
HAL Id: hal-04293335
https://hal.science/hal-04293335

Submitted on 18 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fourier Transform of the Lippmann-Schwinger Equation:
Solving Vectorial Electromagnetic Scattering by

Arbitrary Shapes
Frederic Gruy, Victor Rabiet, Mathias Perrin

To cite this version:
Frederic Gruy, Victor Rabiet, Mathias Perrin. Fourier Transform of the Lippmann-Schwinger
Equation: Solving Vectorial Electromagnetic Scattering by Arbitrary Shapes. Mathematics,
2023, Analytical Methods in Wave Scattering and Diffraction, 2nd Edition, 11 (22), pp.4691.
�10.3390/math11224691�. �hal-04293335�

https://hal.science/hal-04293335
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Gruy, F.; Rabiet, V.; Perrin,

M. Fourier Transform of the

Lippmann-Schwinger Equation:

Solving Vectorial Electromagnetic

Scattering by Arbitrary Shapes.

Mathematics 2023, 11, 4691. https://

doi.org/10.3390/math11224691

Academic Editor: Nikolaos L. Tsitsas

Received: 28 September 2023

Revised: 13 November 2023

Accepted: 14 November 2023

Published: 18 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Fourier Transform of the Lippmann-Schwinger Equation:
Solving Vectorial Electromagnetic Scattering by
Arbitrary Shapes
Frederic Gruy 1, Victor Rabiet 1,2 and Mathias Perrin 2,*

1 Ecole Nationale Supérieure des Mines de St. Etienne, Centre SPIN, F-42100 Saint-Etienne, France
2 Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
* Correspondence: mathias.perrin@u-bordeaux.fr

Abstract: In Electromagnetics, the field scattered by an ensemble of particles—of arbitrary size, shape,
and material—can be obtained by solving the Lippmann–Schwinger equation. This singular vectorial
integral equation is generally formulated in the direct space Rn (typically n = 2 or n = 3). In the
article, we rigorously computed the Fourier transform of the vectorial Lippmann–Schwinger equation
in the space of tempered distributions, S ′(R3), splitting it in a singular and a regular contribution.
One eventually obtains a simple equation for the scattered field in the Fourier space. This permits to
draw an explicit link between the shape of the scatterer and the field through the Fourier Transform of
the body indicator function. We compare our results with accurate calculations based on the T-matrix
method and find a good agreement.

Keywords: electromagnetic scattering; integral equation; singular integral; Fourier Transform

MSC: 46F12; 42A38; 31B20; 65R20

1. Introduction

The first use of Fourier transform (FT) to describe light scattering might be traced
back to the early theories of Kirchhoff or Rayleigh and Sommerfeld [1]. The solution
of Helmholtz equation that describes the field diffracted by an aperture in a screen was
indeed related to the FT of its shape. Nowadays, solvers based on the Fourier expansion of
electromagnetic fields are very efficient to model 1D or 2D periodic gratings [2,3], using
the RCWA method [4,5], in close connection with experiments [6–8]. For 3D problems,
a few results based on the FT of Maxwell equations are available. The calculation of the
free space Green tensor [9–12], or a far-field description of the scattered field for a smooth
particle [13], are presented. Using FT, a link between the far field scattered intensity and
some geometrical properties of the scatterer (its Gaussian curvature) has been established,
e.g., for the Porod’s law [14,15]. In other works, the polarization of electromagnetic waves
in complex systems with scatterers was taken into account for an ensemble of point dipoles,
e.g., solving the Bethe–Salpeter Equation in Fourier space [16]. However, to compute
the vectorial scattered fields in arbitrary 3D geometries, the most popular methods [17],
such as finite elements method (FEM) [18] or T-matrix computation [19], e.g., based on
an expansion on vectorial spherical harmonics (VSH) [20–22], have been developed in
real space.

These real space methods are, nevertheless, limited. For example, the memory requirement
for FEM is huge when large spatial domains are to be modeled. The convergence of the T-matrix
method, computed using the VSH ([17] see 3.1), is still debated [23] when close non-spherical
scatterers—whose circumbscribing spheres intersect—are studied. It is therefore still interesting
to propose new analytical methods, which is what we shall do in this article.
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Budko and co-authors [24,25] made the first move towards a Fourier Transform of the
Lippman Schwinger Equation (LSE) for 3D geometries. This work was limited, however,
to a scatterer described by Hölder continuous functions, and dealt with the singular part
of the LSE only. It shall be interesting to go further and make the FT of the whole LSE.
This would permit to (i) relate the field scattered by objects to the Fourier transform of
the indicator function (The indicator function—whose value is 1 inside the scatterer(s),
0 outside—is known to be a convenient descriptor of the geometrical properties of the
scatterer [14]); to factorize the equation in the Fourier space, instead of dealing with a
convolution in real space, and (ii) to solve for the scattered field in fast and convenient way,
using tridimensional Fourier transforms [26].

In Section 2, we conduct a rapid review of the regularization procedure that permits
us to unambiguously define the Integral equation, see [27,28], and split the kernel in a
regular and a singular contribution. Following that, we will detail the calculation of the
FT of each part of the equation, see Sections 3 and 4, in the general case—as long as the
scatterer is non-magnetic. For the singular part, see Section 3, we rely on [29] to explicitly
express the FT. For the regular part, see Section 4, our approach is based on the work by
Grafakos and Teschl [30] regarding the FT of radial (generalized) functions.

We shall gather the results in Section 5 to give the Fourier transform of electromagnetic
LSE in R3. Eventually, we give a numerical example, solving the general equation in a few
typical cases.

Note that the lengthy proofs and lemma have been gathered in [31].

2. Backgrounds and Purpose
The LS Equation for Electromagnetic Scattering

Stemming directly from the Maxwell equations, the LS equation that describes the
field scattered by an arbitrary object in a uniform background is [24,28], in R3,

E(x, ω) = Einc(x, ω) +
[
kb

2 + grad div
] ∫

R3
G
(
‖x− x′‖

)
χ
(
x′, ω)E(x′, ω)dx′, (1)

where

• E and Einc are the total and incident electric field;
• kb is the wavenumber in the background medium, assumed to be real;
• χ is the relative difference between scatterer and background complex permittivity:

χ(x) := [ε(x)− εb]/εb. The scatterer medium is possibly dispersive—χ depends on
ω—, dissipative —χ is complex—, and anisotropic—χ is a 3× 3 tensor. In the case of
an isotropic medium, χ boils down to a scalar. If ε(x) is constant inside the scatterer, χ
is proportional to the indicator function, and will be denoted like this in the following.

