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Figure 1: The proposed IAVA system enables users to interact with an interactive virtual agent with adaptation capability. It is
equipped with a webcam to capture the user’s face and a microphone to capture the user’s speech. The virtual agent is displayed

in front of the user.

ABSTRACT

During an interaction, partners adapt their behaviors to each other.
Adaptation can have several functions such as being a sign of en-
gagement and enhancing human users’ interaction experience. It is
important that virtual agents acting as interaction partners should
continuously adapt their behaviors to those of their interlocutors
in real time. This paper focuses on creating an interactive virtual
agent that is capable of rendering real-time adaptive behaviors in
response to its human interlocutor. It ensures the two aspects: gen-
erating real-time adaptive behavior and managing natural dialogue.
We propose a system of an adaptive virtual agent and choose the
e-health application of Cognitive Behavioral Therapy (CBT), which
is a mental health treatment that restructures automatic thoughts
into balanced thoughts, as a proof-of-concept to showcase the bene-
fit of endowing behavior adaptation to the agent. The virtual agent
adapts to the user via the display of nonverbal behaviors, which
are generated via a deep learning model, throughout the whole in-
teraction while acting as a therapist helping human users to detect
their negative automatic thoughts.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IVA °23, September 19-22, 2023, Wiirzburg, Germany

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9994-4/23/09...$15.00
https://doi.org/10.1145/3570945.3607326

CCS CONCEPTS

+ Human-centered computing — Interactive systems and
tools; - Computer systems organization — Real-time system
architecture.

KEYWORDS
Virtual agent, adaptation, real-time system

ACM Reference Format:

Jieyeon Woo, Michele Grimaldi, Catherine Pelachaud, and Catherine Achard.
2023. IAVA: Interactive and Adaptive Virtual Agent. In ACM International
Conference on Intelligent Virtual Agents (IVA 23), September 19-22, 2023,
Wiirzburg, Germany. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3570945.3607326

1 INTRODUCTION

In a conversation, people exchange their thoughts and feelings
verbally via words and nonverbally through gestures and prosody.
During the exchange, people not only convey their message by
sending social signals but also adapt to their interacting partner [8].
The adaptation is a key element of conversation notably for in-
terpersonal relationships [10] and can be seen in multiple lev-
els of aligning linguistically through the verbal channel, adapting
our behaviors nonverbally, or even changing our conversational
strategies (the perceived impression of ourselves such as giving
a warm or competent image of oneself) [8]. This adaptation acts
as a sign of engagement and strengthens the relation between the
partners [12, 18].

Virtual agents, which are computer-generated virtual characters,
are designed to interact with human users. One of their ultimate


https://orcid.org/0000-0002-4761-7038
https://orcid.org/0000-0001-8284-6998
https://orcid.org/0000-0003-1008-0799
https://orcid.org/0000-0002-5790-0830
https://doi.org/10.1145/3570945.3607326
https://doi.org/10.1145/3570945.3607326
https://doi.org/10.1145/3570945.3607326

IVA °23, September 19-22, 2023, Wiirzburg, Germany

goals is to make their users fully engaged in the interaction. As a
way of attaining this aim, we hypothesize that agents can increase
their users’ engagement by adapting their behaviors depending on
those of their users. It is vital for them to generate adaptive behavior
continuously in real time and also to assure a fluid dialogue such as
managing the turn-taking, the agent interpreting whether the user
is giving their speaking turn (addressing single responses made up
of several utterances linked with pauses) and whether the user is
reacting with backchannels (not aiming to take the speaking turn).

The creation of such virtual agents that renders real-time adap-
tive behaviors in response to their human user is a hard task. The
aforementioned two aspects of rendering real-time adaptive behav-
ior and managing natural dialogue need to be addressed.

The deployment of virtual agents has been seen in numerous
applications. Their use can be easily observed for education [17, 22],
assistance (as a companion or guide) [6, 31], and healthcare [7, 26,
30]. Especially in [26], virtual agents have proven to be promising
tools for providing medical care. In their study, they used virtual
agents to provide virtual psychiatric interviews. Their study shows
that virtual agents can gain high user trust and acceptance.

