductory programming, the case is far from being closed. In this paper, we propose to analyze the first language choice dilemma in the light of a number of rigorous studies carried out within and outside of the computing education community. We show that, in the light of these studies, we can efficiently question our choices as educators and stimulate objective discussions toward reconciling our views regarding the first language choice. Mainly, we devise a number of criteria, all backed up with scientific findings from different communities, according to which a first language should be evaluated. Our conclusions converge toward a justified concern vis-à-vis the use of languages such as Java and C to teach introductory programming, and the pressing need for a better compromise between industrial popularity and educational advantages. To meet that need, our position gravitates around two major opinions stemming from our cross-disciplinary analysis: (i) Java, C and C++ should not be used to teach introductory programming and should rather be saved for more advanced programming courses and (ii) while the recent trend of choosing Python is justified, it is still debatable and therefore other candidates, among which we propose a couple, should also be seriously considered. Besides arguing in favor of these opinions, the primary aim of our analysis is to trigger fruitful discussions on the subject fuelled by cross-disciplinary research findings rather than personal opinions.

INTRODUCTION

Computer science CS programs are proliferating across world's universities. For instance, the number of undergraduate CS programs in the US and Canada has grown by 74% in a seven-year interval [START_REF]Assessing and responding to the growth of computer science undergraduate enrollments[END_REF]. Unfortunately, this expansion is contrasted with persistent difficulties for students and educators alike. In particular, introductory programming is noticeably hard to teach and learn [START_REF] Gomes | Learning to program -difficulties and solutions[END_REF][START_REF] Jenkins | On the difficulty of learning to program[END_REF][START_REF] It | Issues and difficulties in teaching novice computer programming[END_REF][START_REF] Qian | Students' misconceptions and other difficulties in introductory programming: A literature review[END_REF][START_REF] Robins | Learning and teaching programming: A review and discussion[END_REF] with rather stable, relatively high dropout rates worldwide [START_REF] Bennedsen | Failure rates in introductory programming: 12 years later[END_REF][START_REF] Watson | Failure rates in introductory programming revisited[END_REF]. While the CS education literature is rich in debates on the "best" methodologies and languages for teaching introductory programming [START_REF] Böszörményi | Why Java is not my favorite first-course language[END_REF][START_REF] Neil | Ten quick tips for teaching programming[END_REF][START_REF] Suhana | A comparison of Java and C#[END_REF][START_REF] Leutenegger | A games first approach to teaching introductory programming[END_REF][START_REF] Rahul | An open source graphical robot programming environment in introductory programming curriculum for undergraduates[END_REF], their often divergent conclusions are hard to reconcile. As an example, Duke et al. praise Java's suitability for introductory programming [START_REF] Duke | Teaching programming to beginners -choosing the language is just the first step[END_REF], whereas Meyer mocks its "magic" main (string[]args) "which you do not understand" [START_REF] Meyer | The outside-in method of teaching introductory programming[END_REF].

The aim of this paper is to set the basis for fruitful discussions regarding the choice of the first language used as a "support" to teach introductory programming. To that end we argue as follows.

(1) Discussions on the first language choice should be made in accordance with a final objective (while a computer science graduate is expected to be an expert programmer [START_REF] Jenkins | The motivation of students of programming[END_REF][START_REF] Robins | Learning and teaching programming: A review and discussion[END_REF], a civil engineer is fine with basic programming skills). We focus on introductory programming where the objective is to form expert programmers, which we refer to simply as IP1 . (2) These discussions should feed on cross-disciplinary (CS education, educational psychology, cognitive science) existing rigorous research rather than personal and anecdotal opinions. Points (1) and ( 2) are intimately linked: as we show in the next paragraph, a preliminary analysis of the literature points to the fact that the first language choice may seriously impede the process of acquiring expert programmer skills.