• G is the Green function of Helmholtz equation in vacuum (with l := x − x′ and
l := ||l||).
Note that if one chooses the exp(−iωt) convention for harmonic time evolution (as
we do), the outgoing Sommerfeld condition [32] imposes:

G
(
l
)

:=
e+ikb l

4πl
, (2)

so that far enough from the scatterer, the wave behaves as an outgoing spherical wave
that carries energy outwards.
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As shown in textbooks ([28], p. 36), ([33], chap. 15), the grad div operator in Equation (1)
cannot be put straightforwardly under the integral sign. However, upon a careful procedure,
Equation (1) can be recasted as the singular integral equation

Einc(x, ω) =

[
I+ χ

3

]
E(x, ω)− lim

ε→0

∫
x′∈R3\B(x,ε)

G0
(
x− x′

)
χ
(
x′, ω)E(x′, ω)dx′

−
∫

x′∈R3
G1
(
x− x′

)
χ
(
x′, ω)E(x′, ω)dx′, (3)

where I is the unit tensor, G0 and G1 are, respectively, the “singular” part and the “regular”
part of the Green tensors (with l := x− x′ and l := ||l||) :

G0
(
l
)

:= 1
4πl3

(
3Q− I

)
, (4)

G1
(
l
)

:= G1I(l)I+ G1Q(l)Q,

where

Q :=
l (tl)

l2 =
1
l2

lxlx lxly lxlz
lylx lyly lylz
lzlx lzly lzlz

, (5)

and

G1I(l) :=
eikb l

4πl3

(
− 1 + ikbl − (ikbl)2)+ 1

4πl3 , (6)

G1Q(l) :=
eikb l

4πl3

(
3− 3ikbl + (ikbl)2)− 3

4πl3 . (7)

Note that in the quasistatic limit, i.e., when 1/kb is much larger than the size of the scatterer,
the term with G1 cancels this out and only the principal value that contains G0 contributes.

Equation (3) defines a linear operator whose properties have been studied both in
2D [25] and 3D [24].

Our purpose is to give an explicit formula for the Fourier transform of Equation (3),
with the key point being the computation of the Fourier transform of Green tensors G0 and
G1. We will proceed in two steps. G0 will be Fourier transformed in a more general way
than what has previously been carried out [24], and G1 will be handled using generalized
functions theory.

3. Fourier Transform of the Singular Part

The definitions and properties of the Fourier Transform are given in Appendix A.
There, we introduce a general notation for the FT, that depends on two parameters a and b,
see Equation (A1). In the article, all the calculations are carried using (a, b) = (1,−1). The
results in the general case are then given without demonstration so that they can be easily
adapted to any definition of the FT.

3.1. General Expression as a Convolution

Let f be an integrable function on the sphere Sn−1 with mean 0. Following that, the
FT can be defined, possibly as a generalized function.

We define accordingly

〈W f , ϕ〉 := lim
ε→0

∫
Rn\B(0,ε)

f (x/|x|)
|x|n ϕ(x)dx, (8)

for ϕ ∈ S(Rd). It has been shown that W f is a tempered distribution (see e.g., [34],
p. 334),provided that the hypothesis “ f has a zero mean over the sphere S” is true (see
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also [24]). Eventually, the Fourier transform can be found (cf. [34], p. 336). It is the function
(i.e., finite) given by:

Ŵ f (ξ) =
∫
Sn−1

f (θ)
(

log
1
|ξ · θ| −

iπ
2

sgn(ξ · θ)
)

dθ, (9)

where Sn−1 is the unit sphere on Rn, and θ ∈ Sn−1 is the direction of the vector x/|x| for
x ∈ Rn.

To carry on with the Fourier transform of the singular part, we defined the continuous
operator H f by

H f (u) := W f ,1 ? u + W f ,2 ? u, (10)

where ? represents the convolution, with u ∈ L2, and

〈W f ,1, u〉 := lim
ε→0

∫
B(0,1)\B(0,ε)

f (x/|x|)
|x|n u(x)dx and W f ,2 := 1B(0,1)c

f (x/|x|)
|x|n ,

where B(0, 1)c is the complementary of the ball of radius 1 in Rn.

Besides, we will assume the following hypothesis:

Hypothesis 1. Ŵ f is bounded.

Remark 1. As we will see, that will be always the case in our framework.

Theorem 1. H f is a continuous operator over the Hilbert space L2(Rn) with a Fourier transform
verifying:

Ĥ f (u) = Ŵ f û ∈ L2. (11)

Proof. The operator H f is well-defined since, on one hand, W f ,1 is a distribution with
compact support, u can be assimilated to a tempered distribution (L2 ⊂ S ′) and, on the
other hand W f ,2 and u are in L2.

Additionally, the Fourier transform of H f is well-defined and

Ĥ f (u) = Ŵ f ,1û + Ŵ f ,2û

= Ŵ f û ∈ L2,

since Ŵ f is supposed to be bounded. Then F (Ĥ f ) ∈ L2, where F denotes the inverse
Fourier Transform.

The linear behaviour of H f is clear and, for the continuity, we have

‖H f (u)‖2 = ‖Ĥ f (u)‖2 = ‖Ŵ f û‖2 ≤ C‖û‖2 = C‖u‖2.

This theorem shows that one can factorize the singular part of the LS equation
Equation (3), in the Fourier Domain. Such a factorization was obtained by Budko [24]
in the case of a Hölder continuous indicator function. Theorem 1 permits to generalize it
to step index profiles (with, e.g., an indicator that is a Heaviside function), for which the
function x′ 7→ χ(x′, ω).E(x′, ω) is L2 but not Hölder.

We now have to compute Ŵ f .

3.2. Explicit Calculation

In agreement with the definition of G0, let us write each component of f as an homo-
geneous polynom P(θ) = c ∏n

k=1 θ
αk
k , where αk are, respectively, even or odd numbers.
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First, we can simply say that the part with the log function, in Equation (9), is null if f
is an odd function, and the part with the sgn function is null if f is an even function.

P(θ) can be seen as a component of the polyadic tensor of order s = ∑n
k=1 αk, whose

FT can be deduced from [29].
The obtained results for low order tensors (up to 2) are gathered in the following

tables, where Ψ denotes the digamma function. Detail on the calculation of the integrals is
provided in Appendix B.2, whereas the general demonstration can be found in [29].

In passing, we note that for polyadic tensors W f , whose components are given in
Table 1, the Fourier Transformed tensor, Ŵ f are bounded operators, as seen from their
components (see Tables 1 and 2). This corresponds to our working hypothesis.

Table 1. Singular integrals Equation (9) for even and odd tensors.

Tensor Components Components of W f (ξ)

1 E
′
0

θl Ol = O
′
1ξl

θlθm Elm = E
′
11ξlξm + E

′
22
(
− ξlξm + δl,m

)
Table 2. Coefficients for the singular integrals of the even and odd tensors.