To showcase the benefit of endowing behavior adaptation to the
agent, we choose the e-health application of Cognitive Behavioral
Therapy (CBT) as a proof-of-concept.

Cognitive Behavioral Therapy (CBT) [4] is a mental health treat-
ment that restructures automatic thoughts. The treatment helps
people to recognize and change their automatic thoughts into bal-
anced thoughts. Sometimes thoughts pop up suddenly and are
unconsciously triggered by a certain action or event. As they occur
unexpectedly, we are not aware of them. These thoughts that come
out of our conscious awareness, which are mostly illogical and
poisonous, are called automatic thoughts. They affect our mood by
evoking negative feelings or misleading positive feelings. The aim
of CBT is to restructure these thoughts, notably negative automatic
thoughts, to reduce the effects of negative thoughts and to brighten
people’s moods. This is done by identifying biased and mistakenly
perceived ideas and helping people to rectify their thoughts through
some fact-finding questions.

In this paper, we propose a novel architecture, Interactive and
Adaptive Virtual Agent (IAVA), that allows computing in real time
the behavior of an agent from the behavior of its human inter-
locutor to simulate the dynamic behavior adaptation between the
interlocutors. IAVA endows the agent with adaptation capability.
The agent adapts to the user via the display of interactive non-
verbal behaviors, which are generated via a deep learning model
(ASAP model [36]) throughout the whole interaction. For our IAVA
system, we focus on developing an interactive virtual agent that
is capable of generating real-time adaptive behaviors in response
to its human interlocutor. It ensures the two aspects: generating
real-time adaptive behavior and managing natural dialogue. The
agent adapts to its interlocutor linguistically (choosing its next
conversational move via the dialogue manager) and nonverbally
(displaying reciprocally adaptive facial gestures via a deep learning
model). In this study, as we choose CBT as our proof-of-concept,
the agent acts as a therapist helping human users to detect their
negative automatic thoughts.

Our system can be employed for any other applications con-
cerning human-agent interaction. The adaptation is essential for all
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types of interaction to improve the communication and engagement
of interlocutors. As such, our system can help in teaching/coaching
(serving as a tutor), assisting (taking the role of a companion or
guide), and providing medical care (delivering other types of clin-
ical treatment). The main contribution of our architecture is its
enablement of adaptive behavior for real-time interaction and its
possibility of usage in various applications.

The rest of the paper is organized as the following: Section 2
summarises the literature; Section 3 introduces the main system
functionalities; Section 4 describes the requirements of the pro-
posed IAVA system; Section 5 explains the details of the system
architecture; Section 6 presents the novelty brought by our system;
Section 7 discusses the future work; and Section 8 concludes the

paper.

2 RELATED WORK

Previous works have been done on developing embodied conversa-
tional agents (virtual agents and robots) that adapt their behaviors
according to those of their human users. The agents show adap-
tation at different levels (verbal, nonverbal, and/or conversational
strategy) and forms (such as backchannels or mimicry). They are
used for various applications: teaching/coaching, assisting, and
providing medical care.

Conversational agents have the common goal of improving com-
munication and the user’s experience (engagement, rapport, and
liking). Several works have focused on enhancing the interaction it-
self and the user experience. Huang et al. [20] created a virtual agent
that produces visual backchannels for the role of a listener learned
from conditional random fields (CRFs) through gaze, prosody, and
lexical features. They demonstrated that such an agent reinforces
the rapport that it builds with the human interlocutor and is per-
ceived as more natural. Bailenson and Yee [2] proposed a virtual
agent based on the mimicry present in human-agent interaction.
They rendered the agent’s mimicry behavior by imitating the user’s
head movements (delay of 4s). Their results show that a mimick-
ing agent is perceived as more positive and persuasive than that
without mimicry. Ritschel et al. [29] looked into the influence of
the robot’s personality through linguistic style. A reinforcement
learning model was used to model the robot’s personality which
adapts to the user’s engagement level (estimated from gaze and
posture). They demonstrated that a robot adapting its personality
can improve the user’s engagement. Weber et al. [35] investigated
the adaptation of the user’s sense of humor by proposing a joke-
making robot. The real-time adaptation was based on the user’s
smile and laughter using reinforcement learning without explicit
user feedback. They were able to significantly perform better in
terms of amusement level by making jokes adapted to the user’s
humor compared to those that were presented in a random fashion.