A key trait of expert programmers EP is that they "organise their knowledge according to functional characteristics such as the nature of the underlying algorithm rather than superficial details such as language syntax" [START_REF] Robins | Learning and teaching programming: A review and discussion[END_REF], which implies the valuable benign side effect of high adaptability to new programming languages. Jenkins emphasizes this adaptability suggesting that EP simply "bring [their] knowledge to some new situation (in this case the new language)" [22, p. 45]. Unfortunately, in the last two decades, the trends in teaching IP seem to go against the EP objective. Gomes and Mendes pointed out this issue: "teachers are more concentrated on teaching a programming language and its syntactic details, instead of promoting problem solving using a programming language" [START_REF] Gomes | Learning to program -difficulties and solutions[END_REF]. More recent studies show further that the observations of Gomes and Mendes are particularly present in settings where the language used to teach IP is chosen primarily for its industrial popularity [START_REF] Koulouri | Teaching introductory programming: A quantitative evaluation of different approaches[END_REF][START_REF] Stefik | An empirical investigation into programming language syntax[END_REF]. In particular, Koulouri et al. show in an elegant study that teaching "some [popular-in-industry] programming languages [with a focus on Java]" may drown beginners into syntax issues and "distract them from learning basic programming concepts, which may, in turn, have a lasting impact on students' confidence" [START_REF] Koulouri | Teaching introductory programming: A quantitative evaluation of different approaches[END_REF]. There appears therefore to be a discrepancy between the choice of languages such as Java and C (mainly for their industrial merit) in IP courses, still popular as of today, and the consensus that teaching IP (the objective of which is, we recall, forming EP) must focus more on algorithmic reasoning than on programming languages technical details [START_REF] Gomes | Learning to program -difficulties and solutions[END_REF][START_REF] Jenkins | The motivation of students of programming[END_REF][START_REF] Koulouri | Teaching introductory programming: A quantitative evaluation of different approaches[END_REF]. This situation is, to say the least, worrying, given that several studies confirm that educators are clearly shifting from the classical debate of industrial relevance vs. educational benefits toward settling for the former as the most important -even the only -ground for selecting the first language (Sect. 4). There is therefore an urgent need to reconcile our views on the first language dilemma somewhere between educational fitness and industrial relevance. Even with the recent trend of switching to Python, this urgent need is far from being met, as reflected by the persistence of Java/C/C++ in IP courses today (Sect. 4) and the educational pitfalls of Python (Sect. [START_REF] Altadmri | 37 million compilations: Investigating novice programming mistakes in large-scale student data[END_REF][START_REF] Muñoz Arancón | ESROCOS: Development and Validation of a Space Robotics Framework[END_REF]. Therefore, in order to question our choices as educators, we need to establish clear, evidence-based criteria on which electing a language for teaching IP should be based.

This paper identifies some of these criteria and discusses whether the current choices w.r.t. the first language should be reconsidered. While we (i) make a clear case against the use of Java, C and C++ to teach IP and suggest saving them for later years (when students are no longer novices) and (ii) put forward three alternative language candidates (including Python), our main objective is to trigger constructive discussions on the first-language choice dilemma based on cross-disciplinary scientific findings. Note that the conclusions of this paper rely on a procedural-first approach, without any attempt to minimize the debate on the first-paradigm dilemma [START_REF] Susan | The first programming paradigm and language dilemma[END_REF][START_REF] Pears | A survey of literature on the teaching of introductory programming[END_REF] (more in Sect. 4).

Following the importance and the dependency between points (1) and (2) above, the paper is organized as follows. First, we provide a context of a typical IP course for which a programming language should be chosen to serve as a "support" (i.e. to implement the algorithms). In particular, we discuss the educational choices made in the course, in light of various research findings, in order to be in line with the EP objective, regardless of the support language (Sect.2). Second, we devise some criteria, also backed up with existing research, to elect a first language to support the course presented previously (Sect. 3). We show that languages such as C, C++ and Java, still as of today belonging to mainstream languages used in IP courses 2 , score poorly when confronted with these criteria. We then conclude with Sect. 4 as we propose, besides Python, already considered by many educators, two other candidates, namely Ada and Kotlin, to possibly replace Java/C/C++. We show that (i) Python is not necessarily the ideal undebatable replacement and (ii) languages like Ada, and perhaps Kotlin, should not be discarded a priori, and conclude with open questions regarding the possible directions of future discussions where further candidates may also be considered.

IP COURSE 2.1 Targeted public

The course we present is applicable to any IP (i.e. any introductory programming, first-year university course where the final objective is to form EP, Sect. 1). It 

Content

The course frames programming as a communication problem. We have, at one end, a human speaking natural language (e.g. English or French) and, at the other end, the computer "speaking" binary. The problem of programming then consists in finding a way for the human to communicate with the computer and get it do what he/she wants i.e. execute the solution to the problem at hand. Since the gap between the languages spoken at each end is huge, programming languages serve as an interface (in the sense of a "compromise") between the human and the computer. Still, a programming language is drastically different than natural language, so we need another "intermediary interface": high-level solutions.

Fig. 1, taken from our teaching slides, illustrates the programming problem as introduced in the course. Connecting the two ends of the communication and the interfaces forms a chain of programming "phases": (i) specifying solutions (the specification phase), (ii) implementing them as programs using a programming language (the implementation phase) and (iii) compiling such programs into binaries (the compilation phase) 4 .