Tensor Order Definition of Coefficients Value

0 E
′
0 ≡ −

∫
∂B(0,1) log

(
|θ ′1|
)

dθ
′

πn/2 Ψ(n/2)−Ψ(1/2)
Γ(n/2)

1 O
′
1 ≡ −iπ/

∫
θ
′
1>0 θ

′
1 dθ

′ −(iπ/2)π
n−1

2 2
Γ((n+1)/2)

2 E
′
11 ≡ −

∫
∂B(0,1) log

(
|θ ′1|
)
θ
′
1θ
′
1 dθ

′
πn/2 1

2
Ψ((n+2)/2)−Ψ(3/2)

Γ((n+2)/2)

E
′
22 ≡ −

∫
∂B(0,1) log

(
|θ ′1|
)
θ
′
2θ
′
2 dθ

′
πn/2 1

2
Ψ((n+2)/2)−Ψ(1/2)

Γ((n+2)/2)

3.2.1. The Tridimentional Case, n = 3

The case of R3 is of particular interest. Let us give some details, using the results:∫
S2

log |θ1|dθ = −4π,
∫
S2

log |θ1|θ2
1 dθ = −4

9
π,

∫
S2

log |θ1|θ2
2 dθ = −16

9
π.

From Equation (9), one obtains that, if f = η is a polynomial of degree 0,

Ŵη(ξ) = 4π η. (12)

Now, if f ((x1, x2, x3)) = η xixj,

Ŵ f (ξ) = −
4π

3
f (ξ) +

16π

9
η δi,j. (13)

So, if f (l) = 1
4π (3Q− 1),

Ŵ f (ξ) = F(Θ̃) =
1
3
I− Q̂, (14)

where Θ̃ := ξ
||ξ|| , and Q̂ := ξ (tξ)

||ξ||2 . The notation F(Θ̃) is introduced in agreement with [24],

to emphasize that, as f is of zero mean on Sn−1, the Fourier transform of the singular part
only depends on ξ

||ξ|| .
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3.2.2. General Notation

Note that we can easily express the result in the general notation, as

Ŵ f (ξ) = F(Θ̃) = c3
a,b

(1
3
I− Q̂

)
, (15)

where c3
a,b is defined as

c3
a,b =

(
|b|

(2π)1−a

) 3
2
. (16)

4. Fourier Transform of the Regular Part
4.1. Radial Distributions and Grafakos Theorem

As we will see below, in order to compute the FT of the regular part of Equation (3), we
shall compute FT of radial distributions, and use specific results on this topic, demonstrated
in [30]. Let us first recall some general definitions and properties. Following that, we will
limit ourselves to a space dimension n = 3.

4.1.1. Radial Distributions

While S(Rn) stands for the space of Schwartz functions on Rn, we set:

Srad(Rn) = {ϕ ∈ S(Rn) : ϕ = ϕ ◦ A, ∀A ∈ O(n)} (17)

Srad(R) = Seven(R) = {ϕ ∈ S(R) : ϕ(x) = ϕ(−x)} (18)

where O(n) is the set of the orthogonal transformations of Rn.
We define then the following functions:

S(Rn) → Srad(R)

ϕ 7→
(

r 7→ ϕo(r) := 1
ωn−1

∫
Sn−1 ϕ(rθ)dθ

)
(19)

{
Srad(R) → Srad(Rn)

ϕ 7→
(

x 7→ ϕO(x) := ϕ(|x|)
) (20)

(where Sn−1 is the unit sphere on Rn and ωn−1 its surface area; with the convention ω0 = 2
and ϕo(x) = 1

2 (ϕ(x) + ϕ(−x), for ϕ ∈ S(R)).

Definition 1. A distribution u ∈ S ′(Rn) (with S ′(Rn) the space of tempered distributions on
Rn) is called radial if for all A ∈ O(n),

u = u ◦ A,

that is,
〈u, ϕ〉 = 〈u, ϕ ◦ A〉,

for all ϕ ∈ S(Rn). The set of all radial tempered distributions is denoted by S ′rad(R
n).

Proposition 1. For u ∈ S ′rad(R
n) and ϕ ∈ S(Rn),

〈u, ϕ〉 = 〈u, ϕrad〉, (21)

where ϕrad := (ϕo)O (i.e., ϕrad(x) = ϕo(|x|)).

Given a function ϕ : Rn → R and a fixed x ∈ Rn, ϕo(|x|) is then the mean over the
sphere of radius |x| of the function ϕ (so, if ϕ is already radial, ϕ will be of the form f (|x|)
with f : R→ R, and we will have directly ϕo = f ).
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Let us define the space

Rn := rn−1Srad(R) =
{(

r 7→ ψ(r)rn−1), ψ ∈ Srad(R)
}

. (22)

Remark 2. Rn is a subspaceS(R) on which we can use the same topology ; we denote its dual (set
of the linear continuous functions defined overRn) byR′n.

We switched fromR′n to radials distributions of S ′(Rn) as follows:

• if u is radial distribution, we define u� ∈ R′n by

〈u�, ψ(r)rn−1〉 :=
2

ωn−1
〈u, ψO〉, ψ ∈ Srad(R) (23)

• if u� ∈ R′n, we define a radial distribution u by

〈u, ϕ〉 :=
ωn−1

2
〈u�, ϕo(r)rn−1〉, ϕ ∈ S(Rn) (24)

4.1.2. Grafakos–Teschl Theorem

Theorem 2 ([30]). Given v1 in S ′(R), we define a radial distribution vk on Rk (k ∈ N∗) by

〈vk, ϕ〉 :=
ωk−1

2
〈v1, ϕo(r)rk−1〉, ϕ ∈ Srad(Rk) (25)

(if ϕ ∈ Srad(Rn), then ϕ(x) = ϕo(|x|)).
Let uk = F a,b

k (vk). We have then

− (2π)a

|b|r
d

dr
un
� = un+2

� . (26)

In the following, we will limit ourselves to n = 3.
Besides, instead of using directly the Grafakos–Teschl theorem, we will use the follow-

ing corollary:

Corollary 1. Given v1 in S ′(R), we define the radial distribution v3 on R3 by

〈v3, ϕ〉 :=
ω2

2
〈v1, ϕo(r)r2〉, ϕ ∈ Srad(R3) (27)

(if ϕ ∈ Srad(Rn), then ϕ(x) = ϕo(|x|)). We have then, for all ϕ ∈ Srad(R3)

〈F a,b
3 (v3), ϕ〉 = − (2π)a+1

|b|

〈
r

d
dr

(F a,b
1 (v1)), ϕo(r)

〉
. (28)

Proof. With u3 := F a,b
3 (v3) and u1 := F a,b

1 (v3) we have

〈u3, ϕ〉 = ω2

2
〈u3
�, ϕo(r)r2〉 cf.(24)

=
ω2

2

〈
− (2π)a

|b|r
d

dr
u1, ϕo(r)r2

〉
cf.(26)

= − (2π)a+1

|b|

〈
r

d
dr

(u1), ϕo(r)
〉

,

since ω2 = 4π.
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4.2. Fourier Transform of the Regular Part of G1I(l)I
Procedure for Computing the FT in R3

We aim at computing the FT of a radial distribution, say v3. We will proceed using
Corollary (1), in the following way:

1. We need to find a one-dimensional distribution, v1, which verifies

〈v3, ϕ〉 = ω2

2
〈v1, ϕo(r)r2〉. (29)

(ω2 = 4π being the 1-sphere surface). Note that finding v1 may be, generally speaking,
a difficult task.