Agents have also shown their usefulness in teaching and coach-
ing. Anderson et al. [1] propose a virtual agent framework for social
coaching in job interviews that adapts to the user’s multimodal
signals (face and hand gestures). It generates the virtual recruiter’s
nonverbal behaviors with predefined animation commands. Their
system facilitates self-reflection and provides more flexible and
personalized coaching. Pereira Santos et al. [25] developed an em-
bodied agent for obstetric simulation training. The agent plays the
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role of a digital patient and its facial expressions are adapted in real
time. The agent behavior is commanded by the user via on-screen
controls at each frame.

The usage of agents can also be seen for assistance serving as
a guide or companion. Biancardi et al. [6] built a virtual agent
that is capable of adapting its behaviors when interacting with a
human interlocutor, serving as a virtual museum guide, with the
goal to optimize the user’s engagement. They observed that an
adaptive agent is more positively perceived than a non-adaptive
agent. Their system adapts at different levels of: behavioral and
conversational which display the agent behavior selected from a set
of possible pre-scripted ones, and signal levels displaying predicted
behaviors across a certain time window [13]. Sidner et al. [31]
developed a real-time architecture applicable to companion agents
(virtual agents and robots) for the elderly with the goal to provide
companionship and reduce isolation. The agent interacts with a
human user through dialog and adapts its gesture via face detection
and motion perception of the user’s behavior.

The employment of agents has also been seen for medical appli-
cations. Raffard et al. [27] looked into the effect of virtual agents
displaying mimicry (delay varying between 0.5s and 4s) with par-
ticipants with schizophrenia and healthy ones. They observed that
a mimicking agent improves the rapport and interaction synchrony
for both participant groups. They showed the meaningfulness of an
agent mimicking in real time in enhancing human-virtual agent in-
teraction which may lead to improvement of patients’ engagement
in medical treatment. Several conversational agents have also been
proposed for our chosen use case of CBT treatment. Ring et al. [28]
proposed an affectively-aware virtual therapist for depression coun-
seling which is based on theories of emotions in psychotherapy. The
CBT dialogue is managed with user speech input and speech-based
affect detection. They also display the agent’s nonverbal behavior
by generating it automatically using the Behavior Expression Ani-
mation Toolkit (BEAT) [11]. They demonstrate the potential efficacy
of affectively aware agents in guiding users through CBT sessions.
More recently, Shidara et al. [30] implemented a virtual agent that
helps users to identify and evaluate automatic thoughts. They look
at mood improvement and study its relation with the user’s facial
expressions. They remark that using fact-finding questions for the
CBT dialogue of the virtual agent (to evaluate automatic thoughts)
significantly ameliorated their users’ moods.

Our goal is to develop a virtual agent for real-time agent behavior
adaptation by automating the generation of adaptive behavior and
displaying it at the frame-level.

3 TJAVA FUCTIONALITIES

IAVA assures interactive communication with its two main func-
tionalities which are as follows.

3.1 Real-time adaptive behavior generation

Real-time adaptive behavior is generated with the aim to favor user
engagement in the interaction. IAVA produces agent’s behavior
that is adapted to that of the user. To render such adaptive agent be-
havior, we integrate the Augmented Self-Attention Pruning (ASAP)
model [36]. The model endows the agent with reciprocal adaptation
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capability and generates the next agent’s behavior using the previ-
ous visual and audio features of both the human user and the agent.
The agent’s behavior is predicted for every frame. The integration
of the ASAP model and the rendering of the agent’s behavior at
the frame-level is further detailed in Section 5.