The course explains afterwards that compilers are ready-to-use generators: the compilation phase does not need any intervention from the students (besides interpreting its results). It summarizes accordingly that programming is a two-phase activity: at the specification phase, what we want the computer to do transforms from natural language to abstract mathematical solutions, whereas the latter become programs at the implementation phase. The course emphasizes the importance of the specification phase as mastering it will make it easier for students to succeed in the different programming languages courses in the upcoming years. It is important to note that the organization in Fig. 1 is paradigm independent . While this course follows a procedural-first approach, where, in later slides, the green box content is replaced with "algorithms", the same organization can be used within an object-first approach (by simply replacing "high-level solutions" with e.g. "diagrams & algorithms" in later slides).

The course then focuses on the specification problem: how do I specify an abstract solution to a problem described in naturallanguage? In a procedural setting, the specification phase is equivalent to writing algorithms. Based on Fig. 1, to program is to communicate with the computer, thus solutions should be written for the computer. Therefore, an algorithm should provide a solution that a high-level fictive computer would be able to execute. This fictive computer has different levels of "tolerance" toward what humans write. The tolerance-zero level is conceptual: this involves e.g. a sequence of instructions that are both elementary (adding two numbers is elementary, factorial is not) and unambiguous ("do this" is clear, "do this or that" is not). The maximum-tolerance level is syntactical, e.g. ending an instruction with either a line-break or a semicolon is okay as long as it is consistent throughout the algorithm. Thus, the course encourages the students to separate more important aspects, that is problem solving (how to solve a problem thinking like the fictive computer, e.g. in terms of a sequence of elementary unambiguous instructions) from the less important ones, that is syntactical details (e.g. what symbol should I use to end my instruction?)

On this basis, the remaining course sessions (lectures and assignments) cover various aspects of algorithms (e.g. types, variables, instructions, loops and subroutines) and data structures (e.g. records and arrays). IP is limited to static variables (dynamic variables and pointers are covered in the second year). Implementation is introduced gradually as the students encode their algorithms using a support language. Since algorithms and data structures are classic in IP, we do not go into their details. Rather, we emphasize some choices made in the course and explain their motivations.

Algorithmic notations.

McIver and Conway referred to seminal works from educational psychology and cognitive science to argue that learning programming can be negatively affected by unlearning existing parts of the students cognitive structures [START_REF] Mciver | Seven deadly sins of introductory programming language design[END_REF] (for instance, unlearning that = means equal to, a knowledge that first-year students hold for over 15 years). Teaching algorithms to a beginner should connect to his/her existing cognitive structures and involve as little unlearning as possible, preferably no unlearning at all (see more on the effects of unlearning in Sect. 3.2.1). Thus, = remains the notation for equality, whereas we use ← for assignment (read "transfer what is on the right into what is on the left" [START_REF] Mciver | Seven deadly sins of introductory programming language design[END_REF]). Similarly, we use either universal symbols or their English meanings for boolean operators, e.g. ∧ and ∨ (or simply and and or) . Besides being "anti-unlearning" and promoting simplicity (more on the importance of syntax simplicity at the implementation level is given in Sect. 3.2.2), these choices serve the purpose of building a "universal" specification basis, independent as much as possible from programming languages. Students will thus always find their "pivot" when moving to a new programming language, as they implement their abstract solutions in the language (mapping the universal symbols to their language-specific counterpart).

Variables.

Variable-related misconceptions are a major source of students difficulties in programming [START_REF] Milne | Difficulties in learning and teaching programming[END_REF]. These misconceptions can form as early as the abstract introduction of variables in IP. Clancy, for instance, shows that using a box to represent a variable (a metaphor still commonly employed by teachers [START_REF] Qian | Students' misconceptions and other difficulties in introductory programming: A literature review[END_REF]) messes with the mental model of students as it makes them, for instance, think that a variable may hold a number of things [START_REF] Clancy | Misconceptions and attitudes that interfere with learning to program[END_REF]. We suggest using the labelized erasable slates metaphor: a variable is an erasable slate with a label indicating its name and type. Thus, declaring e.g. an integer variable 𝑥 creates a slate, labelized with the variable name 𝑥 and type integer, with an arbitrary integer on it, which students may erase to write a different value instead (assignments, including initialization). The label allows to find the variable (the name) and prevents writing anything but integers (the type).

Loops.