2. One computes the one-dimensional Fourier Transform u1 := v̂1.
3. The FT we seek, u3 := v̂3, is then defined by

〈u3, ϕ〉 = −
(

ω2

2

)2

〈r du1
dr , ϕo(r)〉. (30)

4. Note that if du1
dr = f (r) is not a distribution, but a regular function, one directly writes

u3 = −π
f (‖l‖)
‖l‖ . (31)

In practice, we want to compute the 3D Fourier transform of

l 7→ a0
(eikbl − 1)

4πl3 +
eikbl

4πl3 (a1 l + a2 l2). (32)

And we will later impose, to correspond to the Maxwell equation, that

a0 = −1

a1 = ikb

a2 = k2
b

The idea is thus to reduce the problem to a one dimensional Fourier transform com-
putation. To proceed, we will use Theorem 2. However, this is not sufficient. Indeed,
in this theorem, a one-dimensional distribution (denoted by v1) is given and is used to
compute the associated (Equation (27)) multidimensional distribution v3. In our work, on
the contrary, we start from a multidimensional distribution v3, and v1 is not known a priori.
To overcome this problem, we will first define (in an heuristic way) a one-dimensional
distribution and use Theorem 2 to obtain an associated multidimensional distribution T
(using Equation (27)) whose Fourier Transform is established by this very theorem. Finally,
to conclude, it remains necessary to prove that the Fourier transform of T is the same
as the Fourier transform of v3. The proof relies on a recent result [35]), and we will not
elaborate here.

Rewriting Equation (32), in the sense of generalized functions of S ′(R), we define v1 as:

v1(r) = a0

[
(cos(kbr)− 1)T 1

|r|3
+ i sin(kbr)T 1

r3

]
+ a1

[
cos(kbr)T 1

r2
+ i sin(kbr)Tsgn(r)

r2

]
+ a2

[
cos(kbr)T 1

|r|
+ i sin(kbr)T1

r

]
. (33)

where T 1
rn

, Tsgn(r)
r2

, and T 1
|r|n

, are the distributions associated to r 7→ 1
rn , r 7→ sgn(r)

r2 and

r 7→ 1
|r|n , respectively.
We start by computing the one-dimensional Fourier transform of v1.
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Using the previous results on the Fourier Transform of distributions ([31], see Sec. I of
Supplementary Information), ref. [36] we found, without difficulty:

v̂1 = ∑
s∈{−1,0,1}

[
γ + ln |k− skb|+ i

sπ

2
sgn(k− skb)

]
×

[
A2(k− skb)

2 + A1(k− skb) + A0

]
, (34)

with

A0 = −a2s2,

A1 = ia1s, (35)

A2 = a0(3s2 − 2)/2 .

Note that the detailed and rigorous computation is given in an external document for
the specific and most important case of n = 3, and Maxwell equations. See, in particular,
Ref. [31] (Sec. (IV. B) of the main text and Sec. (IV A.) of the Supplementary Information).
To compute the FT of the associated 3D distribution v3, according to Corollary 1 (with
a = 1, b = −1), we will have to compute the derivative of v̂1, in the sense of generalized
functions.

Using that
d
dk

sgn(k− skb) = 2δ(k− skb), (36)

and the equalities

(k− skb)δ(k− skb) = 0, (k− skb)
2δ(k− skb) = 0,

we find that

dv̂1

dk
= ∑

s∈{−1,0,1}
A2 (1 + 2γ)(k− skb) + A1(1 + γ) +

A0

k− skb
+

A1 ln |k− skb|+ 2A2(k− skb) ln |k− skb|+

i
π

2
s[2A0δ(k− skb) + (A1 + 2A2(k− skb))sgn(k− skb)] . (37)

Computing the sum explicitly, one obtains:

dv̂1

dk
= −a2

(
T 1

k−kb
+ T 1

k+kb

)
+ a0k ln

|k2 − k2
b|

k2 + (ia1 − a0kb) ln
|k− kb|
|k + kb|

+i
π

2

[
a0[k sgn(k− kb)− k sgn(k + kb)] + (ia1 − a0kb)[sgn(k− kb) + sgn(k + kb)]

−2a2(δ(k− kb)− δ(k + kb))
]
. (38)

Then, using Corollary 1, with a = 1, b = −1, u3 = v̂3 and u1 = v̂1, we seek v̂3 such as

〈v̂3, ϕ〉 = −
ω2

2
4

〈
k

d
dk

v̂1, ϕo(k)
〉

. (39)

By linearity, v̂3 is the sum of the contribution of each term of k d
dk v̂1, calculated using

Equation (39):
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• The contribution of −a2k
(

T 1
k−kb

+ T 1
k+kb

)
to v̂3 has been calculated, (see [31], Sec. IV.

A. 3. of the Supplementary Information), and is

ω2

2
a2k−1

b

[
v.p.

(
1

k− kb

)
− 1

k + kb

]
,

• Rewriting a0k2 ln |k
2−k2

b |
k2 = a0k2(ln |k− kb|+ ln |k + kb| − 2 ln |k|), and using ([31],

1. and 2. page 14 of the main text),the contribution of this term to v̂3 is

−ω2

2
a0 ln

|k2 − k2
b|

k2 ,

• Similarly, the term (ia1 − a0kb)k ln |k−kb |
|k+kb |

gives a contribution

−ω2

2
(ia1 − a0kb)G(k) to v̂3,

• the term i π
2 a0k[k sgn(k− kb)− k sgn(k + kb)] gives a contribution, see ([31], 1. page

15 of the main text):
iπa0

ω2

2
1B(0,kb)

(k),

• a similar calculation proves that the term i π
2 (ia1 − a0kb)k[sgn(k− kb) + sgn(k + kb)]

gives a contribution

−iπ
ω2

2
(ia1 − a0kb)F(k),

• the term −iπa2k(δ(k− kb)− δ(k + kb)) gives a contribution, (see [31], 2. page 15 of
the main text):

iπ
a2

kb

ω2

2
δ(|k| − kb),

where

F(k) = H(|k| − kb)/|k|, and G(k) = k−1 ln
∣∣∣∣ k− kb
k + kb

∣∣∣∣,
which are both even functions of k.

Using the fact that
v̂3 = ω2Ĝ1I ,

we obtain:

Proposition 2. The Fourier Transform of the regular part:

l 7→ eikb l

4πl3

(
a0 + a1l + a2l2)− a0

4πl3

is ( with k =
√

k2
x + k2

y + k2
z )

k 7→ a0P(k) +
a2

k2
b

A(k)− ia1 − a0kb
2

M(k)
k

, (40)
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with the definitions:

A(k) =
k2

b
k2 − k2

b
+ i

π

2
kbδ(|k| − kb), (41)

P(k) = −1
2

ln

∣∣∣∣∣ k2 − k2
b

k2

∣∣∣∣∣+ i
π

2
1B(0,kb)

, (42)

M(k) = k(G(k) + iπF(k)) = ln
∣∣∣∣ k− kb
k + kb

∣∣∣∣+ iπH(|k| − kb). (43)

4.3. Fourier Transform of the Regular Part of G1Q(l)Q
We now want to Fourier Transform the tensorial valued function

l 7→
[

eikb l

4πl3

(
c0 + c1l + c2l2)− c0

4πl3

]
Q. (44)

And we will later impose

c0 = 3

c1 = −3ikb

c2 = −k2
b

Let us define l 7→ G1Q(l) with

G1Q(l) =

[
eikb l

4πl3

(
c0 + c1l + c2l2)− c0

4πl3

]
. (45)

Contrary to the previous case, the components of G1Q(l)Q do not possess radial sym-

metry, since they have the form
li lj
l2 G1Q(l) (∈ L1

loc(R
3)): we cannot directly use Corollary 1.