3.2 Natural dialogue management

The management of natural dialogue ensures the fluid flow of the
interaction. For our proof-of-concept, the CBT scenario presented
in [30] is employed as the dialogue content. As in [30], the user’s
response is verified by an automatic thought classifier model to
check if it corresponds to an automatic thought. The next conversa-
tional move is selected depending on whether the user’s answer is
an automatic thought or not. The smooth turn-taking between the
user and the agent is also guaranteed. The agent is able to assure the
dialogue flow by managing the turn-taking. The technical details
are later elaborated in the upcoming Section 5.

In order to perform the aforementioned functionalities of real-
time adaptive behavior generation and natural dialogue manage-
ment, the system needs to do the following:

o detect the user’s head movements and facial expressions;

e capture the user’s speech to get the content of the user’s
utterance and the intonation;

e know when the user is speaking and when the agent can
respond back to the user (i.e. manage turn-taking).

4 REQUIREMENTS

The proposed IAVA system requires a virtual agent platform and
several toolkits. The required platform and toolkits are necessary
for each main component (virtual agent visualization, adaptive
agent behavior generation, and dialog/turn-taking management)
for our architecture. For each one of them, we use state-of-the-art
technologies that are adequate for our goal of making a real-time
virtual agent. The chosen requirements are as follows.

Greta platform. The Greta platform [23] is an open-source virtual
agent platform. It models a real-time autonomous three-dimensional
embodied conversational agent capable of communicating verbally
and nonverbally. It can simultaneously talk and display nonver-
bal behaviors such as facial expressions, gestures, gaze, and head
movements. It defines the agent’s communicative intentions and
behavior based on the architecture of the SAIBA framework [34].
For the animation, it follows the MPEG4 [24] animation standards.
IAVA is built upon the Greta platform to render concurrently verbal
and nonverbal behaviors.

OpenFace. OpenFace [3] is an open-source toolkit that extracts
facial features such as head movements, gaze, face Action Units
(AUs) [15], and facial landmarks.

openSMILE. openSMILE [16] is an open-source toolkit for audio
feature extraction. The prosodic features such as the fundamen-
tal frequency, loudness, voicing probability, and Mel-frequency
Cepstral Coefficient (MFCC) [21] can be obtained.

Automatic Speech Recognition. Automatic Speech Recognition
(ASR), also known as Speech-to-Text (STT), is the technology of
transcribing the audio of spoken words into written text. Full
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phrases are identified and converted into text as the user is speaking.
Its employment can be seen in conversational Al assistants such
as Google, Alexa, and Siri. The proposed system uses the Google
ASR .

Flipper2.0. Flipper2.0 (or Flipper) [33] is a dialogue engine that
enables flexible management of conversation dialogues. The CBT
dialogue is managed by Flipper to direct the conversational flow.

Ogre3D. Ogre3D ? is an open-source scene-oriented 3D render-
ing engine. It is integrated and used to visualize the final animation
of the virtual agent in the Greta platform.

1) Physical input devices

[ Camera ] [ Microphone J
et ¢ —
[ OpenFace ] [ openSMILE ] ASR ] 3) Dialogue !

Manager |

Frame-level | | !
Behavior H
Realizer b

Automatic
| Thought
i 2) Adaptive Classifier
i Behavior Realizer R Rt
Internal

5) Rendering !

Internal Internal

1 1 1

! 1 1 ]

IS = N )
S E—

‘[ Monitor ] [ Speaker ]:

‘ 6) Physical output devices

Figure 2: IAVA system consists of 6 parts: 1) physical input
devices; 2) Adaptive Behavior Realizer; 3) Dialogue Manager;
4) database; 5) rendering; and 6) physical output devices.

5 SYSTEM ARCHITECTURE

IAVA is composed of six parts, as illustrated in Figure 2, which are:
1) physical input devices; 2) Adaptive Behavior Realizer; 3) Dialogue
Manager; 4) database; 5) rendering; and 6) physical output devices.

5.1 System Inputs and Outputs

Our system makes use of various physical devices as input and
output, and communicates multiple signals via different communi-
cation protocols.