Another widespread misconception is viewing the while and the for loops as identical, therefore preferring one over the other instead of comprehending that each is destined to solve a different problem [START_REF] Qian | Students' misconceptions and other difficulties in introductory programming: A literature review[END_REF]. While Qian et al. link this misconception to factors such as "which loop construct the student learned first" [START_REF] Qian | Students' misconceptions and other difficulties in introductory programming: A literature review[END_REF], we show in Sect. 3.2.3 that the programming language chosen for IP is another important factor. In the course we present, comprehending these loop constructs regardless of the language is important. Finding an integer in an array is a while problem (browse the array as long as the value is not found or there are more cells to browse) whereas finding the smallest integer in an array is a for problem (browse the whole array in any case, i.e. for each index in the array range). Understanding the differences at this stage minimizes the chances of students to confuse both constructs (Sect. 3.2.3).

Subroutines.

Though distinguishing subroutines with and without a return value may sound trivial, giving it little attention at the specification phase has serious consequences at the implementation phase (Sect. 3.2.4). The course uses the terminology procedure and function to denote a subroutine without and with a return value, respectively. In addition, the course advocates the "good practices" of writing subroutines as early as the specification phase. These practices include the well-known "friends" of reusability (e.g. simple, hardcoding-free subroutines), but also other guidelines such as "a return values must not be discarded" to help prevent common, hard-to-catch code bugs (Sect. 3.2.4).

Analysis.

Algorithms must be correct, in order to implement correct code. Many students make mistakes (e.g. infinite while loops) due to violating the underlying logical properties of different algorithmic concepts. Therefore, the course promotes logical reasoning as it guides students toward deriving formal rules that help them write correct algorithms. For example, let 𝑉 (resp. 𝐼 ) be the set of variables tested in the condition (resp. the set of instructions within the body) of a while loop, and SI : I ↦ → P (V ) (where P (V ) is the powerset of 𝑉 ) the function returning the subset of 𝑉 modified by an instruction i ∈ I . The course drives students' attention to the fact that if ∀i ∈ I : SI (i) = ∅ then the while loop is either never executed or infinite (and is thus, in the general case, misconceived). Moreover, the course familiarizes students with program verification. In particular, students learn how to use preconditions, postconditions and invariants to verify their algorithms. At the implementation phase, students should be able to concretize their acquired knowledge on program verification in lab sessions (Sect. 3.2.5).

FIRST LANGUAGE CHOICE

In this section, we reflect on the first language choice dilemma in the context of the IP generic course introduced in Sect. 2. Like it was the case for the choices made in the course, we evaluate the support language according to several criteria in the light of rigorous, cross-disciplinary research findings. The criteria belong to the two traditional categories considered by computing education experts when electing a language to support teaching IP: industrial relevance (Sect. 3.1) and educational benefits (Sect. 3.2). In particular, we derive five important aspects under the educational benefits category based on previous research.

We analyse, under all criteria, six programming languages: Java, C, C++, Python, Ada and Kotlin. These candidates are chosen in compliance with our observations, backed up with the literature, introduced in Sect. 1. Indeed, we evaluate Java, C and C++ to underpin the concerns raised in [START_REF] Gomes | Learning to program -difficulties and solutions[END_REF][START_REF] Koulouri | Teaching introductory programming: A quantitative evaluation of different approaches[END_REF][START_REF] Stefik | An empirical investigation into programming language syntax[END_REF] pertaining to the fact that using these languages in IP, based on their sole industrial merit, threatens attaining its EP final objective. Python is analyzed as it has been, in the last decade, the de facto choice of educators that wish to reconsider using Java/C/C++ (more in Sect. 4). Ada and Kotlin are also scrutinized in order to discuss whether they could be viable candidates to replace Java/C/C++ in IP so the latter may be taught in later years in the curriculum, when the students are no longer total beginners.

Industrial relevance

In this category, the weak candidates are, without a doubt, Ada and, to a lesser extent, Kotlin. Indeed, Java, C and C++ are known for being traditionally used in industry throughout the last decades, while Python is galloping when it comes to industrial popularity. For instance, the most recent survey of the Indeed job-application platform places these four languages among the top-five most demanded languages in industry 5 . (Another abundantly detailed survey with similar findings is available from StackOverflow 6 ). However, to be fair with the weak cadidates, Ada's and Kotlin's lack of popularity should not be mistaken for a total absence in industry as it is the case for languages specifically tailored for education such 5 https://uk.indeed.com/career-advice/career-development/coding-languages 6 https://survey.stackoverflow.co/2023/#most-popular-technologies-language as Eiffel and Pascal. Industrial relevance of both Ada and Kotlin is discussed next.