Therefore, in order to proceed, we will first build a radial distribution T such that

liljT =
lilj

l2 G1Q(l).

We will then have (denoting by D the differentiation in the sense of the generalized
functions)

F
( li lj

l2 G1Q(l)
)
= F (liljT) = −Dki

Dkj
F (T). (46)

Heuristically (since the following 1
l2 G1Q(l) function is not definite at 0), we have to

compute the 3D Fourier transform of l 7→ v1(l) defined with,

v1(l) =

[
eikb l − 1

l5 c0 +
eikb l

l5

(
c1l + c2l2)] ,

and to use a unidimensional Fourier Transform computation (Corollary 1).

4.3.1. Fourier Transform of v1

Expressing v1 as a generalized function, we obtain:

v1(r) = c0

[
(cos(kbr)− 1)T 1

|r|5
+ i sin(kbr)T 1

r5

]
+ c1

[
cos(kbr)T 1

r4
+ i sin(kbr)Tsgn(r)

r4

]
+ c2

[
cos(kbr)T 1

|r|3
+ i sin(kbr)T 1

r3

]
. (47)
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As in the previous case, we compute the one-dimensional Fourier Transform of v1 in
the sense of generalized functions, and obtain:

v̂1 =
−1
2 ∑

s∈{−1,0,1}

[
γ + ln |k− skb|+ i

sπ

2
sgn(k− skb)

]
×

[
C2

6
(k− skb)

4 +
C1

3
(k− skb)

3 + C0(k− skb)
2
]

, (48)

where the C0,1,2 are given by

C0 = −c2s2,

C1 = ic1s, (49)

C2 = c0(3s2 − 2)/2

Note that the detailed and rigorous computation is given in an external document for
the specific case of n = 3, and Maxwell equations. See, in particular, [31], Sec. (IV. C) of
main text and Sec. (IV B.) of Supplementary Information.

Following that, we need to compute the derivative of these expressions (in the sense of the
generalized functions) using the Lemma (II.12), see ([31], p. 13 of Supplementary Information).

We eventually obtain:

dv̂1

dk
= −1

2 ∑
s∈{−1,0,1}

C2(
2
3

γ +
1
6
)(k− skb)

3 + C1(γ +
1
3
)(k− skb)

2 + C0(2γ + 1)(k− skb) +[
2C0(k− skb) + C1(k− skb)

2 +
2
3

C2(k− skb)
3
]

ln |k− skb|+

i
π

2
s
[

2C0(k− skb) + C1(k− skb)
2 +

2
3

C2(k− skb)
3
]

sgn(k− skb) . (50)

Rearranging and differentiating, we obtain, using

η−1 = 4c2kb + 2ic1k2
b − 2c0k3

b/3 (51)

η0 = 4c2 + 4ic1kb − 2c0k2
b (52)

η1 = 2ic1 − 2c0kb (53)

η2 = −2c0/3 (54)

−Dki
Dkj

(
k−1 dv̂1

dk
)
=

Ri,j

2
+ i

π

2

[
− 4

c2

kb
δ(|k| − kb)

kik j

k2 +

2η2δi,j (if|k| ≤ kb)

(
η1

|k| −
η−1

|k|3 )δi,j + (− η1

|k| + 3
η−1

|k|3 )
kik j

k2

]
(if|k| ≥ kb)

(55)

with

Ri,j =

[
2
3

c0 ln

∣∣∣∣∣ k2 − k2
b

k2

∣∣∣∣∣− η−1

kbk2 +
1
2

(
η1k− η−1

k

) 1
k2 ln

∣∣∣∣ k− kb
k + kb

∣∣∣∣
]

δi,j +[
−1

2

(
η1k− 3

η−1

k

) 1
k2 ln

∣∣∣∣ k− kb
k + kb

∣∣∣∣+
(
−4c2

1
k2 − k2

b
+

3η−1

kbk2

)]
kik j

k2 . (56)
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Using Equation (46), we obtain, for the (i, j) component:

F
(

G1Q(l)Q(i,j)

)
=
(
− 1

2

)
×
(
−Dki

Dkj

(
k−1 dv̂1

dk
))

=

[
− c0

6
ln

∣∣∣∣∣ k2 − k2
b

k2

∣∣∣∣∣+ η−1

4kbk2 −
1
8

(
η1k− η−1

k

) 1
k2 ln

∣∣∣∣ k− kb
k + kb

∣∣∣∣
]

δi,j+[
1
8

(
η1k− 3

η−1

k

) 1
k2 ln

∣∣∣∣ k− kb
k + kb

∣∣∣∣+
(

c2
1

k2 − k2
b
− 3η−1

4kbk2

)]
kik j

k2 +

i
π

2

[
c2

kb
δ(|k| − kb)

kik j

k2 +

{
− η2

2 δi,j if |k| < kb

− 1
4

(
η1
|k| −

η−1
|k|3
)

δi,j +
1
4

(
η1
|k| − 3 η−1

|k|3
) kikj

k2 if |k| > kb

}]
. (57)

From this, using Equations (40)–(43), we can deduce:

F
(

G1I(l)I+ G1Q(l)Q
)

=
(

a0 +
c0

3

)
P(k)I+ k−2

b A(k)
(
a2I+ c2Q̂

)
− ia1 − a0kb

2
M(k)

k
I+ η−1

8

( 2
kb

+
M(k)

k

)
k−2
[
I− 3Q̂

]
+

η1

8
M(k)

k

[
Q̂− I

]
. (58)

4.3.2. Expression in the General Notation

To express Equation (58) in the general notation for the Fourier Transform, let us first define

ãi =
ai

ki
b

c̃i =
ci

ki
b

The expression in general notation is obtained from Equation (58) replacing, ai by ãi,
ci by c̃i, kb by kb/|b|, and multiplying the whole expression by c3

a,b.

5. Discussion
5.1. Integrability Condition

In order to have a Fourier Transform, the singular part should necessarily be integrable
on the unit sphere Sn−1, which imposes a condition on the zeroth order coefficients only.
More precisely, one requires that [24]∫

Sn−1
Gs dS = 0 .