5.1.1 Physical devices. The system uses a 1080p RGB webcam to
capture the user’s face, a pin microphone to capture the user’s
speech, a speakerphone to render the agent’s speech utterance, and
a monitor to display the virtual agent (in a close-up of their face,
head, and shoulders) as shown in Figure 1.

5.1.2  Signals. The input and output signals communicated within

the system are as follows.

!https://cloud.google.com/speech-to-text
https://www.ogre3d.org/
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Visual features: The visual features of the user are extracted in
real time at 30fps by processing the webcam-rendered images of
the user using OpenFace. To be more specific, the visual features of
eye movements (around the x and y axes), head rotations (around
the x, y, and z axes), 6 upper face AUs (which are AUI, AU2, AU4,
AUS, AU6, and AU7) along with that of the smile (AU12) are passed
to the model to generate the agent behavior.

Audio features: The audio features of both human user and agent
are obtained separately in real time at 100 Hz from the user’s speech
captured by the microphone via openSMILE. To detail, the funda-
mental frequency, loudness, voicing probability, and 13 MFCCs are
fed to the model for the prediction.

Utterance text: The text of the user’s utterance is acquired by ASR
from the microphone captured user’s speech. The text utterance is
given as input to the Flipper engine to manage the dialogue.

Agent animation: The agent animation realized for each frame
is visualized with Ogre3D and displayed on the monitor.

Agent speech: The selected agent’s speech is generated via the
Greta platform’s Audio module, to transform the text selected by
the Dialogue Manager to audio, and the audio is rendered with the
speakerphone.

5.1.3 Communication protocols. The signals are passed between
different toolkits and modules via communication protocols which
are:

ZeroMQ:. ZeroMQ 3 [19] is an asynchronous network messaging
library that is used for distributed and concurrent systems. Mes-
sages such as binary data, serialized data, and simple strings can be
sent without a dedicated message broker. In our system, it is used
to transmit real-time OpenFace signals directly to the model.

ActiveMQ:. ActiveMQ * [32] is an open-source message broker
which can foster multi-client or multi-server communication. IAVA
employs ActiveMQ messages to send the user’s utterance recog-
nized by the ASR to Flipper.

0SC:. OSC (Open Sound Control) ® [37] is a lightweight and flex-
ible protocol for real-time message communication. The advantages
of OSC are its possibility to receive signals from other computers
and platforms, and its availability in multiple programming lan-
guages. Our system makes use of OSC to communicate between the
computational model externally running in Python and the Ogre3D
of the Greta platform operating in Java.

5.2 Adaptation Behavior Realizer

To generate real-time adaptive behavior, we implement the Adapta-
tion Behavior Realizer (ABR) module. The ABR module consists of
two main components which are the Behavior Generator module
and the Frame-level Behavior Realizer module as seen in Figure 3.

5.2.1 Behavior Generator module. The Behavior Generator module
integrates a pre-trained computational model, ASAP model [36],
which generates the agent behavior that is reciprocally adaptative.

Shttps://zeromq.org
“https://activemq.apache.org
Shttps://opensoundcontrol.org



IAVA: Interactive and Adaptive Virtual Agent

17
[ OpenFace ] [ openSMILE ]
[zeroma [ Internal Internal osc

Frame-level
Adaptive Behavior Realizer
Behavior Realizer

i Agent !
i Facial Gestures

Figure 3: The Adaptation Behavior Realizer generates the
agent’s adaptive behavior and visualizes it at the frame-level.
The agent’s behavior is predicted with the Behavior Gener-
ator module via the ASAP model [36] which considers the
face and speech signals from both human user and agent
of the past time-steps. The generation is then rendered for
each frame at 25fps via the Frame-level Behavior Realizer
module.

The model takes the past 100 time-steps of both the human user’s
and the agent’s behavior (visual and audio features) to predict the
agent’s visual behavior at the next time-step. The ASAP model
learns interpersonal relationship from real human-human interac-
tions [9]. It models the reciprocal adaptation capability and endows
it to the agent from multimodal signals exchanged within a dyadic
interaction with its data augmentation and self-attention pruning
techniques. It generates the agent’s adaptive behavior (outputting
facial AUs and head/gaze movements) while assuring movement
continuity via autoregressive adaptive online prediction for every
frame (at each time-step) at 25fps.