Ada has a long-term ongoing history with industrial critical domains worldwide 7 . For instance, the Ariane 4/5/6 rockets software was written in Ada, and the Systerel company 8 , a major actor of critical computing in France, regularly hires Ada experts. Moreover, the recent ESROCOS and ADE projects [START_REF] Muñoz Arancón | ESROCOS: Development and Validation of a Space Robotics Framework[END_REF][START_REF] Ocón | ADE: Autonomous DEcision making in very long traverses[END_REF], funded by the European Space Agency, heavily relied on Ada (within the TASTE toolbox [START_REF] Perrotin | TASTE: A real-time software engineering tool-chain overview, status, and future[END_REF]).

As for Kotlin, and since being announced as the preferred language for developing Android applications by Google in 2017, it gained significant popularity as other major companies such as Uber and Pinterest adopted it for purposes that go sometimes beyond mobile applications development [START_REF] Oliveira | On the adoption of kotlin on android development: A triangulation study[END_REF].

Educational benefits

We compare the six languages within five non-exhaustive criteria backed up with relatively recent scientific findings.

Anti-unlearning syntax.

As explained in Sect. 2.2.1, unlearning existing parts of cognitive structures has negative effects on beginners. The equal/assignment confusion is a famous unlearning side effect where a beginner would write e.g. if (x = 5){. . . } (instead of if (x == 5){. . . }) in C, C++, Java, Python or Kotlin thinking that the body of if will be executed only if x is equal to 5 (while, in reality, 5 is assigned to 𝑥 silently as the condition of if becomes a tautology). This issue seems to receive much less attention than it should, as Stefik and Siebert showed in a rigorous study [START_REF] Stefik | An empirical investigation into programming language syntax[END_REF]. In particular, the authors noticed that the double-equal sign was used correctly by beginners as little as any random sign such as the Bang (!) which the authors invented for their experiments (less than 2% used either sign as they should have). Stefik and Siebert concluded that "We understand all too well why many language designers historically made the choice of ==, but the impact on novices is clear". Moreover, in a more recent thorough study (data collected over more than 37 million compilations), Altadmri and Brown showed that the equal/assignment confusion ranked high in terms of both frequency (4 th ) and difficulty to fix (6 th ) among the 18 most common errors committed by beginners [START_REF] Altadmri | 37 million compilations: Investigating novice programming mistakes in large-scale student data[END_REF]. Another example of unlearning side effects is the 0 index in C, C++, Java, Python and Kotlin, frequently at the origin of the famous off-by-one error: students need to unlearn first being simply 1 st and replace it with first being 0 th . In general, the chosen language for IP must involve as little unlearning as possible, a criterion amply met by Ada. Contrary to the other languages under scrutiny, Ada has an anti-unlearning syntax: equal is =, whereas := (inherited from the educational language Pascal) is used for assignments, and the keywords ′ First and ′ Last are provided for arrays boundaries.

In sum, only Ada meets this criterion.

Simple syntax.

The chosen support language should have simple syntax, avoiding cryptic symbols [START_REF] Mannila | An objective comparison of languages for teaching introductory programming[END_REF] and "magic formulae" [START_REF] Meyer | The outside-in method of teaching introductory programming[END_REF]. C, C++ and Java use cryptic syntax (e.g. && for ∧ and || for ∨), that does not intuitively connect to universal mathematical notations (Sect. 2.2.1). Moreover, writing the first program in any of these languages requires beginners to use a "magic formula" which they will likely not understand before the next year, such as main (string [] args) in Java. Besides, these languages use semicolons the forgetting and misplacement of which are very common errors among beginners (in the top fifteen of most frequent errors according to Altadmri and and Brown's study [START_REF] Altadmri | 37 million compilations: Investigating novice programming mistakes in large-scale student data[END_REF]). Both Ada and Python enjoy simple and intuitive syntax: for instance, the English keywords and and or are used for the obvious corresponding logical operators, and writing the first program is magic formula free (e.g. in Ada the main program is simply a parameterless procedure). However, contrary to Python and Kotlin, Ada uses semicolons in a similar fashion as Java, C and C++. As for Kotlin, though it shares cryptic syntax with Java/C/C++, a program can be written easily in a magic-formula-free manner, and the language shares the easy use of line-breaks to end instructions with Python, with the extra simplicity of insensitivity to indentations.

In brief, Ada, Python and, to a lesser extent, Kotlin partially meet this. Java, C and C++ are the weak candidates.

Clear concepts of loop constructs.