This condition is always satisfied for the odd tensor terms in Gs, but for even tensors,
up to order 2, one obtains: ∫

Sn−1
(a0I+ c0Q)dS = 0 .

which imposes

c0 = −3a0 ,

which is satisfied by the Maxwell kernel Equation (4).

5.2. At Infinity: Sommerfeld’s Rule

The function r 7→ E should verify some limit condition, which corresponds to scattering by
an object in an homogeneous space. Far enough from the scatterer [32], the field E should have
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only transverse components, e.g., QE(l) −→
l→+∞

0. As this should be fulfilled independently

of the object shape χ, the kernel should verify QG −→
l→+∞

0. Noting that Q is a projector, and

assuming that the integrability condition, Section 5.1, is satisfied, this imposes

a2 = −c2

Note that this condition is satisfied by the Maxwell kernel Equation (4).

5.3. Electromagnetic Scattering

Considering that, for the Maxwell scattering kernel,

a0 = −1 c0 = 3

a1 = ikb c1 = −3ikb

a2 = k2
b c2 = −k2

b

one obtains η−1 = η1 = 0.
This leads to the following expression for the FT:

F
(
G1

)
=

(
v.p.

kb
2

k2 − kb
2 + i

π

2
kbδS(0,kb)

(k)

)[
I− Q̂

]
, (59)

Using the general Fourier notation defined Equation (A1), we obtain:

F
(
G1

)
= c3

a,b Aa,b(k)

[
I− Q̂

]
, (60)

Aa,b(k) =

(
v.p.

kb
2

b2k2 − kb
2 + i

π

2
kb
|b| δS(0,kb/|b|)(k)

)
, (61)

where c3
a,b is defined by Equation (16).

Finally, we obtain the Fourier Transform of the LS Equation for scattering, using the
general Fourier Transform notations as:

Êinc(k,ω) = Ê(k,ω) +

(
|b|

(2π)a+1

) 3
2
[

Aa,b(k)

(
Q̂− I

)
+ Q̂

](
χ̂ ? Ê

)
, (62)

with k =
√

k2
x + k2

y + k2
z, and F

(
χ
)

is, e.g., in the case of an isotropic dielectric, the (3D)

Fourier Transform of (x, y, z; ω) 7→ ε(x, y, z; ω)/εb(ω)− 1, where εb(ω) is the background
permittivity. In the anistropic case, both χ and χ̂ are 3 × 3 matrix.

For a scattering problem, this equation relates the scattered vectorial quantity to the
Fourier transform of the object shape, described analytically by its indicator function.

5.3.1. Solution for a Spherical Scatterer, in the Low Contrast Limit

To give an example, we analytically solved Equations (61) and (62). Let us first
consider the limit of low index contrast. Note that this corresponds to typical experimental
conditions in biophotonics [37,38].

In this case, χ̂(k)� 1 in R3, and Equation (62) can be inverted easily to give:

Êinc = Ê +

(
|b|

(2π)a+1

) 3
2
[

Aa,b(k)

(
Q̂− I

)
+ Q̂

](
χ̂ ? Êinc

)
. (63)
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Considering a plane wave excitation, and using, in the following, the notation û for
the FT obtained with a = 1, b = −1 (see Appendix A),

Êinc = (2π)3Eoδ(k− kb).

Then, χ̂ ? Êinc = (2π)3Eoχ̂(k− kb), and the scattered field, defined as Es ≡ E− Einc
is given by:

Ês(k,ω) = −
[

k2
b χ̂(k− kb)

k2 − k2
b

+ i
π

2
kbδ(k− kb)χ̂(k− kb)

](
Q̂− I

)
Eo− χ̂(k− kb)Q̂Eo (64)

This equation gives the analytic solution, in Fourier space, for the (vectorial) field
scattered by an arbitrarily shaped scatterer in the regime of small index contrast.

Thanks to, e.g., numerical inverse Fourier Transform, one can obtain the 3D field plots
in real space, see Figures 1 and 2, using, for a dielectric sphere of radius ρ,

χ̂(k) ≡ χ̂(‖k‖) = ε− εb
εb

j1(‖k‖ρ)/(‖k‖ρ),

where j1 is the spherical Bessel function of order 1. The calculation obtained from Equation (64)
is in good agreement with Mie theory—see Figures 1 and 2.

Figure 1. Maps of the real part of the scattered field, from Mie theory—panel (a,c)—and inverse FT
of Equation (64)—panel (b,d). A plane wave polarized linearly along x, and propagating along z,
towards z > 0, is impinging on a sphere of diameter d = 1.5λ, where λ is the vacuum wavelength.
The sphere has an index nint = 1.35, and for the surrounding medium next = 1.33. Panel (a,b) displays the
x-component, panel (c,d) displays the z-component. The black dotted circle figures the sphere boundary.
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Figure 2. Real (black) and imaginary (magenta) part of the x component of the scattered field, along
the direction of propagation. Parameters are those of Figure 1. Symbols show the results computed
with Mie theory, and lines are for the inverse FT of Equation (64).

One notice that the injected field has no z component, and the latter appears in the
scattering process, see Figure 1c,d. This effect, though tenuous, is well described by our
tensorial approach.

One readily notices that the scattered field is a linear functional of χ, in Equation (64),
which is a consequence of the small index contrast hypothesis. In the case of multiple, non-
overlapping scatterers, the field would merely be the sum of all individual contributions,
stemming from each scatterer.

5.3.2. Scattering by an Ensemble of Spheres or Ellipsoids: A Born Expansion

In the case of a large contrast of permittivity between the scatterer and its environment,
Equation (62) can be solved using a Born expansion [39]. We proceed here in the Fourier
space, rewriting Equation (62) as:

Ê = Ê(0) + Ê(1) + . . . ,

with
Ê(0) = Êinc, and

Ê(j+1) = − 1
(2π)3

[
A1,−1(k)

(
Q̂− I

)
+ Q̂

](
χ̂ ? Ê(j)

)
. (65)

As an example, we compute the multiple scattering by an ensemble of identical
spheres, in the long wavelength limit. To proceed, we now define

χ̂(k) =
ε− εb

εb
j1(‖k‖ρ)/(‖k‖ρ)×

N

∑
j=0

exp
(
ik · Rj

)
,

where the Rj are vectors of R3. χ now describes N non-overlapping spheres, placed at Rj,
and of radius ρ.
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We remark that when several scatterers, described by
(

χp

)
p∈[1..P]

, are excited together (e.g.,

by a plane wave), one can write χ = ∑p χp, and express analytically, thanks to Equation (65),
all the contributions of the multiple scattering at an order jth of the Born expansion.