To obtain the agent’s behavior at 25Hz, the Behavior Genera-
tor module first extracts the features individually with different
sampling rates as the following:

e User’s audio features via openSMILE at 100Hz and commu-
nicated internally;

e User’s visual features via OpenFace at 30Hz and communi-
cated with ZeroMQ;

e Agent’s audio features via openSMILE at 100Hz and commu-
nicated with OSC;

o Agent’s visual features via the computational model at 25Hz
and communicated internally.

We sync the different sampling rates to 25Hz (i.e. 25fps) which
is the computational model’s sampling rate. The last 100 time-steps’
signals are stocked and updated of all four feature categories with
internal objects for the agent’s behavior prediction of the next time-
step. Each prediction, composed of the agent’s facial expression
(AU1, AU2, AU4, AU5, AU6, AU7, and AU12), head rotations, and
gaze, is sent via OSC to the Frame-level Behavior Realizer module
to display the agent’s behavior at the frame-level. After each pre-
diction, the four feature categories of user and agent are saved into
the database in a CSV format at the sampling rate of 25Hz.

IVA °23, September 19-22, 2023, Wiirzburg, Germany

5.2.2  Frame-level Behavior Realizer. The Frame-level Behavior Re-
alizer module receives the agent’s behavior generated by the Be-
havior Generator module via OSC. The Greta platform’s original
Behavior Realizer module [23] generates the agent’s behavior by
passing the user’s raw input data through the Intent Planner mod-
ule and the Behavior Planner module. It realizes the behavior in
sequences that corresponds to the command sent by the Intent
Planner. Our Frame-level Behavior Realizer module, which can be
seen in Figure 3, differs from the original Behavior Realizer in the
sense that it enables the generation of behaviors at the frame-level
(at each time-step) which allows the virtual agent to continuously
show smooth behavior throughout the whole interaction. Moreover,
it produces the agent’s behavior directly from the raw user input
data. It is also possible to select the types of agent behavior that
will be displayed via an interactive window. The types of agent
behavior that can be activated are the following:

o Each upper face Action Unit (AU1, AU2, AU4, AU5, AU6, and
AU7);

Smile (AU12);

Blink (AU45) which is automatically generated internally;
Gaze (around the x and y axes);

Head movement along each axis (x, y, and z);

e Mouth movement.

The TAVA system checks which agent behavior types are acti-
vated, at the beginning of the interaction, and displays them. For the
ones that are deactivated, the agent will show the default behavior
(value of 0 for the intensity of the AUs and 0 degree for the head
rotations and gaze angles). The selected combination of the agent’s
behavior is passed directly to the Ogre3D for rendering.

5.3 Dialogue Manager

Automatic
Thought
Classifier

Dialogue
Manager

Figure 4: The Dialogue Manager manages the conversation di-
alogue. It selects the next conversational move while assuring
the natural flow of the interaction by constantly communi-
cating with the Turn-taking Management module. For the
CBT application, the Automatic Thought Classifier module
was integrated into the Dialogue Manager
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The natural flow of the dialogue is managed by the Dialogue
Manager. The dialogue is controlled by the Flipper engine which
continuously communicates with the Turn-taking Management
module, as illustrated in Figure 4, to choose the next conversational
move. For the application of CBT, the Automatic Thought Classifier
module is integrated into the Dialogue Manager. The process is as
follows. Flipper first receives via ActiveMQ the utterance text of
the user’s response from the ASR. For each new utterance, it checks
whether the utterance corresponds to an automatic thought via the
Automatic Thought Classifier module and directs the conversational
flow with the Turn-taking Management module. The modules are
further explained below. The communicative intentions selected
by Flipper are then instantiated into mouth movements which are
combined and synchronized with the agent’s speech via the Greta
platform’s standard treatment of passing by the Greta platform’s
original modules of Behavior Planner, Behavior Realizer, and Speech
Synthesizer. The produced agent’s mouth movements and speech
are each sent to the Orgre3D and Audio module for rendering, as
shown in Figure 2. This process is repeated for each user’s utterance
throughout the interaction.