The support programming language should concretize the understanding of the conceptual differences between a while and a for loop, acquired at the specification phase (Sect. 2.2.1). This is the case of Ada, providing a clear, unambiguous syntax for both loop constructs. The syntax of while is similar to that of C, but the for loop construct is different: for x in r do ... where 𝑥 is a variable and 𝑟 is a range, thus the instructions within the body of for are repeated for the whole range . In C/C++, the for loop simply does not exist, although a for construct is provided. Actually, the latter is a while construct written in a more compact way: for (inst1; cond; inst2) is a while loop preceded with instruction inst1, conditioned with the Boolean expression cond and incorporating inst2 as the last instruction in its body. This is surprising, and remarkably poor from a conceptual point of view: it promotes the misconception of both loops being similar, thus pushing the students to compare them [START_REF] Qian | Students' misconceptions and other difficulties in introductory programming: A literature review[END_REF]. Eventually, beginners that will deem for better than while will end up writing a for loop with a break (or even worse, a return) statement to solve a typical while-loop problem. In Java, things are even worse: the for loop (which is actually a while loop) is kept from C, and a foreach loop construct is introduced to implement a true for loop, but it is called also for (one can only imagine the confusion this creates in a novice student's mind). Python and Kotlin, on the other hand, share with Ada a clear and nice separation between both loop constructs.

To conclude, Ada, Python and Kotlin are excellent candidates w.r.t. this criterion, which neither Java, C or C++ meet.

Clear and rigorous concepts of subroutines.

The support language should concretize the distinction between subroutines with and without return values (learned at the specification phase, Sect. 2.2.4) in a rigorous manner. In Ada, the syntactical distinction is explicit: procedure (no return value) and function (one return value). In C, C++, Java, Python and Kotlin, it is the return type of the subroutine that makes the difference (though less intuitive in Python, where types are implicit). Syntactically, this is not a real plus of Ada. However, Ada's rigorous separation between procedures and functions becomes clearly advantageous at compile-time.

Let us illustrate with an example. Listing 1 shows the same erroneous student code in Ada (right, where 𝑥 has been declared integer earlier in the program) and Python (left). The student is trying to display 𝑥, update it with its factorial fact (x), then display 𝑥 again. However, he/she forgot to assign the return value of fact (x) to 𝑥 (line 3). The Python code compiles (as its equivalent in C, C++, Java or Kotlin would), while it does not in Ada with the compiler displaying "cannot use function fact in a procedure call" pointing to line 3. This is a rather dummy example, but it highlights a remarkably serious mistake (known as discarding/ignoring return values of non-void functions), ranked 1 st in terms of average time to fix (≥ 1000 seconds) in Altadmri and Brown's study [START_REF] Altadmri | 37 million compilations: Investigating novice programming mistakes in large-scale student data[END_REF] (referenced earlier in Sect. 3.2.1, 3.2.2). Such high average would be drastically reduced with Ada, as the error is caught by the compiler. While discarding return values in the remaining language candidates looks like a trivial matter (easily fixable at the compiler level), the historical choices made in these languages makes it tricky in practice. For instance, C++17 introduced the "no discard" attribute to explicitly denote that a method may not see its return value discarded. Evidently, this is an additional burden for a beginner student.

To summarize, Ada is the only candidate that satisfies this criterion.

3.2.5 Verification support. Finally, a good language for IP is also a language that promotes writing correct code [START_REF] Mannila | An objective comparison of languages for teaching introductory programming[END_REF] (which connects to specifying correct algorithms, Sect. 2.2.5). Ada is known for its strong typing and strict compiler, both promoting writing correct programs. One example on strict compiler benefits is the discarding/ignoring return values error, which only Ada catches at compiletime (Sect. 3.2.4). Let us now give an example on how strong typing can help catch errors at runtime. Consider the Kaprekar routine, where students store, in an array 𝐴, the digits of a number 𝑁 , then use them to perform some computations. A hard-to-catch mistake is when e.g. a two-digit number is put in one of 𝐴's cells. Ada's strong range subtyping can help. It suffices to write subtype Digit is Natural range 0..9; then define 𝐴 as an array of Digit, then, at runtime, if any instruction attempts to put a value outside of 0..9 in a cell of 𝐴, the execution stops with the message "constraint check failed", pointing to the culprit instruction. In contrast, range subtyping does not exist per se in C, C++, Java or Kotlin (despite some online projects that claim to implement it), which would entail, for e.g. the Kaprekar example, longer classic debugging through inserting print/printf statements. In Python, things are more complicated as the language uses a sort of implicit typing. Let us consider another example where a student is supposed to implement a function that computes the factorial fact (n) of a number 𝑛. Here, the fact function should implement its classical mathematical counterpart fact : N ↦ → N, that is fact is only defined for positive integers, and always returns a positive integer. In Ada, this is easily feasible through defining both the only parameter of the function and its return value as naturals:

function fact (n : Natural) return Natural A direct advantage of strong subtyping here is avoiding, by design, ill-typed instructions (for instance calling the function above with a negative integer) and return values outside of the function's range. But strong subtyping benefits go beyond this direct advantage. In this example, it allows for a rigorous mapping of a function, as a mathematical object at the specification phase, to a function, as a programming concept. To explain this, let us see how the C/C++ header of the same "function" would look like:

int fact (int n) But, strictly speaking, fact above is not a function to begin with (simply because it is not left total), contrary to the Ada implementation. For a novice programmer, using a language that allows precise mapping of high-level solutions (algorithms) and their mathematical foundations (e.g. functions) to programs promotes writing correct code. This is not the case in the other candidate languages, especially in Python because of the absence of explicit typing.

Strong (sub)typing put aside, Ada has solid foundations in program verification: its SPARK subset/toolset [START_REF] Gilbert | High integrity software: the SPARK approach to safety and security[END_REF]. C, C++, Java, and Kotlin verification support is more or less comparable to SPARK (e.g. the state-of-the-art KeY theorem prover for JavaCard [START_REF] Ahrendt | The key tool[END_REF]). As for Python, Nagini has been recently proposed [START_REF] Eilers | Nagini: a static verifier for Python[END_REF]. However, it requires a strictly typed version of Python, which clashes with the "simplicity" induced by the implicit typing philosophy of Python.

In fewer words, Ada is an ideal candidate under this criterion. C, C++, Java and Kotlin are more difficult to use to write correct code (due to typing/subtyping limitations), but they may be still fit thanks to their verification support. Python is the weak candidate due to the absence of explicit typing.

DISCUSSION & CONCLUSION

When it comes to choosing a programming language for IP, the CS education community has been long polarized with advocates of industry relevance opposed to those of educational benefits, and the former seem to have the wind in their sails. Many studies show that teachers first criterion to choose a language for IP is industry relevance, even before pedagogical suitability [START_REF] Davies | A snapshot of current practices in teaching the introductory programming sequence[END_REF][START_REF] Michael De Raadt | Language tug-ofwar: industry demand and academic choice[END_REF][START_REF] Mannila | An objective comparison of languages for teaching introductory programming[END_REF]. As a consequence, languages such as Java, C and C++ are still very popular in IP courses today, despite the recent ascension of Python. For example, and according to the most recent rigorous surveys that we could find on the most popular languages used to teach IP, Java and C appear among the top-three of such languages in the UK and Australia [START_REF] Mason | Language choice in introductory programming courses at Australasian and UK universities[END_REF] and Ireland [START_REF] Brett | A survey of introductory programming courses in Ireland[END_REF], and C is overwhelmingly dominant in IP courses in Portugal (according to a 2019-2020 data shared by public Portuguese universities and reported in [START_REF] Sónia | The old question: which programming language should we choose to teach to program?[END_REF]) and in Greece [START_REF] Avouris | Introduction to computing: a survey of courses in Greek higher education institutions[END_REF]. This is a sad state of affairs, as such choices are more dangerous than one may think (Sect. 1, Sect. 3). It is thus perhaps about time to revisit the "industry-relevance-first" choice, and reserve these languages for teaching programming at more advanced levels (second-year students and above). With the rise of Python, it is now clearer than ever that to avoid a never-ending war (in which "the loudest professors always win" [START_REF] Jenkins | The first language -a case for Python?[END_REF]), the right posture to adopt must be more flexible: both educational and industry relevance are important [START_REF] Michael De Raadt | Language tug-ofwar: industry demand and academic choice[END_REF]. Perhaps, Python is slowly conciliating the two extremes as it is both gaining popularity in industry and regarded as education friendly [START_REF] Mason | Trends in introductory programming courses in Australian universities: languages, environments and pedagogy[END_REF], but the case is not yet closed. First, besides its advantages that our analysis confirms to some extent, Python is still far from being the ideal, undebatable replacement as we have shown through the same analysis. Second, the fact that Java/C/C++ are still widely used in IP courses, as detailed above, attests to the lack of unanimity regarding the trend of switching to Python.