In the long wavelength limit, where A1,−1(k) = 0, the successive Born expansions
can be computed iteratively using Fast Fourier Transform. We have used the following
algorithm, based on the fact that χ̂ ? E(j) is the FT of the internal field—the field inside the
scatterers—computed at the jth order:

(1) Knowing E(j) in real space, compute the internal field χ(r).E(j)(r),
(2) Make a 3D FFT to obtain χ̂ ? Ê(j) in Fourier space,
(3) Multiply the result by Q, one obtains Ê(j+1),
(4) Invert the 3D FFT to obtain the field E(j+1) in real space, inside and outside the scatterers.
(5) Iterate to step (1), with j← j + 1

One then adds up the orders of Born expansion to obtain the scattered field.
We remark that the first step relies on the internal field only, as χ(r) = 0 outside the

scatterers. Therefore, no specific boundary condition—e.g., perfectly matched layers—is
necessary in the real space for this algorithm. However, to avoid the Gibbs effect [40,41],
in the implementation of the algorithm, one has to pay attention to the expansion in the
Fourier space of the product χ(r).E(j)(r). As known from previous studies in 1D [2,41]
and 2D [42], the unavoidable truncature (due to a finite extent of the numerical Fourier
space) can dramatically affect the value of χ̂ ? Ê(j) that is computed. In the present work, to
reconstruct an accurate field profile, we used a specific truncation in the Fourier domain,
choosing an apodization function ([43], See Eq. (2)) that permits us to avoid the non-
physical Gibbs oscillations. This truncation has been enforced on the Fourier components
of χ̂, at step (2) of the algorithm.

Eventually, our results, see Figure 3, are in good agreement with the standard T-matrix
method [20] to compute multiple scattering by an ensemble of spheres in a homogeneous
medium. Note that only three spheres among the five we considered are visible on the Y-Z
plane cut (X = 0), and only one is visible on the X-Z plane cut (Y = 0). This could permit
computing the optical forces that drive the dynamics of a trapped ensemble of glass spheres
in a vacuum [44–46].

(a) (b)

(c) (d)

Figure 3. Map of the intensity of the x component of the scattered field, in the (XZ) and (YZ) planes,
for a cluster of five spheres of glass (ε = 2.1) in air (εb = 1), placed at [0,0,0]; [0,R,2R]; [0.2R,−2R,R];
[2R,R,−2R]; [−1.5R,−1.3R,2R], excited by a plane wave polarized linearly along Z, propagating along
X, of unitary amplitude, with R = λ/100. Exact result, from [20] (panel (a,c)) and results obtained
from the fourth order Born expansion of Equation (62) (panel (b,d)) are displayed.



Mathematics 2023, 11, 4691 18 of 23

Finally, using the same method, we are able to compute the field scattered by an
ensemble of randomly oriented ellipsoid of semi-axes (a, b, c), whose shape can be described
analytically in the Fourier space by:

χ̂(k) =
N

∑
j=0

exp
(
ik · Rj

) ε− εb
εb

j1(
√

k M(φj, θj, ψj) kt)√
k M(φj, θj, ψj) kt

, (66)

where M(φj, θj, ψj) is the descriptor for the ellipsoid, rotated by the Euler angles φj around
X axis, θj around Y axis and ψj around Z axis:

M(φj, θj, ψj) = R(φj, θj, ψj)

a2 0 0
0 b2 0
0 0 c2

R(φj, θj, ψj)
−1,

R(φj, θj, ψj) being the associated 3 × 3 Euler rotation matrix.
The result is presented in Figure 4. One can see that the interaction between neigh-

boring scatterers, depending on their orientation, can deeply modify the field locally, e.g.,
enhance some components of the scattered field that were not present in the injected field.
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(a) (b)

Figure 4. Map of the intensity of two components of the scattered field, in the (YZ) plane, for a
cluster of 20 randomly placed and oriented ellipsoid of glass (ε = 2.1) in air (εb = 1), whose semi
length are 0.9R, 0.5R and 0.3R, with R = λ/100. The scatterers are excited by a plane wave polarized
linearly along Z, propagating along X, of unitary amplitude. The Z-component (panel (a)), and the
Y-component (panel(b)) are displayed.

Conclusion 387

In summary, we have studied the Fourier Transformation of the Lippmann-Schwinger 388

equation for electromagnetic scattering. Dealing separately with the singular and the 389

regular part of the equation, we obtain an analytic expression, where the role of the 390

scatterer shape is clearly visible. This does not require a periodic geometry, nor the use of 391

perfectly matched layers to adapt the boundary conditions. 392

We have provided a few numerical examples, using the factorization in Fourier space 393

to solve the equation for simple systems, with low index contrasts, or in the long wavelength 394

limit, in a configuration where multiple scattering occurs. 395

Perspectives include the possibility to solve in Fourier space the Lippmann-Schwinger 396

equation associated to scattering problems in more general cases, taking advantage of 397

recent works to compute fast Fourier Transforms [47]. This could permit, e.g. to define 398

now in the Fourier space, the Quasi-Normal Modes [18,48,49] of a dispersive scattering 399

system. Eq. (62) could help e.g. to obtain a relationship between the scatterer shape and 400

its eigenfunctions (the QNM modes), in particular for the static modes [50], for which 401

kb = 0. Field computation could also be carried out in lower dimensional systems, such 402

as structured fibers [51]. Finally, this approach could help to understand the multiple 403

scattering in an ensemble of particles trapped by light beams, using an analytical formalism. 404
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Figure 4. Map of the intensity of two components of the scattered field, in the (YZ) plane, for a cluster
of 20 randomly placed and oriented ellipsoid of glass (ε = 2.1) in air (εb = 1), whose semi-lengths
are 0.9R, 0.5R, and 0.3R, with R = λ/100. The scatterers are excited by a plane wave polarized
linearly along Z, propagating along X, of unitary amplitude. The Z-component (panel (a)) and the
Y-component (panel (b)) are displayed.

6. Conclusions

In summary, we studied the Fourier Transformation of the Lippmann–Schwinger
equation for electromagnetic scattering. Dealing separately with the singular and the
regular part of the equation, we obtained an analytic expression where the role of the
scatterer shape is clearly visible. This does not require a periodic geometry, nor the use of
perfectly matched layers to adapt the boundary conditions.

We have provided a few numerical examples, using the factorization in Fourier space
to solve the equation for simple systems, with low index contrasts, or in the long wavelength
limit, in a configuration where multiple scattering occurs.