5.3.1 Turn-taking Management module. Turn-taking is managed
with the Turn-taking Management module to assure a smooth and
natural flow of the conversation. The module keeps track of the
speaking state of the agent and that of the human user. It handles
conversational turn-taking by looking at both speaking states. By
observing these two states, the agent interprets whether the user
has finished answering and is giving their speaking turn (to address
single responses made up of several utterances linked with pauses)
and whether the user is reacting with backchannels (i.e. not aiming
at taking the speaking turn), and thus decide when to take the
speaking turn. After the agent decides to take the turn, it proceeds
with its next conversational move.

5.3.2  Automatic Thought Classifier module. For CBT interaction,
to proceed with the CBT scenario proposed in [30], a semantic anal-
ysis of the user’s utterance needs to be done to identify whether the
user has answered with an automatic thought or not. The structural
content of the dialogue is processed by the Automatic Thought Clas-
sifier module. The module integrates the classifier model presented
in [30] using the classifier algorithm of Support Vector Machine
(SVM; linear kernel) with the French word embeddings from Bidi-
rectional Encoder Representations from Transformers (BERT) [14],
which is a pre-trained language model for word representations.
As in [30], the raw text is tokenized and a part-of-speech tag is
associated with each token. All input sentences are covered with
[CLS] and [SEP] tokens, which are placed at the beginning and the
ending respectively, and are fed to BERT with a hidden vector of
768 dimensions. These tags are used as the inputs of the classifier
model. The model identifies automatic thoughts by performing bi-
nary classification on the user’s utterance. Depending on whether
the user’s response is an automatic thought or not, the next agent’s
utterance is decided.

5.4 Animation Rendering

The final animation of the generated agent’s behavior, which con-
sists of the agent’s facial gestures obtained at the frame-level by
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Figure 5: The Animation Rendering module displays the gen-
erated agent’s behaviors, which are the agent’s facial gestures
obtained by the Adaptation Behavior Realizer and the agent’s
mouth movements sent by the Dialogue Manager, and ren-
ders the agent’s speech produced by the Dialogue Manager.

the Adaptation Behavior Realizer and the agent’s mouth move-
ments and speech produced by the Dialogue Manager is rendered
by the Animation Rendering module. The agent’s facial gestures
and mouth movements, visualized together via Ogre3D, and the
agent’s utterance, produced by Greta platform’s Audio module,
are each passed to their corresponding physical output devices
(monitor and speaker respectively).

5.5 System Performance and Specifications

The IAVA system works in real time, executing a single system loop
every 0.04s. The single system loop consists of:

e perception of 0.03s with OpenFace at 30 f ps and openSMILE
at 100Hz;

o adaptive behavior generation of < 0.01s via the ASAP model;

e communication and visualization of < 0.01s.

All signals within the system are synced without any delay for
it to function in 25Hz, and thus generate and display the agent’s
behavior every 0.04s.

For the functioning of the system, a space requirement of ap-
proximately 7GB is needed which consists of: 2GB for platform
visualization, 2GB for OpenFace and openSMILE, and 3GB for exe-
cution and data saving.

In addition to the memory space requirement, hardware specifi-
cations must be met which are two computers with 2.4GHz Intel
Core 19 mounted with NVIDIA Quadro RTX 4000 and 64GB RAM.

6 NOVELTY

The IAVA is designed with the previously discussed components.
In the following, we highlight some applications that may result
from the newly implemented modules.

6.1 Real-time Frame-level Realization

The Adaptive Behavior Realizer module allows the realization of
the agent’s behavior at the frame-level. The module allows the
generation of the agent’s behavior at each time-step (i.e. each frame).
It can be easily employed by other computational models for real-
time interaction. To plug in another model, a simple replacement
of the pre-trained model, replacing the computational model with
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another one, is sufficient. This allows different systems to also
render the agent’s behavior at the frame-level.