Our category-based analysis on educational fitness (Sect. 3.2) shows a clear advantage of Ada, followed by Python, and to a lesser extent Kotlin, with C, C++ and Java lagging behind. The analysis is not exhaustive, but still covers fundamental criteria of educational fitness, long-established by educational psychologists (e.g. categories one, Sect. 3.2.1 and two, Sect. 3.2.2) and/or crucial to avoid the underlying misconceptions of the most tenacious mistakes of first-graders reported in rigorous research (e.g. category four, Sect. 3.2.4). Ada's educational superiority over Python and Kotlin, mainly stemming from its anti-unlearning syntax, strong typing and strict compiler, is contrasted with an industrial relevance that seems to be tied to critical applications (Sect. 3.1), making it the less desirable language form an industry-relevance angle especially with the exploding popularity of Python (and the rising one of Kotlin). While our positive observations on Python are corroborated by Koulouri et al.'s rigorous analysis [START_REF] Koulouri | Teaching introductory programming: A quantitative evaluation of different approaches[END_REF], we did not find any work that includes Ada as a first language candidate (except for a couple of over 30-year-old publications [START_REF] Thomas | Ada as a CS1-CS2 language[END_REF][START_REF] Leon | Ada in CS1[END_REF]), although the language is used, at least in a number of French universities, to support IP courses. As for Kotlin, its timid to non-existent appearance as an IP candidate in previous research is probably due to it being the youngest among our candidates. Yet, according to our criteria, it is still noticeably behind Ada (educational-fitness-wise) and Python (industry-relevance-wise). Perhaps, we could sum up accordingly the takeaway of our analysis in the three following conclusions:

(1) Java/C/C++ should be avoided in IP courses, (2) the trend of using Python, while somewhat justified, is clearly debatable and (3) Ada, and perhaps Kotlin, should receive more attention as potential candidates (the former might have been discarded too quickly, and it might be about time to start considering the latter).

At this stage, we would also like to (re)emphasize the context in which our analysis remains valid. As explained in Sect. 1, the objectives of the IP course are a crucial parameter toward electing a first language. In other words, the way we, educators, "split" learning objectives between IP and higher-level programming courses is a determining factor for choosing the first language. Our analysis is carried out with, in mind, a broadly brushed final objective of forming expert programmers (Sect. 1, Sect. 2), with the hope that its results remain in line with the smaller objectives resulting from the decomposition of the eventual one. Similarly, and in a closely connexe scope, the choice of the first paradigm is equally important and may greatly influence the usefulness of our analysis. This is, however, out of the scope of this paper where we assume a procedural-first approach, without any intention, nevertheless, to minimize the importance of the first-paradigm dilemma.

As explained in the introduction, this paper is not about personal opinions, it rather seeks triggering discussions based on scientific evidence. The three overall conclusions above are thus meant to set some flexible bases for such discussions. We wrap up therefore with the following questions to serve as stimulating headlines:

• Are we ready, as educators, to keep taking the risk of thinking in terms of "industrial relevance first" and thus using languages such as Java, C and C++ to teach IP knowing their serious educational drawbacks? • If no, how do we define a balance between industrial popularity and educational advantages? • Does Python realize this balance despite its implicit typing, porous compiler and unlearning-friendly syntax? • Is Ada a viable candidate even with a rather poor industrial relevance? • Could Kotlin be envisaged as a serious candidate regardless of its unfriendly syntax and yet-to-be-proven industrial prosperity? What about other modern languages like Rust?

Figure 1 :

 1 Figure 1: The programming problem.

1 x = 5 2

 5 print("the factorial of", x) 3 fact(x) 4 print("is", x) 1 x:= 5; 2 Put("the factorial of" & Integer'Image(x)); 3 fact(x); 4 Put("is" & Integer'Image(x)); Listing 1: Discarding/ignoring return values of non-void functions in Python (left) and Ada (right)

IP can be viewed as CS1 + CS2, but we prefer to clearly define what it is in order to avoid the possible confusion the latter acronyms may entail[START_REF] Hertz | What do "CS1" and "CS2" mean? Investigating differences in the early courses[END_REF].

References on the popularity of these languages in IP courses are further detailed in Sect.[START_REF] Muñoz Arancón | ESROCOS: Development and Validation of a Space Robotics Framework[END_REF] 

https://www.insa-toulouse.fr (in French).

It is perhaps noteworthy to mention that, in a purely historical context, Friedman presented an organization structurally similar to Fig.1using a ladder[START_REF] Weiser Friedman | From Babbage to Babel and beyond: A brief history of programming languages[END_REF] (yet different in content, as it had nothing to do with teaching).

See e.g.[START_REF] Magel | Revisiting the Impact of the Ada Programming Language[END_REF] and https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html

https://www.systerel.fr/en/
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