Perspectives include the possibility to solve, in Fourier space, the Lippmann–Schwinger
equation associated with scattering problems in more general cases, taking advantage of
recent works to compute fast Fourier Transforms [47]. This could permit, e.g., defining the
Quasi-Normal Modes [18,48,49] of a dispersive scattering system. Equation (62) could help,
e.g., to obtain a relationship between the scatterer shape and its eigenfunctions (the QNM
modes), in particular for the static modes [50], for which kb = 0. Field computation could
also be carried out in lower dimensional systems, such as structured fibers [51]. Finally, this
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approach could help us to understand the multiple scattering in an ensemble of particles
trapped by light beams using an analytical formalism.
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Appendix A. Fourier Transform and Notations

Appendix A.1. Fourier Transform of a Function

There are a lot of definitions of the Fourier transform. Let us present a convenient
notation to encompass all the cases once for all (with f , g : Rn → R, F representing the
direct Fourier transform). Let us denote < f , g > the canonical scalar product, either on
Rn, or (unambiguously) on the function space Rn → R. In the following, the fact that the
electromagnetic field is a complex valued function will be handled by splitting real and
imaginary part, in the calculations:

F a,b f (k) :=
(

|b|
(2π)1−a

)n/2∫
Rn

f (t)eib〈k,t〉 dt, (A1)

(
F a,b)−1g(t) :=

(
|b|

(2π)1+a

)n/2∫
Rn

g(k)e−ib〈t,k〉 dk, (A2)

These simple results are gathered here withoug proof. For more details, see [31].
To jump from a convention to another, we have the simple following correspond-

ing formula:

F a,b f (k) =
(
|b/b′|

(2π)a′−a

)n/2

F a′ ,b′ f
( b

b′ k
)
. (A3)

Appendix A.2. Fourier Transform of a Tempered Distribution

Let us recall that if T ∈ S ′(Rn) is a tempered distribution, we define the Fourier
transform F a,bT by

〈F a,bT, ϕ〉 := 〈T,F a,b ϕ〉, (A4)

where,
〈 f , g〉 :=

∫
Rn

f (t)g(t)dt. (A5)

One can generalize the “jump” formula Equation (A3) to distribution, by:

F a,bT =

(
|b/b′|

(2π)a′−a

)n/2

m b
b′
F a′ ,b′T, (A6)

where, for all α 6= 0,

〈mαT, ϕ〉 :=
1
|α|n 〈T, m 1

α
ϕ〉 (A7)
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Appendix A.3. Fourier Transform of a Convolution

The FT of convolution can be expressed as:

F a,b( f ? g) =
(
(2π)1−a

|b|

) n
2
(
F a,b f

)
·
(
F a,bg

)
, (A8)

Appendix A.4. Fourier Transform of a Product

The well known formula that links the FT of a product and the convolution of two FTs
can be casted under the general notation, see Equations (A1) and (A2). The result reads:

F a,b( f · g) =
(
|b|

(2π)a+1

) n
2
(
F a,b f

)
?

(
F a,bg

)
, (A9)

Appendix A.5. Alternative Notation Used in This Article

These general notations, in spite of being really useful to bring altogether the different
Fourier transform conventions, can be a bit heavy while conducting computations. We will
often use, for a function (or a distribution) u the simplified notation F (u), or even û, to
symbolize F 1,−1(u).

Appendix B. Lemma on Spherical Properties

Appendix B.1. Spherical Properties

Here, we give some detail on the notation we use in Appendix B.2.
In the multidimensional case, we have∫

Sn−1
f (θ)dσ(θ) =

∫ π

ϕ1=0
· ·
∫ π

ϕn−2=0

∫ 2π

ϕn−1=0
f (θ(ϕ))J(n, ϕ)dϕn−1 · ·dϕ1 (A10)

where

θ1 = cos(ϕ1),

θ2 = sin(ϕ1) cos(ϕ2),

θ3 = sin(ϕ1) sin(ϕ2) cos(ϕ3),
...

θn−1 = sin(ϕ1) · · · sin(ϕn−2) cos(ϕn−1),

θn = sin(ϕ1) · · · sin(ϕn−2) sin(ϕn−1),

and
J(n, ϕ) = (sin(ϕ1))

n−2 · · · (sin(ϕn−3))
2 sin(ϕn−2). (A11)

Note that ϕ1, ϕ2, . . . ϕn−2 ∈ [0, π] and ϕn−1 ∈ [0, 2π].

Appendix B.2. Detailed Computation of the Integrals for Gs

First, we can manage to obtain
∫
Sn−1 log |θ1|θ2

2 dθ from
∫
Sn−1 log |θ1|θ2

1 dθ
and

∫
Sn−1 log |θ1|dθ.

Using the notation defined in Appendix B.1, one obtains:∫
g(ϕ1) cos2(ϕ2)J(n, ϕ)dϕ =

∫
g(ϕ1)J(n, ϕ)dϕ−

∫
g(ϕ1) sin2(ϕ2)J(n, ϕ)dϕ

=
∫

g(ϕ1)J(n, ϕ)dϕ− n− 2
n− 1

∫
g(ϕ1)J(n, ϕ)dϕ

=
1

n− 1

∫
g(ϕ1)J(n, ϕ)dϕ
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Using Fubini and the properties of Wallis integrals : Wn =
∫ π

2
0 sinn(x)dx that obey

the well-known relation (n− 1)Wn−2 = nWn, for all n ≥ 2. (here n ≥ 4),∫ π

0
sin2(ϕ2) sin(ϕ2)

n−3 dϕ2 = 2Wn−1

=
n− 2
n− 1

2Wn−3

=
n− 2
n− 1

∫ π

0
sin(ϕ2)

n−3 dϕ2

So ∫
Sn−1

log |θ1|θ2
2 dθ =

∫
log | cos(ϕ1)| sin2(ϕ1) cos2(ϕ2)J(n, ϕ)dϕ

=
1

n− 1

∫
log | cos(ϕ1)| sin2(ϕ1)J(n, ϕ)dϕ

=
1

n− 1

( ∫
Sn−1

log |θ1|dθ −
∫
Sn−1

log |θ1|θ2
1 dθ

)
To compute these integrals, we use ([34], p. 442),that links the integral of θ 7→ K(x · θ)

on the Sn−1 sphere to the following integral on the [0 1] inteval:∫ 1

0
sα(1− s2)β log(s)ds =

∂

∂α

∫ 1

0
sα(1− s2)βds

=
∂

2∂α

∫ 1

0
u(α−1)/2(1− u)βdu

=
∂

2∂α
B
(

α+1
2 , β + 1

)
=

1
4

B
(

α+1
2 , β + 1

)(
ψ
(

α+1
2
)
− ψ

(
α+1

2 + β + 1
))

where ψ(x) := Γ′(x)
Γ(x) is the digamma function, and B is defined by B(x, y) = Γ(x) Γ(y)

Γ(x+y) , and

verifies ∂
∂x B(x, y) = B(x, y)(ψ(x)− ψ(x + y)). Then, using the relations Γ(z + 1) = zΓ(z),

Γ( 1
2 ) =

√
π, ψ(z + 1) = ψ(z) + 1

z , ψ( 1
2 ) = −2 log(2)− γ, we obtain:

∫
Sn−1

log |θ1|dθ = − πn/2

Γ(n/2)
(ψ(n/2) + γ + 2 log(2)) (A12)

and ∫
Sn−1

log |θ1|θ2
1 dθ = − πn/2

nΓ(n/2)
(ψ(n/2) + 2

n + γ + 2 log(2)− 2). (A13)

We also obtain∫
Sn−1

log |θ1|θ2
2 dθ = 1

n−1
(∫

Sn−1 log |θ1|dθ −
∫
Sn−1 log |θ1|θ2

1 dθ
)

= − πn/2

nΓ(n/2) (ψ(n/2) + 2
n + γ + 2 log(2)). (A14)

Using the same method, one computes without difficulty the integrals for higher order
tensor—the results are gathered Table 2.
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