6.2 Dialogue Flow Management

The management of the dialogue flow assures smooth turn-taking
between the virtual agent and the human user. This can be used for
any other interaction with another scenario using the module of
Turn-taking Management. If the new scenario depends on the deci-
sion of an external computational model, the module of Automatic
Thought Classifier can be transformed into the new application.
Thus, the dialogue flow can be managed for various applications
with different dialogue scenarios and different conversational deci-
sion models.

6.3 Integration of openSMILE to Greta platform

Since the openSMILE toolkit has been integrated into the Greta
platform, the prosodic features are now available within the plat-
form itself without needing external software. The audio features
of both user and agent can be extracted separately via openSMILE.
For other systems that require prosodic features, the integrated
openSMILE can be used to extract and make use of such features
in real time.

6.4 Integration of OSC protocol to the Greta
platform

With the integration of OSC protocol, the Greta platform can com-
municate messages in real time in a lightweight and flexible way
with high accuracy. OSC can be used for communication between
multiple modules for various applications.

7 FUTURE WORK

With the implementation of the IAVA system, there are a few direc-
tions for future work.

A first direction is to verify the effectiveness of providing adap-
tive agent behavior in real time through a user study. Ongoing work
is being done for the same proof-of-concept of CBT by conducting a
user study, where the user interacts in real time with the agent with
adaptive behavior generated by the ASAP model [36]. The effect
of displaying adaptive behavior will be assessed by comparing the
display of three different experimental conditions of: reciprocally
adaptive behavior, mismatched (nonadaptive) behavior, or still posi-
tion. We will evaluate how showing agent adaptive behavior plays
on the user’s perception of the agent (agent’s behavior naturalness
and human-likeliness, synchrony, engagement, and rapport) and
the efficacy of the CBT (improvement in the user’s mood, anxi-
ety, psychological distress, and cognitive change). We also plan to
demonstrate the usefulness of our IAVA system by applying it to
another application which is the Social Skills Training (SST) [5].
SST is a behavioral therapy for improving social skills in people.
We envision seeing a positive effect on SST by presenting adaptive
agent behavior during the training. We plan to evaluate SST per-
formance and check whether showing such behaviors can indeed
improve people’s social skills.

Another direction is to perform a cultural comparison of the
impact of adaptive virtual agents. Different cultures have different
behavior styles. In this sense, the adapting behavior may differ
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across cultures and thus may have a different impact. We intend
to study if the adaptive virtual agent presents such differences de-
pending on the culture. We will check if the adaptation mechanisms
can be generalized across different cultures by evaluating if our
system based on a specific culture can be applied to another culture.
Also, we will see if the system tuned for the comparing culture
demonstrates the same adaptation mechanisms.

As a third direction for future development, we will further de-
velop the generation of the agent’s adaptive behavior. The current
behavior generation method via the ASAP model [36] produces
agent behavior that adapts to that of the human user. For instance,
when the user is engaged in the interaction the agent will display
behaviors to show its engagement by providing expressive facial
expressions and head movements, which are generated by the com-
putational model. However, this may be a limitation of our system.
If the human user is inexpressive, the agent adapts to it and will tend
to show expressionless behavior. Thus, the virtual agent should
keep on maintaining, eliciting, and/or regaining the engagement
of its users using different behaviors. We intend to assure the con-
tinuity of engagement by adding a conversation strategy to the
agent to detect the occurrence of such a situation and by casting
the intention on the agent’s behavior during its generation.

8 CONCLUSION

In this paper, we propose a novel system of an Interactive and
Adaptive Virtual Agent (IAVA) which captures the user’s facial
expressions and spoken utterances to show adaptive agent behavior
and naturally manage the dialogue. The real-time realization at the
frame rate of 25fps is secured for the display of the agent’s facial
gestures. Furthermore, the smooth flow of the interaction is ensured
via the management of turn-taking. The implementation of IAVA
system has added several new modules to the Greta platform which
offers novel usage of the platform for various applications.
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